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In recent years, Brain-Computer Interface (BCI) research has provoked an 
enormous interest among researchers from different fields since it is an 
important element in assistive technology. The most popular approach is 
a non-invasive method, using Electroencephalogram (EEG) analysis 
which acquires signals from the brain. Currently, the BCI application is to 
acquire signals from 32 to 64 electrodes’ recordings and translate them to 
a movement using various computing algorithm which can be used in 
wheelchair navigation, or control robot movements. However, it will be 
time consuming and an exhausting experience if the single command 
translation from large number of electrodes is used to help physically 
disabled and elderly people with their daily tasks or chores. An improved 
interface needed to be developed to allow BCI to become a user-friendly 
interface for the targeted groups. 
 
The aim of this project is to develop an algorithm that can choose optimal 
four electrodes for signal recording, and convert one thought into 
multiple commands with the chosen electrodes. Using sample datasets, 
the EEG signal is analyzed to determine the most suitable scalp area for 
P300 detection, while optimization with genetic algorithm (GA) is 
developed to select best four channels. Next, a signal interpretation 
system is designed and developed to translate the signal and send the 
pre-programmed commands to the robot through the operating computer. 
Based on the analysis and optimization of the datasets, P300 signals are 
most clear and robust at the midline and parietal area of the scalp, and 
can be detected at around 500ms after a stimulus. After 30 GA runs, the 
optimal four sets of electrodes are chosen based on their coefficient of 



© C
OPYRIG

HT U
PM

iii 
 

determination or r² values, where higher values contributes to higher 
repetition rates. Using signals from the chosen four electrodes to evaluate 
the signal interpretation system, a success rate of 75-80% is received. With 
this system, user can expect a more convenient preparation with lesser 
electrodes used, and faster execution of the robot commands since they 
are pre-programmed according to user’s intention and selected route. 
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Dalam beberapa tahun kebelakangan ini, penyelidikan dalam Antara 
Muka Otak-Komputer (BCI) telah menimbulkan minat yang tinggi di 
kalangan penyelidik dari pelbagai bidang kerana ia adalah elemen 
penting dalam teknologi bantuan. Pendekatan yang paling popular ialah 
kaedah bukan-invasif, iaitu dengan menggunakan elektroensefalogram 
(EEG) untuk memperoleh isyarat dari otak. Pada masa kini, aplikasi BCI 
adalah untuk memperoleh isyarat daripada 32 hingga 64 elektrod dan 
menterjemahkan kepada satu pergerakan dengan menggunakan pelbagai 
algoritma pengkomputeran. Walau bagaimanapun, jika objektif kajian 
BCI adalah untuk membantu orang kurang upaya dari segi fizikal dan 
warga tua dengan tugas atau kerja harian mereka, pendekatan ini akan 
memakan masa yang lama dan memberi satu pengalaman yang 
meletihkan. Satu antara muka yang lebih baik perlu dibangunkan untuk 
membolehkan BCI untuk menjadi antara muka yang mesra pengguna 
bagi kumpulan sasaran. 
 
Tujuan projek ini adalah untuk membangunkan algoritma yang boleh 
memilih empat elektrod optimum untuk memperoleh isyarat, dan 
menukar satu pemikiran ke dalam beberapa siri pergerakan dengan 
elektrod yang dipilih. Dengan menggunakan sampel dataset, isyarat EEG 
dianalisis untuk menentukan kawasan kulit kepala yang paling sesuai 
untuk mengesan P300, manakala pengoptimuman dengan algoritma 
genetik ( GA ) dibangunkan untuk memilih empat saluran yang terbaik. 
Seterusnya, sistem tafsiran isyarat direka dan dibangunkan untuk 
menterjemahkan isyarat dan menghantar arahan yang dipra-programkan 
untuk robot melalui komputer operasi. Berdasarkan analisis dan 



© C
OPYRIG

HT U
PM

v 
 

pengoptimuman dataset, isyarat P300 adalah yang paling jelas dan 
mantap di kawasan garis tengah dan parietal kulit kepala, dan boleh 
dikesan pada kira-kira 500ms selepas rangsangan . Selepas 30 jalanan GA, 
empat set elektrod yang optimum dipilih berdasarkan nilai pekali 
penentuan atau r² mereka , di mana nilai yang lebih tinggi menyumbang 
kepada kadar pengulangan yang lebih tinggi. Menggunakan isyarat 
daripada empat elektrod yang dipilih untuk menilai sistem tafsiran 
isyarat, kadar kejayaan 75-80% telah diterima. Dengan sistem ini, 
pengguna boleh mengharapkan penyediaan yang lebih mudah dengan 
penggunaan bilangan elektrod yang kurang, dan pelaksanaan arahan 
robot yang lebih cepat kerana mereka adalah dipra-programkan 
mengikut niat pengguna dan laluan yang dipilih. 
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CHAPTER 1 
 

INTRODUCTION 

 
1.1 Overview of Brain-Computer Interface 
 
Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI) is 
defined as a direct communication pathway between a human brain and 
a computer or a machine. In near future, it is imagined that human can 
actually just do the thinking and computers or machines can do the 
actions needed to execute the human’s thoughts. Based on the growing 
interests in this research area, that future is not too distant as we have 
anticipated (Lebedev & Nicolelis, 2006). Research laboratories specializing 
in BCI and its applications have been established in most countries, with 
the best researchers from different fields; from neuroscientists to 
communication, computer and electrical engineers collaborating together 
to produce better results that can contribute to real-life application of BCI. 
 
Figure 1.1 shows the basic BCI system for application in robot or any 
external devices (Schalk, 2009). Brain signals are recorded using 
electrodes placed onto or under the human scalp which will then be sent 
to the computer for processing and analysis for signal features. The 
signals are then translated to the commands to be sent to external devices 
using specific algorithm. 
 

 
Figure 1.1. A typical BCI system for controlling external devices (e.g. 
robots, wheelchairs etc.) (Schalk, 2009) 

Signal 

Acquisition & 

Processing 

Signal Features Translation 

Algorithm 
Device 

Command 
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The ideas of thought-controlled devices have long existed in science 
fictions. However to pursue the research in this field, the biggest question 
that first needed to be answered was how to actually ‘read’ human’s 
thought from the brain itself. A human brain normally contains billions of 
neurons, which connect to each other to form networks. These neurons 
process and transmit electrical and chemical signals that will then control 
human muscles and senses.  In 1929, Hans Berger, a neuropsychiatric 
scientist from German published his findings of scalp recordings of a 
human brain’s electrical activity, which later referred to as the 
Electroencephalogram or EEG (Swartz & Goldensohn, 1998). Since then, 
EEG is used mainly in neuroscience studies, concentrating on studying 
the types of signals that can occur in one’s brain. It was not until the early 
1970s that researchers began to realize that the EEG can also be used to 
translate human’s thoughts or intentions. Vidal (1977) then introduced 
the term ‘Brain-Computer Interface’ in his paper to explain the direct 
communication system between the brain and the computer. The research 
of BCI field later began to expand vastly around the globe, attracting all 
kinds of scientists and engineers to pursue this new and exciting idea of 
BCI. 
 
In general, methods used in extracting signals from the brain are divided 
into two types: invasive and non-invasive. Invasive methods refer to 
recordings using electrodes being implanted into the grey matter of the 
brain through surgery. Non-invasive methods on the other hand refer to 
recordings made using electrodes that are placed on the skull with no 
surgery needed. Invasive methods are the most effective way to record 
firing neurons due to good spatial resolution (0.1mm) and temporal 
resolution (less than 0.01s). However, there are still few issues need to be 
solved before the invasive methods can become a clinically useful BCI 
method in the future. Non-invasive methods, particularly those using 
EEG device, are considered most convenient for its portability and 
availability without any surgery needed. However, EEG has its own 
setbacks, such as limited bandwidth (10 to 40Hz), spatial resolution up to 
20mm, and recordings are susceptible to Electromyogram (EMG), 
Electrooculogram (EOG) and other mechanical artifacts (Schalk, 2009). 
Nevertheless, researchers prefer to pursue EEG-based BCI for its 
advantages of non-invasive, convenient and inexpensive. There are four 
types or features of EEG signals commonly used for BCI: Visual Evoked 
Potentials (VEP), Sensorimotor Rhythm (SMR), Slow Cortical Potentials 
(SCP) and Event Related Potentials (ERP). P300 is one of the components 
in the ERP which is defined as a positive peak that occurs around 300ms 
after a stimulus is presented to the user. It has robust waveform which 
makes it popular among EEG-BCI researchers to use it for feature 
extraction during EEG signal processing and analysis.  
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1.2 Problem Statement 
 
Although almost everyone can benefit from this interface development, 
researchers are mainly targeting those with physical disabilities, patients 
suffering with neuromuscular disorders such as Amyotrophic Lateral 
Sclerosis (ALS), ‘locked-in’ syndrome or patients who are totally 
paralyzed or elderly people to take advantage from BCI to improve their 
daily lives’ tasks (Sellers, 2006; Sirvent Blasco, 2012; Vaughan, 2006). 
Therefore most researches around the world are dealing with the same 
research question: How to make BCI a user-friendly system for the 
targeted groups? To solve this, researchers are pursuing their researches 
from every angle; from the brain acquisition process to the translation and 
finally the output or application process.  
 
The most common brain signal acquisition method used is EEG which is 
non-invasive since no surgery needed prior to using the EEG equipment. 
Out of the four EEG features mentioned, the P300 component of ERP is 
the most widely used feature for BCI operation due to its high-amplitude 
waveform which makes it easier for classification. In order to obtain good 
information and better accuracy of P300 signals, the recordings are 
usually made by placing from 32 to 64 electrodes or sensors on the scalp, 
depending on the recording device’s recording channel capacity. This is 
however can be inconvenient to operators and users since the process of 
placing a lot of electrodes will take a lot of preparation time, and it will 
make the users feel discomfort with the setup and eventually reject the 
idea of putting sensors on the scalp (Mak, 2011). Reducing the number of 
electrodes for EEG recordings is possible; previous literatures showed 
promising results using four midline electrodes (Serby et al., 2005; Sellers 
and Donchin, 2006; Piccione et al., 2006). Hoffman et al. (2008) 
experimented with nine subjects with minimum four electrodes and have 
produced good results. However the recordings’ quality and signal 
accuracy may deteriorate if wrong configuration is used to place the 
electrodes, and since human’s EEG signals are quite similar to 
fingerprints which have unique pattern for every person, the mentioned 
electrode configuration might not be the optimal combination for other 
subjects. Therefore a suitable method or algorithm needs to be studied 
and developed to be able to automatically select the optimal number of 
electrodes for P300 recording. It is hoped that even with minimum 
electrodes used, the P300 accuracy can still be acquired to control the 
mobile robot navigation according to the user’s intention. 
 
A number of researchers have succeeded in translating human thoughts 
to action, such as controlling a robot arm, a wheelchair, or even a spelling 
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device. The next problem that needs to be tackled is how to make BCI a 
user-friendly device for the targeted groups, for example patients with 
physical disabilities or the elderly. Current approach is to directly 
translate the brain signals to movements using computing algorithms, 
which is focusing more on the accuracy of the translation but consumes a 
lot of time and energy to complete one task. The main problem is to figure 
out how to translate brain signals into chains of commands without 
exhausting the user in terms of preparation and operation. To solve this 
problem, a more reliable algorithm or system needs to be developed, such 
as introducing a system that can be integrated with pre-programmed 
robot software or simulator. It is expected that this system can be applied 
as a medium to relieve the user from the exhaustion of having to operate 
the BCI movement by movement, thus can shorten the time needed to 
operate the system by issuing only one command for mobile robot to 
navigate from home position to the goal desired by the user. 
 
1.3 Research Objectives 

 
To tackle the problems discussed above, this project aims to develop an 
algorithm to perform optimization of EEG channel selection to help 
translate one instruction to multiple commands for robot navigation with 
minimum number of electrodes used for recording. For example, if the 
user imagines ‘drink’, the brain signal evoked will be captured, processed 
and analyzed. Then, after P300 signal is detected, channel selection 
optimization is done to find the best four combinations of channels for the 
specific signal recordings. Once the channels are determined, signals from 
the selected channels will be translated to sequences of commands that 
will allow the robot to do specific movements which are initially 
programmed into the device, such as move to the place where the drink is 
located, then return back to pass the drink to the user.  
 
Research objectives are: 

1. To investigate and analyze the P300 signal strength and 
automatically select four optimal locations of electrodes. 

2. To develop a translation algorithm for the acquired P300 signals 
and send commands to the external device to perform tasks with 
the above minimum electrode configuration. 

 
1.4 Scope of the Project 

 
Although this project aims to develop a system that can help patients 
with physical disabilities and elderly people, due to ethical reasons, only 
sample datasets will be used in data processing, analysis and system 
evaluation. The sample datasets which are available from the BCI2000 
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website (for more details please refer to Chapter Three: Methodology) 
will be used. The interpretation system built in this project will be solely 
developed to communicate with mobile robots (in robot simulation 
programs) that can be pre-programmed. A robot simulator called 
RobotBASIC is used in this project. Therefore all system evaluation and 
BCI verification will be using the environment that is suited with the 
simulator’s movement capability. 
 
1.5 Contribution 
 
The contributions of this project are an improved channel selection 
algorithm that utilizes Genetic Algorithm (GA) to choose optimal subsets 
of electrodes with minimum numbers possible; and development of new 
EEG Signal Interpretation System to control mobile robot or any external 
device. GA is used in the channel selection algorithm because of its 
behavior that mimics the natural evolution of human population based on 
genes’ mutation, cross-over, and elitism, among others. The stochastic 
approach is considered useful to optimize the best combination of 
electrode configurations. As for the signal interpretation system, instead 
of focusing on how to improve the accuracy of signal translation using 
computing algorithm, the new EEG Signal Interpretation System is 
developed using a new technique of combining a simple signal 
translation with pre-programmed mobile robot navigation, which is more 
user-friendly, low cost in maintenance since it does not involve any extra 
tools such as visual camera software, and higher value of 
commercialization since it is a standalone system which can be used with 
any mobile robot available in the market, regardless of the programming 
language used by the robot. 
 
Looking at the current advances and commercialization development 
concerning BCI technology, this innovation is designed with aim to be 
used by human regardless of their movement capability. Healthy users 
can use this system to help them in daily chores in terms of multi-tasking, 
while physically disabled users can use this system to help ease the 
burden of moving around or simply to fetch drinks or food. Elderly users 
can also benefit from this system as it can be their ‘helper’ to do simple 
chores or task in a short amount of time that if to be done by them, can be 
extremely time consuming and exhausting. It is also can be more 
appealing if the system can be operated with minimum number of 
electrodes possible without compromising the signals’ accuracy, therefore 
can reduce the discomfort of having to wear too many sensors on the 
scalp to operate a robot. 
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1.6 Thesis Organization 
 
The body of this thesis is divided into several chapters. Chapter One 
includes the introduction, problem statement, research objectives, scope 
of the project and contribution to the society. Chapter Two consists of the 
literature review of the project, where past related researches are 
analyzed and discussed to relate to the problem statement. Chapter Three 
describes the materials and equipments used in the project, and methods 
used to achieve the objectives. Chapter Four includes the results obtained, 
and discussion of the results. Finally, Chapter Five contains the summary 
and conclusions of the thesis, and some recommendations for future 
research that can help other researchers in the same field. 
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