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Faculty: Science

Acute gastrointestinal bleeding (GIB) is a common medical emergency with 50-
150 per 100,000 people admitted per year. Although 80 percent of GIB cases stop
spontaneously, it is important to determine the source of bleeding and establish a
diagnosis such that possible recurrences are prevented and that the most suitable
management may be given in future episodes. In the emergency room, when a
patient shows signs of hematemesis (vomiting of red blood), it is obvious that the
patient has upper gastrointestinal bleeding. In the absence of hematemesis how-
ever, the source of bleeding remains unclear. While the diagnosis of GIB is best
done by a gastroenterologist, it is not always feasible, due to scarcity of resources
and time. A reliable classification model would be very helpful in diagnosing
patients more efficiently and effectively targeting the scarce resources.

Current review of the literature, did not reveal any model that predicts the source
of GIB in the absence of hematemesis. This thesis uses a graphical modeling ap-
proach, specifically Bayesian networks, to model the different outcomes of GIB.
One key advantage of Bayesian network models in this context is their ability to
predict the outcome with partial observations on variables or attributes. The four
outcome variables predicted are: source of bleeding, need for urgent blood resus-
citation, need for urgent endoscopy, and disposition. Performance of the models
is assessed by classification or prediction accuracy, area under curves, sensitivity
and specificity values. The Bayesian network models provide good accuracy for
the prediction of the source of bleeding and need for urgent blood resuscitation
but did not do well on predicting need for urgent endoscopy, and disposition. The
models require further validation if they are to be used in clinical settings.
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Pendarahan gastrousus akut (GIB) adalah penyakit kecemasan biasa dengan 50-
150 daripada 100,000 orang dimasukkan ke wad dalam tempoh setahun. Walaupun
80 peratus daripada kes-kes GIB berhenti secara spontan, adalah penting untuk
menentukan punca pendarahan dan melakukan diagnosis supaya dapat mengha-
lang perkara yang sama berulang dan langkah yang paling sesuai diambil pada
masa akan datang. Di dalam bilik kecemasan, apabila pesakit menunjukkan
tanda-tanda hematemesis (muntah darah merah), ia adalah jelas bahawa pesakit
mempunyai pendarahan gastrousus atas. Walaubagaimanapun, ketiadaan he-
matemesis menyebabkan punca pendarahan tidak jelas. Walaupun diagnosis GIB
adalah lebih baik dilakukan oleh gastroenterologi, ia tidak kerap dilaksanakan
kerana kekurangan sumber dan masa. Satu model klasifikasi yang boleh diper-
cayai akan banyak membantu dalam mendiagnosis pesakit dengan lebih cekap
dan berkesan berdasarkan kepada sumber-sumber yang terhad.

Berdasarkan literatur yang terkini, di mana ianya tidak menunjukkan sebarang
model yang meramalkan sumber GIB dengan ketiadaan hematemesis. Tesis ini
menggunakan pendekatan model grafik, iaitu rangkaian Bayesian untuk mem-
odelkan hasil GIB yang berbeza. Kelebihan utama model rangkaian Bayesian
dalam konteks ini adalah keupayaannya untuk meramalkan hasil dengan meng-
gunakan pemerhatian separa ke atas pembolehubah. Empat hasil ramalan pem-
bolehubah adalah punca pendarahan, keperluan untuk bantuan pernafasan darah
kadar segera, keperluan untuk endoskopi kecemasan, dan permisahan. Prestasi
model ini dinilai dengan klasifikasi atau ramalan ketepatan, kawasan di bawah
lengkungan, sensitiviti dan nilai-nilai spesifikasi. Model rangkaian Bayesian ini
memberikan kejituan yang bagus bagi meramalkan punca pendarahan dan keper-
luan untuk bantuan pernafasan darah pada kadar segera, tetapi, model ini tidak
mununjukkan kejituan yang baik dalam meramalkan keperluan untuk endoskopi
kecemasan dan permisahan. Model-model ini memerlukan pengesahan yang se-
lanjutnya sekiranya hendak digunapakai dalam penetapan klinikal.
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CHAPTER 1

INTRODUCTION

1.1 Background

Acute gastrointestinal bleeding (GIB) is a potentially life-threatening abdominal
emergency that remains a common cause of hospitalization (Fallah et al., 2000;
Cerulli, 2013). According to Kanwal et al. (2010) nonvariceal upper gastrointesti-
nal bleeding results in 400,000 hospital admissions per year, costing more than
$2 billion annually in the US. The rising incidence of GIB is associated with in-
creasing non steroidal anti-inflammatory drug (NSAID) use such as aspirins and
the high prevalence (64 percent) of Helicobacter pylori infection in patients with
peptic ulcer bleeding (Sánchez-Delgado et al., 2011; Simon et al., 2013). Previous
research has shown that the use of NSAIDs, for doses ≥ 325 mg/d increases the
risk of bleeding from peptic ulcer disease up to fivefold (Lanas et al., 2006). The
advent of new drugs and endoscopic interventions have however reduced the num-
ber of surgeries for bleedings from peptic ulcer, but not mortality (Di Fiore et al.,
2005). GIB is twice as common in men as in women and increases in prevalence
with age (Longstreth, 1995).

The signs of GIB depend on the rate of blood loss. Patients with GIB will show
signs of iron-deficiency anemia or hemoccult-positive stools when there is micro-
scopic blood loss (Manning-Dimmitt et al., 2005). Some GIB patients will have
coffee-ground emesis, which is the vomiting of altered black blood, hematemesis
which is defined as the vomiting of fresh blood, melena which is the passing of
black tarry stools or hematochezia which is is the passing of red blood via the rec-
tum (usually from the lower gastrointestinal tract, but sometimes from a briskly
bleeding upper gastrointestinal source) (Watson and Church, 2013; Palmer, 2002).
These presentation signs are important in the diagnosis of GIB. When patients
arrive in the emergency room with GIB, they are often met by a front line physi-
cian (not a gastroenterologist). The physician must make a prompt and accurate
clinical assessment of the patient. This assessment involves checking the severity
of the bleeding, its acuity, activity and location or source of bleeding. The source
of bleeding could be from the upper part of the gastrointestinal tract or digestive
tract (esophagus, stomach, and first part of the small intestine) as shown in Fig-
ure 1.1, and is known as upper gastrointestinal bleeding (UGIB) or from the lower
part (includes much of the small intestine, large intestine or bowels, rectum, and
anus) known as lower gastrointestinal bleeding (LGIB). Physician’s make several
decisions based on their prediction of the source of bleed (UGIB or LGIB). The
source of bleed will determine the management of bleed i.e., consultant to be
assigned and the timing for consultation.

When UGIB is suspected, the diagnostic tool of choice is esophagogastroduo-
denoscopy or upper endoscopy and is done by a gastroenterologist while if LGIB is
suspected, a colonoscopy or lower endoscopy is done, Figure 1.2, or arteriography
if the bleeding is too brisk (Zuccaro, 1998; Eisen et al., 2001). The evaluation and
management of LGIB may also necessitate consultation with a nuclear medicine
specialist, a general surgeon or an intervention radiologist (Brackman et al., 2003).

1
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(Adam, 2010)

Taking into consideration the numerous diagnostic and management options, an
incorrect prediction of the source of bleeding can result in unwarranted consul-
tations and procedures and in delays in delivery of proper care. Jensen et al.
(1988) found out as many as 11 percent of patients suspected initially to have
LGIB are ultimately found to have UGIB. Physicians also make several other

Figure 1.2: Endoscopy.

(Dugdale and Longstreth, 2009)

decisions based on the initial assessment. They determine the endoscopy timing,
consultation requirements, resuscitation requirements, triage, and prognostica-
tion (Kollef et al., 1997). Other decisions are listed in Table 1.1, (Cappell and
Friedel, 2008).

Although a gastroenterologist would be the most preferred to diagnose every
single case of GIB, this is not always feasible due to time and cost constraint.
Physicians are thus left to the task of identifying patients who are at risk of
adverse outcomes (re bleeding, death) and to make key decisions on preventing
these adverse outcomes. There are several clinical and laboratory variables that
are available in the first few hours of evaluation in the emergency department

2
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Table 1.1: Key early decisions in the medical management of acute
upper gastrointestinal bleeding.

Triage
Admit to hospital versus discharge from emergency room
Admit to ICU versus monitored bed versus unmonitored hospital bed
Emergency versus routine gastroenterology consult
Surgical consult or not

Intensive monitoring
Nasogastric tube insertion or not
Central venous line or Swann-Ganz catheter or not
Foley insertion or not

General supportive therapy
Endotracheal intubation or not
Transfuse packed erythrocytes or not
Transfuse other blood products or not
PPI therapy or not
Octreotide therapy or not

Endoscopy
Emergency versus elective endoscopy
EGD versus colonoscopy
Endoscopic therapy or not
Specic modality of endoscopic therapy

Abbreviations: EGD, esophagogastroduodenoscopy; PPI, proton pump inhibitor.
(Cappell and Friedel, 2008)

that can be used to identify patients at risk of adverse outcomes. (Adamopoulos
et al., 2003) found that variables like haemoglobin level, haemodynamic status,
that are available at presentation can be used to distinguish between patients
in need of urgent endoscopy and those who don’t. Using symptoms alone how-
ever, physicians can predict the location of GIB with only 40 percent accuracy
compared to endoscopy on other studies. Physicians use scoring systems to help
them identify patients who are at risk of adverse outcomes and their fore in
need of urgent treatment. i.e., urgent blood resuscitation or endoscopy. Several
scoring systems and models have been developed to identify patients at risk of
adverse outcomes. The Rockall score (Rockall et al., 1996b) uses clinical data
from endoscopic findings to identify UGIB patients who are at high risk. The
Blatchford score (Blatchford et al., 2000), is applicable for UGIB patients as well.

Although a number of scoring systems have been developed, these scoring sys-
tems have focused on identifying patients with UGIB that are at risk of adverse
outcomes. Little attention has been given to the identification of LGIB patients
that are at risk of adverse outcomes. Classification or prediction models need to

3
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be developed to help identify those patients in need of urgent resuscitation and
endoscopic intervention (Baradarian et al., 2004; Jensen et al., 2000). There are
several classification models that have been developed that can be used to predict
several outcomes of GIB in patients (Chu et al., 2008). The Bayesian network
(BN) models have however not been considered as predictors of outcomes of GIB.
In this thesis, Bayesian network (BN) models are developed, to help in the diag-
nosis or prediction of outcomes of GIB. BNs have the following advantages over
other methods.

1. BN’s represent powerful tools for graphically representing the relationships
among a set of variables and for dealing with uncertainties.

2. The graphical structure of the BN provides a simple way to visualize the
relationships between the variables.

3. BN’s are interactive and offer a graphical modeling mechanism that re-
searchers can use to understand the behavior of a system or situation. When
variables are observed or more evidence is obtained, the information can be
propagated throughout the model and the effects on particular variables of
interest can be inspected .

1.2 Objectives of the thesis

The objectives of the thesis are to:

1. Develop BN models for predicting the source of bleeding, need for urgent
endoscopy, need for urgent blood resuscitation and disposition in patients
with GIB.

2. Develop a naive Bayes model (NB) to predict the source of bleeding in GIB
patients presenting without hematemesis.

3. Compare the NB model for predicting the source of bleeding in patients
presenting without hematemesis with other classification models.

1.3 Methods

In order to achieve the objectives, a BN approach to modeling GIB is selected after
a broad review of numerous approaches which include; rule induction, traditional
statistics, random forest, and other modeling algorithms. Three BN models are
considered: the naive Bayes (NB) model, tree augmented naive Bayes model
(TAN), and Bayes network augmented naive Bayes (BAN). These models are
developed with the help of two modeling shells. The first is Weka modeling
shell which is selected because of its ability to incorporate case files, provide the
classification accuracy and because it has a variety of other classifiers with which
we can use to compare our model. Weka cannot perform sensitivity analysis and
provides no option for updating the model. These two functions are found in
the Netica (Norsys) modeling shell. Netica solves the network by performing
standard belief updating which looks for the marginal posterior probability for
each node . In BN modeling, a prior probability is the likelihood of some input
parameters being in a particular state e.g. a patient having a history of GIB. A

4
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conditional probability is the likelihood of a state of a parameter given the states
of other parameters that affect it, i.e., how the presence of a history of UGIB
affects the current presence of GIB. A posterior probability is the likelihood of
a certain parameter being in a particular state e.g. the patient having UGIB
given the input parameters, conditional probabilities and the rules governing the
combination of the probabilities (Marcot et al., 2001). A network is solved when
the nodes are updated.

1.4 Expected outcome

The expectation of this thesis is that the BNs developed will assist the physician
in the emergency room to diagnose the patients more efficiently and effectively.
BN models have the potential to identify patients with both UGIB and LGIB and
ascertain their need for urgent treatment or disposition. The model can be used
to predict the source of bleeding, disposition and need for intervention (endoscopy
and resuscitation) in patients with UGIB or LGIB.

1.5 Limitations of the study

In order to use the BN model, it would need to be validated on larger real datasets
and more simulation studies done. It takes time to get approval for use of a large
established datasets from organizations. This has limited the testing of the BN
models on datasets from other clinics. This study has thus been based on two
datasets. A BN model is interactive. It would need to be developed as a web
interface so that its performance be compared to the prediction of a physician at
the hospital. Due to time and cost constraint, the web interface is not developed.

1.6 Organization of the thesis

This thesis is divided into five chapters. Chapter 1, explains the motivation of the
thesis and how the contents throughout the document are organized. Chapter
2, introduces the methods used in the thesis beginning with the most general
concepts and gradually focusing on those most related to the remaining chapters.
First the general concept of BN is explained, and then details of the modeling
process and their construction is given. Finally a specific type of BNs, called
Bayesian network classifiers (BNCs) which is the main theme of the thesis, are
emphasized. In Chapter 3, BNCs for predicting the four outcomes of GIB are
developed. In Chapter 4, BNs for the special case of predicting the source of GIB
in the absence of hematemesis are developed and the BNs are compared with other
classification models. Finally, Chapter 5 summarizes the main contributions of
the thesis and gives the future work.
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