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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

SCALED THREE-TERM CONJUGATE GRADIENT METHOD VIA
DAVIDON-FLETCHER-POWELL UPDATE FOR UNCONSTRAINED

OPTIMIZATION

By

ARZUKA IBRAHIM

May 2015

Chair: Associate Professor Mohd Rizam Abu Bakar, PhD
Faculty: Institute for Mathematical Research

This thesis focus on the development of Scaled Three-Term Conjugate Gradient
Method via the Davidon-Fletcher-Powell (DFF) quasi-Newton update for uncon-
strained optimization. The DFP method possess the merits of Newton’s method
and steepest descent method while overcoming their disadvantages. Over the years
the DFP update has been neglected as a result of lacking the self correcting property
for bad Hessian approximation. In this thesis, we proposed a Scaled Three-Term
Conjugate Gradient Method by utilizing the DFP update for the inverse Hessian ap-
proximation via memoryless quasi Newton’s method which satisfies both the sufficient
descent and the conjugacy conditions. The basic philosophy is to restart the DFP
update with a multiple of identity matrix in every iteration. An acceleration scheme
is incorporated in the proposed method to enhance reduction in function value. Nu-
merical results from an implementation of the proposed method on some standard
unconstrained optimization problem shows that the proposed method is promising
and exhibits superior numerical performance in comparison with other well-known
conjugate gradient methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KAEDAH KECERUNAN KONJUGAT BERSKALA TIGA SEBUTAN
MELALUI KEMASKINI DAVIDON-FLETCHER-POWELL UNTUK

PENGOPTIMUNAN TAK BERKEKANGAN

Oleh

ARZUKA IBRAHIM

Mei 2015

Pengerusi: Profesor Madya Mohd Rizam Abu Bakar, PhD
Fakulti: Institut Penyelidikan Matematik

Tumpuan tesis ini adalah terhadap pembentukan kaedah kecerunan konjugat berskala
tiga sebutan melalui kemaskini kuasi-Newton Davidon-Fletcher-Powell (DFP) untuk
pengoptimuman tak berkekangan. Kaedah Davidon-Fletcher-Powell memiliki merit
kaedah Newton dan kaedah penurunan tercuram di samping berupaya mengatasi
kelemahan kaedah-kaedah ini. Sejak beberapa tahun kebelakangan ini kemaskini
DFP diabaikan kerana kelemahan sifat pembetulan sendiri untuk penghamiran Hes-
sian yang lemah. Dalam tesis ini, kami mencadangkan kaedah kecerunan konjugat
berskala tiga sebutan dengan mengounakan kemaskini DFP untuk penghampiran
Hessian songsang melalui kaedah kuasi-Newton tanpa memori yang memenuhi syarat
penurunan kecerunan yang mencukupi dan syarat konjugasi. Falsafah asas adalah
untuk mula semula kemaskini DFP dengan beberapa matrik identiti dalam setiap
lelaran. Skim pecutan digabungkan ke dalam kaedah yang dicadangkan untuk meng
galakkan pengurangan nilai fungsi. Keputusan berangka dari pelaksanaan kaedah
yang dicadang ke atas beberapa masalah pengoptimuman tak berkekangan piawai,
menunjukkan bahawa kaedah ini berpotensi dan mempamerkan prestasi berangka
unggul berbanding dengan kaedah-kaedah kecerunan konjugat lain yang terkenal.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Numerous problems in the real-life situation possess several solutions, Ancona-Navarrete
and Tawn (2000) in some cases infinite number of solution may be possible Antoniou
and Lu (2007). Optimization is the process of locating the best out of the available
solutions, it occurs in various fields of application such as engineering, sciences, so-
cial sciences and administration. It trace back to early century and become more
independent in the late 1940′s when G.B Dantzing suggested the famous simplex
method. With the advent of digital computers, this area received great attention.
Optimization methods are employed in order to obtain the most or the least in a
given situation, these methods are iterative rules design to determine the optimal so-
lution of a given optimization problem. In this thesis, we focus on solving nonlinear
large-scale unconstrained optimization problem of the form

min f(x), x ∈ ℜn, (1.1)

where f : ℜn → ℜ is a continuously differentiable function and n is the dimension of
xk which is assume to be large. Several iterative schemes were proposed to generate
a sequence of approximation to the solution of (1.1). The basic idea behind optimiza-
tion method is to either minimize or maximize the problem depending upon it nature.
Given an initial point x0 ∈ ℜn, generate a sequences {xk} of approximation using
some iterative scheme such that the iterate xk moves toward the neighborhood of the
optimal value and readily converges when a given stopping criterion is satisfied. In
most situation ‖gk‖ < ǫ where ǫ is pre-determined tolerance, that is when the gra-
dient approaches zero, the approximations xk of the iterate converges to the optimal
solution of the given problem. The sequences of approximations to the solution of
(1.1) are generated by the following iterative scheme

xk+1 = xk + αkdk, k = 0, 1, 2, 3, ..., (1.2)

where xk+1 and xk are the current and previous iterate, αk > 0 is the steplength
determine by a line search strategy and dk is the search direction. Different dk will
result to a different iterative scheme, the search direction are mainly classified into
two classes. In the first class we have

dk = −Hkgk. (1.3)

If (Hk) in (1.3) is an identity matrix then (1.3) corresponds to steepest descent direc-
tion and the iterative scheme (1.2) become steepest descent method which is one of
the earliest method for solving (1.1). IfHk = ∇2f(xk) in (1.3), then (1.3) corresponds
to Newton’s direction and the iterative scheme (1.2) becomes the Newton’s method.
Moreover if (Hk) in (1.3) is an approximation of ∇2f(xk) then (1.3) corresponds to
quasi-Newton direction and the iterative scheme (1.2) becomes quasi-Newton meth-
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ods which were developed based on the shortcoming of the Newton method, they
require the gradient of the objective function to generate and update the inverse
Hessian approximate matrix at every step such that the secant condition

Hkyk = sk, (1.4)

is satisfied, with yk = gk+1 − gk and sk = xk+1 − xk. In the second class, the search
direction is given by

dk =

{

−gk if k = 0,
−gk + βkdk−1 k ≥ 1,

where the parameter βk is a scalar known as the conjugate gradient parameter and
gk is the gradient of f . In this case, the iterative scheme for solving (1.1) corresponds
to conjugate gradient method, it is one of the famous iterative scheme in this aspect
due to its simplicity, low memory requirement and a good convergences property.

1.2 Basic Definitions and Theorems

We begin with the definitions and Theorems that are needed in this thesis which are
in Sun and Yuan (2006)

Definition 1.1 The search direction dk is said to be a descent direction of the objec-
tive function f, if gTk dk < 0. Similarly, the search direction dk is said to be sufficient
descent direction of the objective function f if

gTk dk ≤ −c‖gk‖2, (1.5)

where c > 0.

Definition 1.2 A point x∗ ∈ ℜn is said to be a stationary point (or a critical point)
point of the objective function if ∇f (x∗) = 0.

Definition 1.3 A point x∗ ∈ ℜn is said to be a local minimizer of the objective
function f , if f (x∗) ≤ f (xk) for all xk ∈ ℜn.

Definition 1.4 A point x∗ ∈ ℜ is said to be global minimizer of the objective func-
tion f , if f (x∗) ≤ f (xk) for all xk ∈ ℜn and xk 6= x∗.

Definition 1.5 A point x∗ ∈ ℜn is said to be a strict minimizer of the objective
function f , if f (x∗) < f (xk) for all xk ∈ ℜn.

Lemma 1.1 Let U and V be matrices belonging to ℜn×m for some m ∈ [1, n] and
suppose that L(ℜn) defined the linear space of all matrices of order n. The rank-k
update of matrix that is nonsingular A ∈ L(ℜn) of the form

Â = A+ UV T

2
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is nonsingular if and only if κ = I + V TA−1U 6= 0 specifically if κ 6= 0, then, the
inverse of the matrix A is given by

Â−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1, (1.6)

which is known as Sharman-Morrison formular (see Nocedal and Wright (2006)).

Theorem 1.1 Let P ∈ ℜn be a non empty open convex set and let f : P ∈ ℜn → ℜ
be a differentiable function, then f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ P . Similarly, f is strictly convex on P if and only if

f(y) > f(x) +∇f(x)T (y − x)

for all x, y ∈ P . Further more f is strongly or uniformly convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) +
1

2
c‖y − x‖2

for all x, y ∈ P where c > 0 is a constant.

Proof omitted see (Sun and Yuan (2006))

1.3 Optimality Conditions

The following Theorem (1.2-1.4) are due to (Sun and Yuan (2006))

Theorem 1.2 (First Order Necessary Condition) Let f : U ∈ ℜn → ℜ be continu-
ously differentiable on an open set U, if x∗ ∈ ℜn is a local minimizer then∇f (x∗) = 0.

Theorem 1.3 (Second Order Necessary Condition) Let f : U ∈ ℜn → R be continu-
ously differentiable on an open set U, if x∗ ∈ U is a local minimizer then ∇f (x∗) = 0
and ∇2f (x∗) is positive -semi definite.

Theorem 1.4 (Second Order Sufficient Condition) Let U ∈ ℜn → ℜ be continuously
differentiable on an open set U, if x∗ ∈ U is a strict local minimizer then ∇f (x∗) = 0
and ∇2f (x∗) is positive definite.

1.4 Rate of Convergence

The rate of convergence refers to the speed in which the sequence generated by an al-
gorithm tends to its limit point (Nocedal and Wright (2006). The following definition
(1.6-1.4) are from (Nocedal and Wright (2006)

3
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Definition 1.6 Let the sequence {xk} in ℜn converge to a finite limit x∗.

• The sequence is said to be q-linear convergence if there exist a scalar r ∈ (0, 1)
such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r

for sufficiently large k.

• The convergence is said also to be q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0

• The convergence is said to be q-quadratic if there exist a scalar N such that

‖xk+1 − x∗‖
‖xk − x∗‖2

≤ N

for a very large k.

Definition 1.7 Let the sequence {xk} in ℜn converge to a finite limit x∗. The se-
quence convergence is said to be r -(linear, superlinearly quadratically) if there exist
a sequence converging q-(linear, superlinearly quadratically) to zero.

1.5 Motivation

Among the quasi-Newton methods is the DFP method which serve as one of the clever
optimization method for determining the inverse Hessian approximation, its encom-
passes the merits of Newton’s method and steepest descent method while avoiding
their disadvantages Goldfarb (1969). It been neglected over the years as the result of

1. Computation and storage of the Hessian or inverse Hessian approximation in
every iteration

2. Its inability to adjust within a fewer step whenever a less informative inverse
Hessian matrix is approximated (Nocedal and Wright (2006)).

On the other hand, the conjugate gradient methods are fascinating iterative scheme
with low memory requirement. For non-linear problems most conjugate gradient
method cannot guarantee the sufficient descent condition

gTk dk ≤ −c ‖gk‖

which facilitate it convergence (Gilbert and Nocedal (1992)).

4
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1.6 Objectives of the Thesis

The main objectives are

1. To develop some three-term conjugate gradient method via DFP update which
would satisfies both the sufficient and the conjugacy conditions

2. To establish the global convergence properties of the proposed methods

3. To present some numerical results by comparing the proposed method with
other existing conjugate gradient methods.

4. To apply the proposed method on real-life optimization problems.

1.7 Structure of the Thesis

The remaining part of this thesis is structure as: An overview of nonlinear uncon-
strained optimization methods is present in chapter 2. Chapter 3 deals with the
derivation of the proposed method STCG, the convergence properties, numerical re-
sult and discussion. In chapter 4 we present the real-life application of the proposed
method on statistical problems. Chapter 5 present the implementation of the pro-
posed method with nonmonotone line search and chapter 6 gives conclusion and future
research.

5
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