UNIVERSITI PUTRA MALAYSIA

EFFECTS OF NUTRIENT DEFICITS ON GROWTH, PHYSIO-
BIOCHEMICAL CHANGES, AND YIELD OF CHILLI (Capsicum annuum
L.) GROWN IN SOILLESS CULTURE

A’FIFAH BINTI ABD.RAZAK

ITA 2013 9
EFFECTS OF NUTRIENT DEFICITS ON GROWTH, PHYSIO-BIOCHEMICAL CHANGES, AND YIELD OF CHILLI (Capsicum annuum L.) GROWN IN SOILLESS CULTURE

A’FIFAH BINTI ABD. RAZAK

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
EFFECTS OF NUTRIENT DEFICITS ON GROWTH, PHYSIO-
BIOCHEMICAL CHANGES, AND YIELD OF CHILLI (Capsicum annuum L.)
GROWN IN SOILLESS CULTURE

By

A’FIFAH BINTI ABD.RAZAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2013
EFFECTS OF NUTRIENT DEFICITS ON GROWTH, PHYSIO-
BIOCHEMICAL CHANGES, AND YIELD OF CHILLI (Capsicum annuum L.)
GROWN IN SOILLESS CULTURE

By
A’FIFAH BINTI ABD. RAZAK

October 2013

Chairman: Prof. Mohd Razi Bin Ismail, Ph.D
Faculty/Institute: Institute of Tropical Agriculture

Chilli (Capsicum annuum L.) is one of the most important vegetable crops commonly grown in soilless culture. It is widely consumed in Malaysia. Limited fresh water resources and fluctuating fertilizer prices, as well as excessive fertigation used by local growers, have led to higher costs and also wastage in water and fertilizer use. Deficit fertigation (DF) and fertigation frequency are irrigation strategies that imposed plants to nutrient deficit, which can improve fertigation use efficiency (FUE) without significant reduction in yield. Therefore, in the present study, the effects of different levels of DF and fertigation frequency on yield, growth, physiological and biochemical responses of chilli plants under soilless culture was evaluated and compared with the standard local grower’s practice (control). Plants subjected to control employing fertigation practice as recommended by the Department of Agriculture, Malaysia. Deficit fertigation (100, 75, 50 and 30% ETc) led to reduce in plant growth, dry matter partitioning into plant parts, total dry mass, photosynthetic rate, stomatal conductance, fresh fruit yield and FUE compared to control. In addition, different fertigation frequencies viz daily fertigation, one, two and three day fertigation intervals have shown significantly reduced plant growth, decreased photosynthetic rate, stomatal conductance, relative chlorophyll content and resulted in reduced fresh fruit yield. However, FUE was higher in fertigation frequency treatments than in the control.

Deficit fertigation (100, 75 and 50% ETc) corresponding to two day fertigation intervals resulted in decreased substrate moisture content (SMC), plant growth, photosynthetic rate, stomatal conductance and relative chlorophyll content. The nutrient contents in the leaves as well as P, Ca and Mg were decreased in DF compared to control at the fruit ripening stage. Antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and proline significantly increased in DF compared to control, but decreased progressively by growth stages. Fresh fruit yield decreased in DF compared to the control, but FUE
values in 100% ET\(_c\) with two day fertigation intervals were higher than in the control but no significant difference with 100% ET\(_c\) daily fertigation and 75% ET\(_c\) with two day fertigation intervals.

An attempt has been made to improve yield and increase FUE by increasing the levels of fertigation and use of dual-K\(_c\). Result demonstrated that there were slight reduction in plant growth and total dry mass under 200% ET\(_c\) and dual-K\(_c\) compared to control presumably attributed to the higher photosynthetic rate and stomatal conductance. Plants grown in 200% ET\(_c\) and dual-K\(_c\) reduced 24% of fresh fruit yield and saved 29% of the amount of nutrient solution applied compared to control.

However, plants supplied with 200% ET\(_c\) dual-K\(_c\) employing six times fertigation scheduling has shown improved root growth, no significant difference in the total leaf area and dry matter partitioning to the plant parts with the control. The photosynthetic rate, stomatal conductance and leaf water potential on 15:00 h were enhanced in six fertigation scheduling compared to control. Six times fertigation scheduling improved FUE value and saved 35% of nutrient solution compared to control as well as no significant difference in ripe fresh fruit yield with the control. Therefore, this fertigation strategy could be the best water and nutrients saving strategy of chilli grown in soilless culture.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN NUTRIEN DEFISIT TERHADAP TUMBESARAN, PERUBAHAN FISIO-BIOKIMIA, DAN HASIL CILI (Capsicum annuum L.) YANG DITANAM DALAM KULTUR TANPA TANAH

Oleh
A’FIFAH BINTI ABD RAZAK

Oktober, 2013

Pengerusi: Profesor Mohd Razi Ismail, Ph.D
Fakulti/Institut: Pertanian Tropika

Cili (Capsicum annuum L.) adalah salah satu daripada tanaman sayur-sayuran yang paling penting yang biasanya ditanam dalam kultur tanpa tanah. Ia digunakan secara meluas di Malaysia. Sumber air segar yang terhad, harga baja yang tidak menentu dan fertigasi yang berlebihan oleh penanam tempatan telah membawa kepada kos yang tinggi dan juga pembaziran dalam penggunaan air dan baja. Defisit fertigasi (DF) dan kekerapan fertigasi adalah strategi pengairan yang mana tumbuhan didedahkan dengan defisit nutrien, yang boleh meningkatkan penggunaan kecekapan fertigasi (FUE) tanpa pengurangan hasil yang sangat ketara. Oleh itu, dalam kajian ini, kesan tahap DF yang berbeza dan kekerapan fertigasi pada pertumbuhan, tindak balas fisiologi dan biokimia cili yang ditanam dalam kultur tanpa tanah dibandingkan dengan amalan penanam tempatan piawai (kawalan). Tumbuhan tertakluk kepada kawalan menggunakan amalan fertigasi seperti yang disyorkan oleh Jabatan Pertanian, Malaysia. Defisit fertigasi (100, 75, 50 dan 30% ETc) menunjukkan pertumbuhan tumbuhan, pembahagian bahan kering ke dalam bahagian-bahagian tumbuhan, jumlah jisim kering, kadar fotosintesis, stomata konduktans, hasil buah-buahan segar dan FUE berkurangan berbanding dengan kawalan. Kekerapan fertigasi yang berbeza iaitu fertigasi harian, satu, dua dan tiga hari selang fertigasi telah menunjukkan pertumbuhan yang berkurangan, penurunan kadar fotosintesis, stomata konduktans, kandungan klorofil relatif dan pengurangan hasil buah-buahan segar. Walau bagaimanapun, FUE adalah lebih tinggi pada kekerapan fertigasi daripada dalam kawalan.

Defisit fertigasi (100, 75 dan 50% ETc) dengan dua hari selang fertigasi menyebabkan pengurangan dalam kelembapan dalam substrat (SMC), pertumbuhan tumbuhan, kadar fotosintesis, stomata konduktans dan kandungan klorofil relatif Kandungan nutrien dalam daun seperti P, Ca dan Mg telah menurun dengan DF berbanding dengan kawalan pada peringkat buah-buahan masak. Enzim antioksidan seperti katalase (CAT), ascorbat peroksidase (APX), guaiacol peroksidase (GPX) dan proline meningkatkan dengan ketara dengan DF berbanding kawalan, tetapi menurun berperingkat mengikut peringkat pertumbuhan. Hasil buah-buahan segar menurun di dalam DF berbanding dengan kawalan, tetapi nilai-nilai FUE dalam 100% ETc selang dua hari fertigasi adalah lebih tinggi daripada kawalan tetapi ia
tiada perbezaan yang signifikan dengan 100% ETc fertigasi harian dan 75% ETc selang dua hari fertigasi.

Satu percubaan telah dibuat untuk meningkatkan hasil dan nilai FUE dengan meningkatkan tahap fertigasi dan penggunaan dwi-Kc. Keputusan menunjukkan bahawa terdapat sedikit pengurangan dalam pertumbuhan tumbuhan dan jisim kering dengan 200% ETc dan dwi-Kc berbanding dengan kawalan mungkin disebabkan oleh kadar fotosintesis dan stomata konduktans yang tinggi. Sebanyak 24% daripada hasil buah-buahan segar berkurangan dan 29% daripada jumlah nutrien yang dapat dijamin dengan 200% ETc dan dwi-Kc berbanding kawalan.

Tumbuhan yang dibekalkan dengan 200% ETc dan dwi-Kc menggunakan enam kali penjadualan fertigasi telah menunjukkan peningkatan pertumbuhan akar, tiada sebarang perbezaan yang signifikan dengan kawalan dalam jumlah keluasan daun dan pembahagian bahan kering ke bahagian-bahagian. Kadar fotosintesis, stomata konduktans dan potensi air daun pada jam 15:00 telah meningkat dalam enam kali penjadualan fertigasi berbanding kawalan. Di samping itu, enam kali penjadualan fertigasi telah meningkatkan nilai FUE dan menjimatkan 35% daripada jumlah nutrien berbanding dengan kawalan serta tiada perbezaan yang signifikan dalam hasil buah-buahan segar masak dengan kawalan. Oleh itu, strategi fertigasi ini boleh menjadi strategi terbaik untuk penjimatan air dan baja untuk tanaman cili yang ditanam dalam kultur tanpa tanah.
ACKNOWLEDGEMENTS

In the name of ALLAH, the Most Gracious the Most Merciful

I would like to express my sincere thanks and appreciations to the chairman of my supervisory committee, Professor Dr. Mohd Razi Ismail, for his constant encouragement throughout the course of my study. I am also indebted to Dr Puteri Edaroyati Megat Wahab and Associate Professor Datin Dr Siti Norakmar Abdullah, who, as members of my supervisory committee, for their time, advice and constructive encouragement. Special thanks are also extended with gratitude to Professor Asraffuzzaman and Dr Kausar Hossain, ITA’s Post Doctorial fellows and ITA’s research officers, Mr Zulkarami Berahim, Mrs. Azrin Ariffin for their time, encouragement, ideas and expert assistance during my study.

I wish to express my sincere gratitude to all staff in the Crop Science Department of Faculty of Agriculture and Food Crop and the Floriculture Laboratory of ITA especially Mr. Hj Khoiri, Mr. Mazlan, Mrs. Farah Wahida, Mrs Siti Samsiah, Mr. Adzan and Mrs. Norafidah for their helpful guidance in my laboratory and field work during various phases of my research programme.

My appreciations go to my friends and colleagues especially Mr Fauzihan B Karim, Mrs Mariaton Kibtiyah Bt Mohd Nadzri, Ms. Nurul Idayu and Ms. Amalina Bt Mohd Zain for their help and encouragement during my research work. A special thanks to my beloved husband, Mr Mohamad Syaifful B Yaacob and my siblings for their support and assistance during my study.

Finally, I would like to dedicate this thesis to my parents, Mr Abd Razak B Osman and Mrs. Azani Bt Ariffin. Baba and Mama thank you for your support and guidance until I finished my PhD thesis. Please pray for my happiness and success in the future. Last but not least, a million thanks to both my mother and father in laws for their full support and assistance during my study.
APPROVAL

I certify that an Examination Committee has met on 11 October 2013 to conduct the final examination of A’ifah Bt Abd. Razak on his thesis entitled "Effects of nutrient deficits on growth, physio-biochemical changes and yield of chilli (Capsicum annuum L.) grown in soilless culture" in accordance with the universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohd. Rafii bin Yusop, Ph.D
Associate Professor
Laboratory of Food Crops and Floriculture
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Anuar b Abdul Rahim, Ph.D
Associate Professor
Department of Soil Management
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Siti Aishah bt Hassan, Ph.D
Associate Professor
Department of Crop Science
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ted Bilderback, Ph.D
Professor
Department of Horticultural Science
North Carolina State University
United States
(External Examiner)

__

NORITAH OMAR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Razi Ismail, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Y. Bhg. Datin Siti Norakmar Abdullah, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Member)

Puteri Edaroyati Megat Wahab, PhD
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of DeputyVice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: 15th April 2014

Name and Matric No.: A’fifah Bt Abd. Razak (GS22311)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________ Signature: ________________________
Chairman of Supervisory Committee: Prof. Dr. Mohd Razi B Ismail Member of Supervisory Committee: Prof. Datin Dr. Siti Norakmar Bt Abdullah

Signature: ________________________
Member of Supervisory Committee: Dr. Puteri Edaroyati Bt Megat Wahab
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1.0 INTRODUCTION 1

2.0 LITERATURE REVIEW 4

2.1 Soilless Culture 4

2.2 Deficit Fertigation and Fertigation Frequency 4

2.2.1 Fertigation Use Efficiency 5

2.2.2 Crop Evapotranspiration 6

2.3 Water and Nutrient Deficits 7

2.3.1 Impact of Water and Nutrient Deficits on Plant Growth and Development 7

2.3.2 Impact of Water and Nutrient Deficits on Physiological Responses 9

2.3.3 Impact of Water and Nutrient Deficits on Biochemical Changes 11

2.3.4 Impact of Water and Nutrient Deficits on Plant Nutrient Content 12

3.0 DEFICIT FERTIGATION EFFECTS ON GROWTH PERFORMANCE AND FERTIGATION USE EFFICIENCY OF CHILLI GROWN IN SOILLESS CULTURE 14

3.1 Introduction 14

3.2 Materials and Methods 15

3.2.1 Plant Materials and Media Preparation 15

3.2.2 Experimental Site and Treatments 15

3.2.3 Plant Maintenance 17

3.2.4 Data Collection 18

3.2.4.1 Growth Measurements 18

3.2.4.2 Physiological Responses 18

3.2.4.3 Yield 18

3.2.4.4 Fertigation Use Efficiency 18

3.2.5 Experimental Design and Statistical Analysis 19

3.3 Results 19

3.4 Discussion 27

3.5 Conclusion 29
4.0 EFFECTS OF FERTIGATION FREQUENCY ON GROWTH PERFORMANCE, NUTRIENT CONTENT, YIELD AND FERTIGATION USE EFFICIENCY OF CHILLI IN SOILLESS CULTURE

4.1 Introduction 30

4.2 Materials and Methods 31

4.2.1 Plant Materials and Media Preparation 31

4.2.2 Experimental Site and Treatments 31

4.2.3 Plant Maintenance 32

4.2.4 Data Collection 33

4.2.4.1 Substrate Condition 33

4.2.4.2 Growth Measurements 33

4.2.4.3 Physiological Responses 33

4.2.4.4 Plant Nutrient Content 33

4.2.4.5 Yield 34

4.2.4.6 Fertigation Use Efficiency 34

4.2.5 Experimental Design and Statistical Analysis 34

4.3 Results 34

4.4 Discussion 46

4.5 Conclusion 48

5.0 EFFECTS OF DEFICIT FERTIGATION ON GROWTH, YIELD, PHYSIOLOGICAL RESPONSES, BIOCHEMICAL CHANGES AND FERTIGATION USE EFFICIENCY OF CHILLI IN SOILLESS CULTURE

5.1 Introduction 49

5.2 Materials and Methods 50

5.2.1 Plant Materials and Media Preparation 50

5.2.2 Experimental Site and Treatments 50

5.2.3 Plant Maintenance 51

5.2.4 Data Collection 52

5.2.4.1 Substrate Moisture Content 52

5.2.4.2 Growth Measurements 53

5.2.4.3 Physiological Responses 54

5.2.4.4 Biochemical Changes 54

5.2.4.5 Plant Nutrient Content 56

5.2.4.6 Yield 56

5.2.4.7 Fertigation Use Efficiency 56

5.2.5 Experimental Design and Statistical Analysis 56

5.3 Results 56

5.4 Discussion 76

5.5 Conclusion 82

6.0 STUDY ON DUAL CROP COEFFICIENT WITH DIFFERENT LEVELS OF FERTIGATION IN CHILLI

6.1 Introduction 83

6.2 Materials and Methods 84

6.2.1 Plant Materials and Media Preparation 84

6.2.2 Experimental Site and Treatments 84

6.2.3 Plant Maintenance 87
6.2.4 Data Collection
 6.2.4.1 Climatic Condition 87
 6.2.4.2 Crop Evapotranspiration and Crop Coefficient 87
 6.2.4.3 Substrate Condition 88
 6.2.4.4 Growth Measurements 89
 6.2.4.5 Physiological Responses 89
 6.2.4.6 Plant Nutrient Content 90
 6.2.4.7 Yield 90
 6.2.4.8 Fertigation Use Efficiency 90
 6.2.5 Experimental Design and Statistical Analysis 90

6.3 Results 90
6.4 Discussion 108
6.5 Conclusion 112

7.0 EFFECTS OF FERTIGATION SCHEDULING ON GROWTH, PHYSIOLOGICAL RESPONSE AND YIELD OF CHILLI

7.1 Introduction 113
7.2 Materials and Methods 114
 7.2.1 Plant Materials and Media Preparation 114
 7.2.2 Experimental Site and Treatments 114
 7.2.3 Plant Maintenance 115
 7.2.4 Data Collection 116
 7.2.4.1 Crop Evapotranspiration 116
 7.2.4.2 Substrate Condition 116
 7.2.4.3 Growth Measurements 116
 7.2.4.4 Physiological Responses 116
 7.2.4.5 Yield and Fertigation Use Efficiency 117
 7.2.5 Experimental Design and Statistical Analysis 117

7.3 Results 117
7.4 Discussion 129
7.5 Conclusion 132

8.0 GENERAL DISCUSSION AND CONCLUSIONS 133

REFERENCES 136
APPENDICES 170
BIODATA OF STUDENT 195
LIST OF PUBLICATIONS 196
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Total amounts of nutrient solution used in treatments (mL) and crop coefficients (Kc) according to growth stages.</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemicals used for pest and disease control.</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Vegetative growth and dry matter production and partitioning in chilli plants as affected by different levels of fertigation in a rain shelter.</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Influence of different levels of fertigation on fresh fruit yield, total number of fruit per plant, total amount of nutrient solution applied and fertigation use efficiency in chilli.</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>The total amounts of nutrient solution used in the treatments (mL) and crop coefficient (Kc) according to growth stages.</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Electrical conductivity of substrate in chilli plants as affected by fertigation frequency.</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Vegetative growth and dry matter production and partitioning in chilli as affected by fertigation frequency.</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect fertigation frequency on uptake of macronutrients in leaves of chilli plants.</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Influence of fertigation frequency on fresh fruit weight, total amount of nutrient solution applied and fertigation use efficiency in chilli plants grown in a rain shelter.</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>Total amounts of nutrient solution used in the treatments (mL) and crop coefficient (Kc) according to growth stages.</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of treatments on dry matter partitioning of chilli plants.</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of treatments on (a) Fv/Fm, maximum quantum yield of PSII (b) Fv, initial fluorescence and (c) Fm, maximal fluorescence</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of treatments on leaf water potential at the different growth stages.</td>
<td>68</td>
</tr>
<tr>
<td>5.5 a</td>
<td>Effect of deficit treatments on macronutrients content in leaves of chilli plants.</td>
<td>72</td>
</tr>
<tr>
<td>5.5 b</td>
<td>Effect of treatments on macronutrients content in leaves of chilli plants.</td>
<td>73</td>
</tr>
</tbody>
</table>
5.6 Fresh fruit weight, volume of nutrient solution applied and fertigation use efficiency in chilli plants under deficit fertigation

6.1 Total amounts of nutrient solution used in the treatments (mL) and crop coefficient (Kc) according to the growth stages

6.2 Average crop coefficients under single and dual crop coefficient.

6.3 Effect of different levels of fertigation and crop coefficients on substrate moisture content of chilli plants grown under soilless culture.

6.4 Effect of different levels of fertigation and crop coefficients on vegetative growth and dry matter and partitioning of chilli plants grown under soilless culture.

6.5 Effect of different levels of fertigation and crop coefficients on root growth of chilli plants grown under soilless culture.

6.6 Effect of different levels of fertigation and crop coefficients on (a) photosynthetic rate and (b) stomatal conductance in chilli plants at different growth stages.

6.7 Effect of different levels of fertigation and crop coefficients on (a) relative chlorophyll content and (b) F_v/F_m in chilli plants at different growth stages.

6.8 Effect of different levels of fertigation and crop coefficients on macronutrients content in leaves of chilli plants.

6.9 Effect of different levels of fertigation and crop coefficients on fresh fruit weight, volume of nutrient solution applied and fertigation use efficiency of chilli.

7.1 Total amounts of nutrient solution used in the treatments (mL) and crop coefficient (Kc) according to the growth stages.

7.2 Effects of fertigation scheduling on vegetative growth and dry matter and partitioning of chilli plants under rainshelter.

7.3 Effect of fertigation scheduling on green fresh fruit weight, dried fruit weights, fertigation use efficiency and total amount of nutrient solution applied

7.4 Effect of fertigation scheduling on ripe fresh fruit weight (maturity stage), total number of fruit per plant, fertigation use efficiency and total amount of nutrient solution applied
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Responses in (a) photosynthetic rate and (b) stomatal conductance due to different levels of fertigation [Standard local grower’s practice (control) (T0), 100% ETc (T1), 75% ETc (T2), 50% ETc (T3) and 30% ETc (T4); Vertical bars represent ± standard error; Values with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=3)]</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Relationships between fresh fruit weight and total nutrient solution applied in chilli plants</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Relationship between stomatal conductance and photosynthetic rate</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Relationship between photosynthetic rate and total dry mass</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of fertigation frequency on height of chilli plants [Standard local grower’s practices (control) (T0), daily fertigation (T1), one day fertigation interval (T2), two day fertigation intervals (T3) and three day fertigation intervals (T4) at different growth stages; Vertical bars represent ± standard; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=3)]</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Fertigation frequency effects on (a) photosynthetic rate and (b) stomatal conductance [Standard local grower’s practices (control) (T0), daily fertigation (T1), one day fertigation interval (T2), two day fertigation intervals (T3) and three day fertigation intervals (T4); Vertical bars represent ± standard error; Values with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=3)]</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of fertigation frequency on relative chlorophyll content of chilli plants [standard local grower’s practices (control) (T0), daily fertigation (T1), one day fertigation interval (T2), two day fertigation intervals (T3) and three day fertigation intervals (T4) at different growth stages; Vertical bars represent ± standard error; Values within growing stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=3)]</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationships between fresh fruit weight with total nutrient solution applied in chilli plants</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Relationship between stomatal conductance and photosynthetic rate</td>
<td>44</td>
</tr>
</tbody>
</table>
4.6 Relationship between total dry mass and photosynthetic rate

4.7 Relationship between photosynthetic rate and relative chlorophyll content.

5.1 GSM data logger Inforence™ (located at the pillar of rainshelter).

5.2 Probe sensor of Inforence™ and probe sensor WET-2 (positioned in the substrate at the top of each polybags).

5.3 GP1 data logger and probe sensor WET-2.

5.4 Treatment effects on substrate moisture content [Standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4); Vertical bars represent ± standard error (n=4)]

5.5 Treatment effects on (a) plant height, (b) stem diameter and (c) total leaf area [standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4) at different growth stages; Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4). Data had been transformed by square root (total leaf area) prior to statistical analysis.

5.6 Growth of chilli plants as affected by treatment [standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4)]

5.7 Root morphology of chilli plants as affected by treatments at peak fruiting stage. [standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two days fertigation interval (T2), 75% ETc and two days fertigation interval (T3) and 50% ETc and two days fertigation interval (T4)].

5.8 Effect of treatments on (a) root length (b) root surface and (c) root volume [Standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two days fertigation interval (T2), 75% ETc and two days fertigation
interval (T3) and 50% ETc and two days fertigation interval (T4) at different growth stages; Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4). Data had been transformed by square root (root surface and root volume) prior to statistical analysis.

5.9 Effect of treatments on (a) photosynthetic rate, and (b) stomatal conductance [Standard grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4) at different growth stages; Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4)].

5.10 Response in relative chlorophyll content at different growth stages [Standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4); Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4)].

5.11 Effect of treatment on proline content at the different growth stages [standard local grower’s practice (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4) at different growth stages; Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4)].

5.12 Effect of treatments on (a) CAT, (b) APX and (c) GPX activities in Capsicum annuum activities [standard local grower’s practicce (control) (T0), 100% ETc and daily fertigation (T1), 100% ETc and two day fertigation intervals (T2), 75% ETc and two day fertigation intervals (T3) and 50% ETc and two day fertigation intervals (T4); Vertical bars represent ± standard error; Values within growth stage with the different letter are significantly different based on comparison using DMRT at P≤ 0.05, (n=4)]. Data had been transformed by square root (CAT activity at bloom and fruit set and fruiting stage) prior to statistical analysis.
6.1 Data logger WP 700 system (located outside of rainshelter).

6.2 Probe sensors (positioned in the substrate on the top of polybags).

6.3 Location of probe sensor (10 cm distance from stem of plants).

6.4 Wind speed and relative humidity recorded throughout the planting season [windspeed (m/s) - solid line; relative humidity (%) - dashed line].

6.5 Crop and reference evapotranspiration for single and dual coefficients during the growing season [Crop evapotranspiration for dual coefficient (ET\(_c\); dashed line), Crop evapotranspiration for single coefficient (ET\(_s\); dotted line) and Reference evapotranspiration (ET\(_o\); solid line)].

6.6 Cumulative ET\(_c\) for single and dual crop coefficients and reference evapotranspiration during the growing season [Accumulated ET\(_c\) for single (solid line) and dual crop coefficient (dashed line); Reference evapotranspiration (dotted line)].

6.7 Dual crop coefficient calculated with standard FAO approach (Allen et al., 1998). [Symbol represent: ▲, basal crop coefficient (K\(_{cb}\) FAO 56, solid line; crop coefficient (K\(_c\) FAO 56 = K\(_{cb}\) + K\(_e\)) and dotted line; substrate evaporation coefficient (K\(_e\))].

6.8 Effect of treatments on substrate moisture content at (a) flowering, (b) fruiting and (c) peak fruiting stages [T0 (Control) = standard local grower’s practice T1=100% ET\(_c\) and single-K\(_c\), T2=100% ET\(_c\) and dual-K\(_c\), T3=125% ET\(_c\) and single-K\(_c\), T4=125% ET\(_c\) and dual-K\(_c\), T5=150% ET\(_c\) and single-K\(_c\), T6=150% ET\(_c\) and dual-K\(_c\), T7=200% ET\(_c\) and single-K\(_c\) and T8=200% ET\(_c\) and dual-K\(_c\)].

6.9 Effect of treatments on substrate temperature at (a) flowering, (b) fruiting and (c) peak fruiting stages [T0 (Control) = standard local grower’s practice T1=100% ET\(_c\) and single-K\(_c\), T2=100% ET\(_c\) and dual-K\(_c\), T3=125% ET\(_c\) and single-K\(_c\), T4=125% ET\(_c\) and dual-K\(_c\), T5=150% ET\(_c\) and single-K\(_c\), T6=150% ET\(_c\) and dual-K\(_c\), T7=200% ET\(_c\) and single-K\(_c\) and T8=200% ET\(_c\) and dual-K\(_c\)].

6.10 Treatment effects on chilli plants at peak fruiting stage.

6.11 Treatment effects on chilli plants at peak fruiting stage [T0 (Control) = standard local grower’s practice T1=100% ET\(_c\)
and single-\(K_c\), \(T_2=100\%\) \(ET_c\) and dual-\(K_c\), \(T_3=125\%\) \(ET_c\) and single-\(K_c\), \(T_4=125\%\) \(ET_c\) and dual-\(K_c\), \(T_5=150\%\) \(ET_c\) and single-\(K_c\), \(T_6=150\%\) \(ET_c\) and dual-\(K_c\), \(T_7=200\%\) \(ET_c\) and single-\(K_c\) and \(T_8=200\%\) \(ET_c\) and dual-\(K_c\).

6.12 Relationship between fresh fruit weight and total nutrient solution applied.

7.1 Reference evapotranspiration (\(ET_o\)) and crop evapotranspiration (\(ET_c\)) throughout the growing season. \([ET_o\) (solid line); \(ET_c\) (dashed line)].

7.2 Cumulative reference evapotranspiration (\(ET_o\)) and crop evapotranspiration (\(ET_c\)) for chilli plants. \([ET_o\) (dashed line); \(ET_c\) (solid line)].

7.3 Effect of fertigation scheduling on the diurnal course of substrate moisture content of chilli plants at (a) vegetative (b) flowering and fruit set and (c) fruit ripening stages [Control (T0), two times fertigation scheduling (T1) and six times fertigation scheduling (T2)].

7.4 Effect of fertigation scheduling on the diurnal course of substrate temperature of chilli plants at (a) vegetative (b) flowering and fruit set and (c) fruit ripening stages [Control (T0), two times fertigation scheduling (T1) and six times fertigation scheduling (T2)].

7.5 Effect of treatments on diurnal changes in photosynthetic rate of chilli plants [Control (T0), two times fertigation scheduling (T1), six times fertigation scheduling (T2) at different times a) 21 days after treatment, b) 35 days after treatment and c) 42 days after treatment; Vertical bars represent ± standard error (n=3)].

7.6 Effect of treatments on diurnal changes in stomatal conductance of chilli plants [Control (T0), two times fertigation scheduling (T1), six times fertigation scheduling (T2) at different times a) 21 days after treatment, b) 35 days after treatment and c) 42 days after treatment; Vertical bars represent ± standard error (n=3)].

7.7 Effect of treatments on diurnal changes in leaf water potential of chilli plants [Control (T0), two times fertigation scheduling (T1), six times fertigation scheduling (T2) at 42 days after treatment; Vertical bars represent ± standard error (n=3)].

7.8 Relationship between fresh fruit weight and total nutrient solution applied.
LIST OF ABBREVIATIONS

% Percentage
< Less Than
= Equal to
> Greater than
\leq Less than and equal to
* Significantly different at P\leq0.05
AA Ascorbic Acid
AAS Atomic Absorption spectroscopy
ABA Abscisic Acid
ANOVA Analysis of Variance
APX Ascorbate Peroxidase
AQUASTAT FAO's global information system of water and agriculture
BER Blossom End Rot
Ca Calcium
CAT Catalase
CEC Cation Exchange Capacity
Cl Chloride
cm Centimetre
cm^2 Centimetre Square
CO_2 Carbon Dioxide
CV Coefficient Variation
cv. Cultivar
DAT Day after transplanting
DF Deficit Fertigation
DF Degree of Freedom
DI Deficit Irrigation
dSm^{-1} Desimeter Per Second
DMRT Duncan’s Multiple Range Test
DOA Department of Agriculture
Dual-Kc Dual Crop Coefficient
E Evaporation
\varepsilon Extinction Coefficient
EDTA Ethylenediaminetetraacetic Acid
EFB Empty Fruit Bunches
EC Electrical Conductivity
EC Enzyme Commission
E_s Soil Evaporation
ET Evapotranspiration
ET_0 Reference Evapotranspiration
ET_c Crop Evapotranspiration
E_{pan} Class A Pan Evaporation
et al., And Friends
FAO Food and Agriculture Organization
FAOSTAT Food and Agriculture Organization Statistical Database
FUE Fertigation Use Efficiency
F_m Maximal Fluorescence
F_o
Minimal Fluorescence

F_v/F_m
Quantum Yield of PSII

FW
Fresh Weight

FWC
Fresh Weight Content

g
Gram

GPX
Guaiacol Peroxidase

GR
Glutathione Reductase

g/mol
Gram Per Mole

H
mean maximum plant height during the period of calculation

(initial, development, mid season or late season)[m]

H_2O_2
Hydrogen Peroxide

ha
Hectare

h
Hour

IUE
Irrigation use efficiency

K
Potassium

K_c
Crop Coefficient

K_{cb}
Basal coefficient

$K_c\max$
Maximum value of K_c following irrigation

K_e
Soil evaporation coefficient

K_p
Pan Coefficient

KPa
Kilo Pascal

K_r
Dimensionless evaporation reduction coefficient
depending on the cumulative depth of water depleted(evaporated) from the top soil

kg
Kilogram

km3
Kilometre Per Cubic

L
Litre

LAI
Leaf Area Index

$L\ \text{day}^{-1}$
Litre per day

LSD
Least Significant Difference

LWP
Leaf Water Potential

M
Mole

MDA
Malondialdehyde

Mg
Magnesium

min
Minute

mM
Milimole

m
Metre

μg
Microgram

ml
Mililitre

μl
Microlitre

mm
Milimetre

μM^{-1}
Micro per Molar

μmol
Micromole

$mmol$
Milimole

MPa
Mega Pascal

m/s
Meter Per Second

N
Nitrogen

n
number of observation

Na
Natrium
<table>
<thead>
<tr>
<th>No.</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>Not Significant</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>Superoxide</td>
</tr>
<tr>
<td>O₁₂</td>
<td>Singlet Oxygen</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl</td>
</tr>
<tr>
<td>OM</td>
<td>Organic Matter</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>pH</td>
<td>Measurement of Acidity/Alkalinity</td>
</tr>
<tr>
<td>pm</td>
<td>Evening</td>
</tr>
<tr>
<td>POX</td>
<td>Peroxidase</td>
</tr>
<tr>
<td>PPFD</td>
<td>Photosynthetic photon flux density</td>
</tr>
<tr>
<td>ProT2</td>
<td>Specific Proline Transporter</td>
</tr>
<tr>
<td>PSII</td>
<td>Photosystem II</td>
</tr>
<tr>
<td>P5C</td>
<td>Pyrroline-5-carboxylate</td>
</tr>
<tr>
<td>P5CS</td>
<td>P5C synthetase</td>
</tr>
<tr>
<td>P5CR</td>
<td>P5C reductase</td>
</tr>
<tr>
<td>Qₐ</td>
<td>Quinine acceptor</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RHmin</td>
<td>Minimal Relative Humidity</td>
</tr>
<tr>
<td>RO</td>
<td>Alkoxyl Radical</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation Per Minute</td>
</tr>
<tr>
<td>RuBP</td>
<td>Ribulose-1,5-biphosphate</td>
</tr>
<tr>
<td>Rubisco</td>
<td>Ribulose-1,5-biphosphate carboxylase oxygenase</td>
</tr>
<tr>
<td>RWC</td>
<td>Relative Water Content</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SLA</td>
<td>Specific Leaf Areaa</td>
</tr>
<tr>
<td>Single-Kₑ</td>
<td>Single Crop Coefficient</td>
</tr>
<tr>
<td>SMC</td>
<td>Substrate Moisture Content</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>T</td>
<td>Transpiration</td>
</tr>
<tr>
<td>Tₑ</td>
<td>Transpiration</td>
</tr>
<tr>
<td>U</td>
<td>Windspeed</td>
</tr>
<tr>
<td>Var</td>
<td>Variety</td>
</tr>
<tr>
<td>v:v</td>
<td>Volume per Volume</td>
</tr>
<tr>
<td>Wm⁻²</td>
<td>Watts per Meter Square</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per Volume</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Vegetables are the fourth largest of crops that contribute significantly to the agriculture industry in Malaysia, covering an area of about 40,980 ha with a total annual production of 534,370 tonnes in 2010. Chilli (*Capsicum annuum* L.) is one of the most important vegetables in Malaysia. The demand for this hot and pungent fruit vegetable is growing at the rate of 13.8% per year. In 2009 Malaysia had 2,594 ha of land under chilli cultivation, which increased to 2,993 ha in 2011. In 2011, production of chilli was 32,780 tonnes which was 2,559 tonnes higher than in 2010 (Anonymous, 2011).

Recently, chilli is commercially grown in soilless culture under protected structures or rain shelters. The widespread adoption of the cultivation system is to create a favourable environment for crop growth, sustain yields under certainty due to weather, pests and diseases, and assure continuous supply of fresh vegetables throughout the year (Ismail, 2000). Soilless culture is a growing system that has been used widely in vegetable production in Malaysia. Winsor and Baudoin (1992) reported that soilless culture offers a valuable alternative compared to crop cultivation in soil and has been widely adopted to produce vegetables in the greenhouse all over the world. Development of suitable substrates for soilless cultivation could avoid crop production problems such as soilborne pests and diseases, soil salinity, and limitations of water and other factors. This growing system was reported to produce higher yields and quality of vegetables compared to soil cultivation (Varis and Altay, 1992; Abak et al., 1994; Alan et al., 1994).

Freshwater is an absolute essential input for all agricultural activities. Water requirement varies significantly between different agricultural activities and climatic regions. In 2000, water withdrawal in the agriculture sector in Malaysia was about 5.6 km3 (FAOSTAT, 2006). Water and fertilizers are crucial inputs in a soilless culture system. This system is operated with irrigation that supply water and nutrients at various concentrations and is called fertigation (Leith and Oki, 2008). Growers need to supply both inputs to the plants through the fertigation system to make sure plants are provided with essential elements (Ismail, 2000). In order to sustain better crop performance and yield, plants need an appropriate supply of macro and micro-nutrients. Fertilizer is well known as the highest variable cost item in crop production budget (Anonymous, 2009). However, as fresh water supply becomes limited and global fertilizer prices increase, it creates problems to the growers and affects chilli production. Molden (2007) claimed that to produce food on a global scale over the next 50 years, there was sufficient water resources but only if water for agriculture is better managed. The Malaysia government aids growers by giving incentives in the form of fertilizer subsidy, but this does not increase the fertilizer use efficiency. Therefore, it is necessary to take necessary initiatives to improve on fertilizer use efficiency.

Besides the fluctuation in fertilizer prices and limited water supply, there is another problem that needs to be overcome which is the poor management of fertilizer and...
water by growers. There is a tendency by growers to over-supply nutrient solutions to the plants. The over-supply of nutrient solution includes fertilizers and water. This results in increased cost of production and non-profitable.

In order to address these problems, there is a need to find management approaches that promote efficient use of both water and nutrients. Postel (1998) suggested that an effective water management strategy should be identified and adopted under limited water supply. Deficit irrigation (DI) is one of the water saving strategies that involves irrigating the entire root zone with less than evapotranspiration (Kang and Zhang, 2004; Dorji et al., 2005). Moreover, DI increases irrigation efficiency, reduces cost of irrigation and consumption of water (English, 1990). Although a slight decrease in yield may be obtained, but the quality of the yield tends to be equal or much better than maximum irrigation (Marouelli and Silva, 2007; Spreer et al., 2007; Cui et al., 2008; Hueso and Cuevas, 2008). Studies on potato plants have shown that DI reduces 37% of water use without hampering the yield (Liu et al., 2006).

Water and fertilizer can be reduced by irrigation/fertigation scheduling. Fertigation scheduling is an irrigation program that usually depends on the frequency of irrigation and delivering only the amount of water and nutrients required by plants. It is managed by many intricate factors, but the major role is the climatic factor. Hence, it is crucial to develop fertigation scheduling for specific environments. Several studies were carried out in the past on the development and assessment of irrigation scheduling techniques under a wide range of irrigation systems and management, soil, climate and crop conditions (Hagan and Laborde, 1964; Jensen et al., 1970; Imtiyaz and Shiromani, 1990; Wanjura et al., 1990; Imtiyaz et al., 1992; Steele et al., 1997). Irrigation frequency could be applied through cyclic irrigation by applying the daily water allotment in a series of cycles comprised of an irrigation and a resting interval which is aimed to decrease the irrigation frequency (Karam, 1993). However, frequent irrigation applied to the crops is to reduce water stress and achieve optimum production and high quality (Sezen et al., 2010). Results of previous studies have demonstrated that increased interval of irrigation improved irrigation use efficiency (IUE) by 25 to 38% (Fare et al., 1993; Lamack and Niemiera, 1993; Tyler et al., 1996). It was also reported that superior fruits and higher IUE were obtained in cucumber plants subjected to frequent irrigation (Ertek et al., 2006). The higher irrigation frequency of water in a day resulted in better growth, higher photosynthetic rate, higher stomatal conductance, increased IUE and lower substrate temperatures in pine bark grown in containers (Warren and Bilderback, 2004).

Improved water and nutrient management can also be achieved by applying water based on the crops water requirement. It is a step in the right direction that can reduce water use while maintaining profitable production. This can be achieved using the principle of crop evapotranspiration (ETc). To determine water use of a crop there is a need to know the crop coefficient which helps determine the water requirements of the crop at every stage of growth and environmental factors. In the crop coefficient approach, the crop evapotranspiration (ETc) is calculated by multiplying the reference crop evapotranspiration, (ETo) by the crop coefficient, (Kc). ETo represents an index of climatic demand and ETc is determined by crop type, growth stage and cultural practices. Crop evapotranspiration can be calculated.
from ET₀ if the Kₑ is known for a given crop. Crop coefficient for the same crop may vary from place to place based on climate and soil evaporation (Kang et al., 2003).

Many studies have been conducted on the effect of DI using ET on growth, physiological and yield with varieties of plant under field and soil grown condition in other countries as well as studies conducted by Costa and Gianquinto (2002) on bell pepper grown in soil under lysimeter, Chertzoulaki and Doros (1997) on pepper grown in unheated glasshouse, Gonzalez-Dugo et al. (2007) on pepper grown in field and Zegbe-Dominguez et al. (2003) on tomato grown in glasshouse. However, application of deficit fertigation and fertigation frequency based on ETₑ to chilli plants grown under soilless culture systems in Malaysia are relatively unknown. Therefore, an understanding of the physiological, biochemical responses of plants under water and nutrient deficit, based on ETₑ may allow growers not only to manage water and nutrients wisely but also enable them to save water and fertilizer costs. The key issue is that this approach can bring profit to growers even with slight reductions in the yield. Therefore, the present study was undertaken with the following objectives:

1. To characterize the effects of deficit fertigation on plant growth performance and physiological responses of chilli.

2. To examine the effects of fertigation frequency on growth, physiological response and plant nutrient content of chilli.

3. To understand the mechanism of water and nutrient deficit on chilli growth performance and yield.

4. To determine the optimum water and nutrient requirement and crop coefficient of chilli.

5. To determine the best water and nutrient saving strategy that is applicable to growers.
REFERENCES

Guang-Cheng, S., Rui-Qi, G., Na, L., Shuang-En, Y and Weng-Gang, X. 2011. Photosynthetic, chlorophyll fluorescence and growth changes in hot pepper...

McWilliams, D. 2003. *Drought strategies for cotton*. Cooperative extension service circular 582, College of Agriculture and Home Economics. New Mexico State University, USA.

Solomon, Z., Mats, O and Masresha, F. 2007. Growth, gas exchange, chlorophyll a fluorescence, biomass accumulation and partitioning in droughted and irrigated
plants of two enset (Ensete ventricosum Welw, Cheesman) clones. Journal of Agronomy. 6(4): 499-508

