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Spectral studies on the eigenfunctions of Laplace-Beltrami operator on a cusp hy-

perbolic surface are known to contain both continuous and discrete eigenvalues.

While the continuous eigenvalues are known analytically, whose eigenfunctions are

usually spanned by the Eisenstein series, it is more subtle to solve for the discrete

ones which can only be found numerically where the eigenfunctions are described

by the Maass cusp forms. The main aim of this research is to compute the discrete

eigenvalues and visualize the eigenfunctions for the modular group, commutator

subgroup and principal congruence subgroup of level two in a parallel computing

environment using GridMathematica software.

Our parallel programme comprises of two important parts namely the pullback

algorithm and also the Maass cusp form algorithm. The latter is developed using

an adapted algorithm of Hejhal and Then which is based on implicit automorphy

and finite Fourier series. This algorithm applies to the computation of Maass cusp
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forms on Fuchsian group whose fundamental domain has only one cusp namely the

modular group and the commutator subgroup. Special attention is given to the

computation of eigenvalues for the modular group because this part is intended to

serve as the basis for further development of computation for the more complex

surfaces. This parallel programme is further modified using a generalized Hejhal’s

algorithm to cater for fundamental domain that has several cusps namely the prin-

cipal congruence subgroup of level two. To facilitate the complete pullback process

of this group, a point locater algorithm is developed.

In this work, we present three different pullback algorithms for the surfaces we

considered and carefully integrate them into our Maass cusp form algorithm. With

it, we manage to compute 190 eigenvalues for the modular group where 111 belong

to the odd class and 79 belong to the even class. The computational accuracy of

the eigenvalues is expected to be accurate at least up to nine decimal places since

the tolerance for the bisection module is set as 10−10. For the commutator sub-

group, we manage to compute 104 eigenvalues where 52 belong to the odd class

and 52 belong to the even class. For the principal congruence subgroup of level

two, 20 lower lying eigenvalues are computed. From these eigenvalues, 11 belong

to the odd class and nine belong to the even class. The tolerance of the bisection

module for these two subgroups are set as 10−9 and 10−6 respectively. As such,

the computational accuracy of the eigenvalues are expected to be accurate at least

up to eight for the former and five decimal places for the latter.

Eigenvalues from these surfaces are checked using selected procedures such as

y independent solution, automorphy condition, Hecke relation and Ramanujan-

Petersson conjecture for their authenticity. Later, we visualize the eigenstates of

selected eigenvalues from each surface using GridMathematica. Some features that
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appear in the plots are explained. We have also compared the performance of par-

allel programming and normal programming here in order to justify the feasibility

and advantages of using the parallel version of commercially available software for

complex computations of Maass cusp forms. We find that the parallel program-

ming is about 5.75 times faster than the normal programming while its efficiency

is capped at 0.443.
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Kajian spektrum pada fungsi eigen operator Laplace-Beltrami pada permukaan

berjuring hiperbolik diketahui mempunyai nilai eigen yang selanjar dan diskrit.

Sementara nilai eigen selanjar boleh dikira secara analitik dan fungsi eigennya di-

jana oleh siri Eisenstein, penyelesaian nilai eigen diskrit adalah lebih sukar dan

hanya diketahui secara berangka dengan fungsi eigennya diberi oleh fungsi ben-

tuk juring Maass. Tujuan utama kajian ini adalah untuk mengira nilai eigen

diskrit dan memberi visualisasi fungsi eigen bagi kumpulan modular, subkumpu-

lan komutator dan subkumpulan kongruen utama tahap dua dalam persekitaran

pengkomputeran selari menggunakan perisian GridMathematica.

Aturcara selari kami terdiri daripada dua bahagian penting iaitu algoritma pen-

gunduran dan juga algoritma fungsi bentuk juring Maass. Algoritma kedua ini

telah dibangunkan dengan menggunakan algoritma terubahsuai Hejhal dan Then

yang berdasarkan automorf tersirat dan siri Fourier terhingga. Algoritma ini boleh

digunapakai untuk mengira fungsi bentuk juring Maass bagi kumpulan Fuchsian
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yang domain asasnya hanya berjuring tunggal contohnya kumpulan modular dan

subkumpulan komutator. Perhatian khas diberikan kepada pengiraan nilai eigen

bagi kumpulan modular kerana bahagian ini bertujuan untuk dijadikan sebagai

asas pembangunan pengiraan selanjutnya untuk permukaan yang lebih kompleks.

Aturcara selari ini seterusnya diubahsuai menggunakan algoritma Hejhal teritlak

untuk menampung domain asas yang mempunyai beberapa juring contohnya sub-

kumpulan kongruen utama tahap dua. Untuk memudahkan proses pengunduran

lengkap kumpulan ini, satu algoritma penentu lokasi dibangunkan.

Dalam kajian ini, kami bentangkan tiga algoritma pengunduran yang berbeza

untuk permukaan-permukaan kajian kami dan dengan cermat mengintegrasikan

mereka ke dalam algoritma fungsi bentuk juring Maass. Dengan algoritma ini,

kami berjaya mengira 190 nilai eigen bagi kumpulan modular di mana 111 dimiliki

oleh kelas ganjil manakala 79 lagi dimiliki oleh kelas genap. Ketepatan pengiraan

nilai eigen dijangka tepat sekurang-kurangnya sehingga sembilan tempat perpu-

luhan sejak toleransi bagi modul pembahagian dua bahagian ditetapkan sebagai

10−10. Untuk subkumpulan komutator, kami dapat mengira 104 nilai eigen yang

mana 52 adalah milik kelas ganjil dan 52 lagi milik kelas genap. Bagi subkumpu-

lan kongruen utama tahap dua pula, 20 nilai eigen paras rendah berjaya dikira.

Daripada nilai eigen ini, 11 dimiliki oleh kelas ganjil manakala sembilan lagi dim-

iliki oleh kelas genap. Toleransi modul pembahagian dua bahagian bagi kedua-

dua subkumpulan ini masing-masing ditetapkan sebagai 10−9 dan 10−6. Dengan

ini, ketepatan pengiraan nilai eigen dijangka adalah tepat sekurang-kurangnya se-

hingga lapan untuk subkumpulan pertama dan lima tempat perpuluhan untuk

subkumpulan yang kedua.

Nilai eigen yang diperoleh dari permukaan-permukaan ini kemudian disahkan melalui
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prosedur-prosedur yang dipilih seperti penyelesaian y bebas, syarat automorf,

hubungan Hecke dan andaian Ramanujan-Petersson. Seterusnya, kami menggam-

barkan tahap eigen bagi nilai-nilai eigen terpilih dari setiap permukaan menggu-

nakan GridMathematica. Ciri-ciri yang muncul dalam gambar ini kemudian diper-

jelaskan. Kami juga telah membandingkan prestasi pengaturcaraan selari dengan

pengaturcaraan biasa di sini untuk membuktikan kebolehlaksanaan dan kelebihan

menggunakan perisian selari yang boleh didapati secara komersial untuk pengi-

raan fungsi bentuk juring Maass yang kompleks. Kami dapati pengaturcaraan

selari adalah kira-kira 5.75 kali lebih cepat daripada pengaturcaraan biasa man-

akala kecekapannya dihadkan pada 0.443.
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CHAPTER 1

INTRODUCTION

1.1 Brief Introduction to Chaotic Systems

The first dynamical system to be proven chaotic was given by Jacques Hadamard

in 1898 (Gutzwiller, 1990). This system is usually referred to as the Hadamard

dynamical system or Hadamard’s billiards where he considered free motion of a

mass point constrained to move on a compact Riemann surface of constant nega-

tive curvature (Avelin, 2007; Gutzwiller, 1990). The motion at each point is very

unstable due to the saddle points of the surface. As such these kind of systems

usually exhibit strong chaotic behaviour which means that the chaotic systems

were mixing throughout the phase space. Later in 1924, Emil Artin discovered

the Artin billiard which described the geodesic motion of free particle on a non-

compact Riemann surface, Γ\H where H is the upper half plane and Γ is the

modular group (Bolte et al., 1992). Non-compact Riemann surfaces of finite area

usually have vertices that are located infinitely far away (i.e. cusps) and they

can be used as mathematical models for many physical situations such as in the

scattering problem where a particle or a wave enters a container from the outside

(i.e. infinitely far away) (Gutzwiller, 1990). These kind of dynamical billiards have

attracted wide attention of the mathematician as these systems are connected to

problems in number theory, differential geometry and group theory (Bogomolny

et al., 1995). While in physics, there is interest to establish direct links between

the trajectories (i.e. orbits) of classically chaotic system and the properties of the

system in quantum domain. The quantum versions of the dynamical billiards are

then called the quantum billiards and they obey the law of quantum mechanics.

This kind of relation between quantum mechanics and classical chaos has become

the subject of study in quantum chaos which has found applications in cosmology
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(Then, 2007) and condensed matter (Hurt, 2000; Gubin and Santos, 2012).

1.2 Problem Statement

Different types of configuration spaces have been studied in the context of quan-

tum chaos (Bogomolny et al., 1995; Then, 2007), and these include the punctured

surface (with one or more cusps) which is of our interest here. The correspond-

ing quantum system is governed by the stationary state Schrödinger equation,

Hψ = Eψ with the Hamiltonian H = −∆, where ∆ = y2(∂2
x + ∂2

y) is the Laplace-

Beltrami operator (~ = 2m = 1). When we consider spectral resolution of the

Laplacian, its spectrum contains both continuous (i.e. scattering state) and dis-

crete (i.e. bound state) parts (Then, 2007). The continuous part of the spectrum

is spanned by the Eisenstein series which is known analytically (Then, 2005). The

discrete part is usually spanned by a discrete eigenfunction called Maass wave-

form which is a non-holomorphic modular form introduced by Hans Maass in 1949

(Terras, 1985). Maass waveforms are simply smooth and square integrable eigen-

functions of the Laplacian on the punctured surface. It is well known that Maass

waveform with eigenvalues λ ≥ 1/4 has no constant term in their Fourier expan-

sion and they are called the Maass cusp form (MCF). This waveform vanishes

exponentially fast in each cusp. Since the discrete part is non analytical, one has

to compute them numerically.

In our research, we are interested in the eigenvalues of the bound states for the

surfaces arising from the modular group Γ(1), commutator subgroup Γ′ and the

principal congruence subgroup of level two Γ(2). We use an algorithm developed

by Hejhal (Hejhal, 1999) for computation of Maass cusp forms on cofinite Fuch-

sian groups that usually have cusp. Hejhal’s algorithm is heuristic and represents

2
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a major step forward with regards to both numerical stability and range of appli-

cability (Booker et al., 2006).

Computational work of MCF on modular surface is not new and has been done

by researchers such as Hejhal and Rackner (1992), Then (2005), Strömberg (2005)

and the references listed therein. Nevertheless, their work remain known only to

specialists in the area because of the complexity of the algorithm involved. To

make this work more accessible to non-specialists, Siddig and Zainuddin (2009)

used a popular commercial software Mathematica for the computation of Maass

waveforms since Mathematica has a wider user base and are easily accessible to

beginners. Besides, there are many built-in functions including the K-Bessel func-

tion and this greatly simplify the programme. However, using Mathematica for the

computation is time consuming. Due to this reason, this motivates us to use Grid-

Mathematica, a parallel version of Mathematica which is realizable on a cluster

of workstations for computation. At present, to the best of our knowledge, there

is only one Mathematica package that handles specifically the MCF computations

and particularly there is none using GridMathematica. With the implementation

of parallel computing on computation of MCF, the time for computing higher

ranges of eigenvalues for the modular surfaces and eigenfunctions for more com-

plex surfaces such as the singly punctured two torus and the triply punctured two

sphere will be greatly reduced.

1.3 Objectives of Research

The main purpose of this research is to develop a programme that is workable in

parallel computing environment (GridMathematica) to compute the eigenvalues

on modular group, commutator subgroup and also the principal congruence sub-

3
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group of level two. Overall, the objectives of this research are as follows:

1) To set up a cluster of workstation using Rock Cluster and GridMathematica.

2) To optimize the previously developed Mathematica programme for modular

group and implement it in GridMathematica (parallel computing).

3) To compare the performance of parallel programming and normal programming

in modular group.

4) To develop a pullback algorithm for commutator subgroup and principal con-

gruence subgroup of level two.

5) To compute eigenvalues and visualization of Maass cusp forms for modular

group, commutator subgroup and principal congruence subgroup of level two us-

ing GridMathematica.

1.4 Outline of Thesis

This thesis is divided into eight chapters. In Chapter One, we give a brief intro-

duction and the objectives of current research. Chapter Two presents the reviews

on the computations of Maass waveforms and also works that have been linked

with Hejhal’s algorithm. In addition, it also reviews various directions of computa-

tional works on Maass forms. Some applications based on computing eigenvalues

and research related to punctured surface are also discussed in this chapter.

Chapter Three explains the mathematical preliminaries for the hyperbolic geome-

tries and also the discrete subgroup. Special attention is given to the surfaces of in-

terest where their definitions, fundamental domains and generators are explained.

The theoretical background on the Maass waveforms which includes modified K-

Bessel function, Hecke operators and oldforms and newforms are also discussed.

4
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Some theories of the root finding method are also presented here.

Chapter Four describes the implementation of parallel computation on a clus-

ter of workstation. Physical assembly of the hardware as well as the installation

of software are explained here. This is followed by parameters setting, algorithm

implementation and how to optimize the programme. Last section of this chapter

explains on the parallelization of the programme.

Chapter Five is devoted to the computation of Maass cusp form for the modu-

lar group using GridMathematica. In this chapter, two of the most important

algorithms, namely Maass cusp form algorithm and pullback algorithm are ex-

plained. Numerical results as well as comparison of performance between normal

and parallel programming of the computation of modular group are presented here.

Finally, some pictures of the waveform based on selected eigenvalues are produced.

Chapter Six contains the computational work for Maass cusp form for the commu-

tator subgroup using GridMathematica. A modified MCF algorithm based on the

previous chapter is deployed here. A new pullback algorithm based on generators

of Γ′ is constructed. With some modifications to our programme, we presented

here the numerical results as well as the topography of the waveforms.

Chapter Seven presents the computational work for the principal congruence sub-

group of level two using GridMathematica. We begin with the construction of the

fundamental domain and its subdomain for this subgroup. Pullback algorithm is

then developed after the consideration of the cusp representative, point’s location,

complete pullback and automorphic relation as well as the minimal height of the

fundamental domain. A point locater algorithm is provided here to look for lo-

5
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cation of each point. A modified MCF algorithm which is meant for computing

eigenvalues for a surface with three cusps is presented here. This is followed by its

numerical results and pictures of the waveforms.

The final chapter provides the conclusion of this work. We also make a few sug-

gestions here for future works and improvements.

6
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