UNIVERSITI PUTRA MALAYSIA

EVALUATION OF SELECTED COATED UREA ON NITROGEN USE EFFICIENCY OF RICE

ROSMARINA BINTI AHMAD Khariri

FP 2016 81
EVALUATION OF SELECTED COATED UREA ON NITROGEN USE EFFICIENCY OF RICE

By

ROSMARINA BINTI AHMAD KHIRARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EVALUATION OF SELECTED COATED UREA ON NITROGEN USE EFFICIENCY OF RICE

By

ROSMARINA BINTI AHMAD Khariri

October 2016

Chairman : Professor Mohd Khanif Yusop, PhD
Faculty : Agriculture

Urea is the main nitrogen (N) fertilizer sources applied in the rice production. However, the efficiency of urea in rice system is generally low. A part of applied N will be loss due to ammonia (NH$_3$) volatilization, nitrification and denitrification. In order to minimize N losses, urea was coated with urease inhibitor, nitrification inhibitor, inorganic materials or supplemented with biochar. This study was carried out with the following objectives: to evaluate the effect of different coated urea on N transformation, NH$_3$ volatilization, nitrous oxide (N$_2$O) gas emissions in selected rice soils and rice production; to determine N utilization and the pattern of fertilizer N uptake by hybrid rice in comparison of inbred varieties. Copper (Cu) and zinc (Zn) acted as urease inhibitors and dimethylpyrazol-phosphate (DMPP) was selected as nitrification inhibitor. The N fertilizers compared were urea, Cu coated urea (CuU), Zn coated urea (ZnU), Cu + Zn coated urea (CuZn), DMPP coated urea (DMPPU), DMPP + Cu + Zn coated urea (DMPPCuZn), sulfur coated urea (SU), dolomite coated urea (DU) and OneBaja (urea impregnated biochar). Copper, Zn and DMPP coated urea were prepared by coating them with palm stearin. Laboratory evaluation of coated urea was conducted to measure N transformation, NH$_3$ volatilization and N$_2$O emission in Selangor and Chempaka soil. Results indicated that treatments consisting of urease inhibitor slowed urea hydrolysis. Copper coated urea, ZnU, CuZn, DMPPCuZn, SU, OneBaja were effective in reducing NH$_3$ loss as compared to urea by 12.12 - 37.48%. Furthermore, SU, CuU, ZnU, CuZn, DMPPU and DMPPCuZn reduced N$_2$O emission over urea by 14.86 - 48.65%. Glasshouse study was carried out to measure fertilizer N utilization and pattern of fertilizer N uptake by hybrid rice named Siraj in comparison to MR219 by using 15N isotopic label technique. Rice plants were harvested at two weeks interval starting from 2nd week (DAT-day after transplant) until 14th week. Fertilizer N uptake and utilization reached a peak between 10th and 12th week. Relatively, Siraj recorded better fertilizer N utilization and N uptake as compared to MR219 variety. A second glasshouse study was carried out to determine the effect of coated urea on rice yield. Siraj and MR220 variety were grown in one growing season in Selangor and Chempaka soil. Pots treated with OneBaja, CuU, ZnU, CuZn, DMPPU and DMPPCuZn showed an improvement of grain yield by 32.96 - 39.05% over urea in Chempaka soil. Higher
grain yield was recorded in pots applied with CuU, CuZn, DMPPCuZn and SU as compared to urea in Selangor soil. Field study was conducted at Sungai Besar Selangor. The rice were directly seeded by manual broadcasting practice. Results demonstrated that, coated urea (CuU, CuZn, DMPPU, DMPPCuZn) and OneBaja treated plots produced better rice yield and N uptake with an increment of 17.43 - 28.44% and 20.72 - 42.28% respectively. Siraj outperformed MR220 in increasing grain yield and N uptake. This suggests that there is a prospect of using urease and nitrification inhibitor coated urea and OneBaja to improve N efficiency of urea and rice yield.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENILAIAN KEBERKESANAN UREA BERSALUT TERPILIH TERHADAP KECEKAPAN PENGGUNAAN NITROGEN PADA TANAMAN PADI

Oleh

ROSMARINA BINTI AHMAD KHARIRI

October 2016

Pengerusi : Professor Mohd Khanif Yusop, PhD
Fakulti : Pertanian

ACKNOWLEDGEMENTS

The student would like to express her sincere gratitude and appreciation to Professor Dr. Mohd Khanif Yusop, Chairman of the Supervisory Committee for guidance, encouragement and support during the entire course of research work and writing of manuscripts. The student also appreciate the guidance given by Dr Khairuddin Abdul Rahim, Professor Mohamed Hanafi Musa and Associate Professor Dr Aminuddin Hussin as a co-supervisor.

Furthermore, the student is grateful to the Ministry of Higher Education Malaysia for three years financial supports and the Long-Term Research Grant Scheme (LRGS) under project ‘OneBAJA The Next Generation Green and Economical Urea’ for providing research grant.

Sincere thanks and appreciations are also extended to Pn Umi Kulthum Asmaon and En Muaz Hashim for their valuable help, guidance and assistance during the student’s laboratory analysis. Beside that the student is also grateful to all people who have helped during the study period.
I certify that a Thesis Examination Committee has met on 13 October 2016 to conduct the final examination of Rosmarina binti Ahmad Khariri on her thesis entitled "Evaluation of Selected Coated Urea on Nitrogen use Efficiency of Rice" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shamsuddin bin Jusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Radziah binti Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Samsuri bin Abd. Wahid, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Md. Jahiruddin, PhD
Professor
Bangladesh Agricultural University
Bangladesh
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 December 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Mohd Khanif Yusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohamed Hanafi Musa, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Aminuddin b Hussin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Khairuddin Abdul Rahim, PhD
Division of Agrotechnology and Biosciences,
Malaysian Nuclear Agency
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• This thesis has not been submitted previously or concurrently for any other agree at any other institution
• intellectual property of the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from the supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before the thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other material as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________ Date: _________________

Name and Matric No : Rosmarina binti Ahmad Khariri (GS34421)
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisory Committee: Professor Dr Mohd Khanif Yusop

Signature: ______________________
Name of Member of Supervisory Committee: Professor Dr Mohamed Hanafi Musa

Signature: ______________________
Name of Member of Supervisory Committee: Professor Madya Dr Aminuddin b Hussin

Signature: ______________________
Name of Member of Supervisory Committee: Dr Khairuddin Abdul Rahim
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Nitrogen – Important plant nutrient</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Nitrogen form in soil plant system</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Urea</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Urea hydrolysis</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>Soil urease activity</td>
<td>5</td>
</tr>
<tr>
<td>2.6</td>
<td>Urea loss pathways</td>
<td>6</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Ammonia volatilization loss</td>
<td>6</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Nitrification and denitrification</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>Ammonium diffusion in flooded rice system</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Nitrogen use efficiency</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Slow release N fertilizers</td>
<td>13</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Mechanism of nutrient diffusion from coated fertilizer</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Nitrogen inhibitors in agriculture</td>
<td>14</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Urease inhibitors</td>
<td>15</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Nitrification inhibitor</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>Biochar as a soil amendment</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Hybrid rice</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Copper and Zinc as plant micronutrients</td>
<td>19</td>
</tr>
<tr>
<td>2.14</td>
<td>Conclusions</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>LABORATORY EVALUATION OF SELECTED COATED UREA</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and methods</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Soil sampling</td>
<td>23</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Fertilizer treatments and preparations</td>
<td>23</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Mineralization of N</td>
<td>26</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Ammonia volatilization study</td>
<td>26</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Nitrous oxide emission study</td>
<td>26</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Experimental design and statistical analysis</td>
<td>27</td>
</tr>
</tbody>
</table>
3.3 Results and discussion

3.3.1 Physical and chemical properties of studied fertilizers
3.3.2 Mineralization of N
3.3.3 Recovered urea-N
3.3.4 Ammonia volatilization
3.3.5 Nitrous oxide emission
3.3.6 General Discussion

3.4 Conclusions

4 NITROGEN UPTAKE BY HYBRID AND NON-HYBRID RICE USING 15N ISOTOPIC TRACER TECHNIQUE

4.1 Introduction
4.2 Materials and methods
4.2.1 Study site and materials
4.2.2 Rice sowing
4.2.3 Fertilizer application and crop management
4.2.4 Experimental design
4.2.5 Sampling and analysis
4.2.6 Statistical analysis
4.3 Results and discussion
4.3.1 Nitrogen derived from fertilizer and nitrogen derived from soil
4.3.2 Dry matter yield
4.3.3 Nitrogen uptake
4.3.4 Fertilizer N uptake
4.3.5 Fertilizer N utilization
4.3.6 Nitrogen fertilizer losses
4.4 Conclusions

5 EVALUATION OF DIFFERENT COATED UREA ON EMISSIONS OF NH$_3$, N$_2$O, YIELD AND NUTRIENT UPTAKE OF RICE

5.1 Introduction
5.2 Materials and methods
5.2.1 Experiments site and materials
5.2.2 Rice sowing
5.2.3 Irrigation and crop management
5.2.4 Experimental design
5.2.5 Fertilizer application and treatments
5.2.6 Gaseous emissions of N$_2$O
5.2.7 Gaseous emissions of NH$_3$
5.2.8 Sampling and analysis
5.2.9 Data Analysis
5.3 Results and discussion
5.3.1 Ammonium-N concentration in soil
5.3.2 Ammonium-N concentration in floodwater
5.3.3 Recovered urea-N
5.3.4 Cu and Zn concentration in soil
5.3.5 Ammonia volatilization

© COPYRIGHT
6 FIELD EVALUATION OF COATED UREA ON YIELD AND NUTRIENT UPTAKE OF HYBRID AND NON HYBRID RICE

6.1 Introduction

6.2 Materials and methods
 6.2.1 Experimental site and materials
 6.2.2 Fertilizer application and crop management
 6.2.3 Fertilizers preparation
 6.2.4 Sampling and analysis
 6.2.5 Data Analysis

6.3 Results and discussion
 6.3.1 Ammonium-N concentration in soil
 6.3.2 Copper and Zn concentrations in soil
 6.3.3 Grain number per panicle
 6.3.4 1000 grain weight
 6.3.5 Nitrogen, Cu and Zn concentration in plant tissue
 6.3.6 Grain yield, straw yield, N, Cu and Zn uptake

6.4 Conclusions

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Selected chemical, physical properties and taxonomy class of the selected soil types studied</td>
</tr>
<tr>
<td>3.2</td>
<td>Fertilizer treatments and rate for coating materials</td>
</tr>
<tr>
<td>3.3</td>
<td>Physical and chemical properties of studied fertilizers</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean NH$_3$-N concentration in selected soils during eight weeks incubation period</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean NH$_4$-N concentration throughout incubation period</td>
</tr>
<tr>
<td>3.6</td>
<td>Mean recovered urea-N concentration in selected soils during four weeks incubation period</td>
</tr>
<tr>
<td>3.7</td>
<td>Mean recovered urea-N concentration throughout incubation period</td>
</tr>
<tr>
<td>3.8</td>
<td>Cumulative NH$_3$ volatilization in selected soils during eight weeks</td>
</tr>
<tr>
<td>3.9</td>
<td>Cumulative N$_2$O flux in selected soils during 14 days incubation period</td>
</tr>
<tr>
<td>4.1</td>
<td>Ndff of straw by MR219 and Siraj on Selangor and Chempaka soil series throughout the growing season</td>
</tr>
<tr>
<td>4.2</td>
<td>Ndff of grain by MR219 and Siraj on Selangor and Chempaka soil series throughout the growing season</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean (a) dry matter yield, (b) N uptake by MR219 and Siraj on Selangor and Chempaka soil series throughout the growing season</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean (a) fertilizer N uptake and (b) fertilizer N utilization by MR219 and Siraj on Selangor and Chempaka</td>
</tr>
<tr>
<td>4.5</td>
<td>(a) Fertilizer N in plant, (b) residual fertilizer N in soil and (c) fertilizer N loss of MR219 and Siraj on Chempaka and Selangor soil series during harvest</td>
</tr>
<tr>
<td>5.1</td>
<td>Fertilizer treatments, fertilizer total N and rate for coating materials</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean NH$_4$-N concentration in soil for 1st (7 DAT), 2nd (27 DAT), 3rd (47 DAT) and 4th (87 DAT) sampling</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean NH$_3$-N concentration in floodwater for 1st (7 DAT), 2nd (27 DAT) and 3rd (47 DAT) sampling</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean urea-N concentration in soil for 1st (7 DAT) and 2nd (27 DAT) sampling</td>
</tr>
<tr>
<td>5.5</td>
<td>Mean Cu concentration in soil at 27 DAT</td>
</tr>
<tr>
<td>5.6</td>
<td>Mean Zn concentration in both soil series and rice varieties at 27 DAT</td>
</tr>
<tr>
<td>5.7</td>
<td>Mean NH$_3$ volatilization in soil at day 11 DAT</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean cumulative N$_2$O emission in soil throughout sampling period</td>
</tr>
<tr>
<td>5.9</td>
<td>Mean grain N concentration, grain yield and grain N uptake during harvest</td>
</tr>
<tr>
<td>5.10</td>
<td>Mean straw N concentration, straw yield and straw N uptake during harvest</td>
</tr>
<tr>
<td>5.11</td>
<td>Mean root N concentration, root yield and root N uptake during harvest</td>
</tr>
<tr>
<td>5.12</td>
<td>Mean straw Cu concentration and straw Cu uptake during harvest</td>
</tr>
<tr>
<td>5.13</td>
<td>Mean grain Cu concentration and grain Cu uptake during harvest</td>
</tr>
<tr>
<td>5.14</td>
<td>Mean straw Zn concentration and straw Zn uptake during harvest</td>
</tr>
<tr>
<td>5.15</td>
<td>Mean grain Zn concentration and grain Zn uptake during harvest</td>
</tr>
<tr>
<td>5.16</td>
<td>Mean 100 grain weight</td>
</tr>
</tbody>
</table>
6.1 Fertilizer treatments, fertilizer total N content and rate for coating materials
6.2 Mean Cu concentration in soil at 42 DAS
6.3 Mean Zn concentration in soils at 42 DAS
6.4 (a) Grain number per panicle (b) 1000 grain weight during harvest
6.5 Copper, Zn and N concentration in plant tissue (a) for 1st sampling (42 DAS) and (b) for 2nd sampling (63 DAS)
6.6 (a) Grain N concentration, grain dry matter yield and grain N uptake, (b) straw N concentration, straw dry matter yield and straw N uptake during harvest
6.7 (a) Grain Cu concentration and grain Cu uptake, (b) straw Cu concentration and straw Cu uptake during harvest
6.8 (a) Grain Zn concentration and grain Zn uptake, (b) straw Zn concentration and straw Zn uptake during harvest
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic diagram of N transformation in rice soil</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>The role of inhibitors in controlling N transformations and losses</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical formula and mechanism of DMPP</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Ammonia volatilization loss in: (a) ; (b) Selangor soil series, (c) ; (d) Chempaka soil series</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Nitrous oxide flux in: (a) ; (b) Selangor soil series, (c) ; (d) Chempaka soil series throughout sampling period</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Ndff and Ndfs in straw of (a) Siraj on Selangor soil series, (b) Siraj on Chempaka soil series, (c) MR219 on Selangor soil series, (d) MR219 on Chempaka soil series</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Ndff and Ndfs in the grains of (a) Siraj on Selangor soil series, (b) Siraj on Chempaka soil series, (c) MR219 on Selangor soil series, (d) MR219 on Chempaka soil series</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>(a) N uptake, (b) Fertilizer N uptake, (c) Fertilizer N utilization by MR219 and Siraj on Chempaka and Selangor soil series at different growth stages</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>Nitrous oxide emission (mg N\textsubscript{2}O-N m-2 h-1) throughout sampling period (45 days) for (a), (b) Siraj planted in Selangor soil; (c), (d) MR220 planted in Selangor soil</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Nitrous oxide emission (mg N\textsubscript{2}O m-2 h-1) throughout sampling period (45 days) for (a), (b) Siraj planted in Chempaka soil; (c), (d) MR 220 planted in Chempaka soil</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>Ammonium concentration of (a) Siraj at 0-15 cm soil depth, (b) Siraj at 15-30 cm soil depth, (c) MR220 at 0-15 cm soil depth and (d) MR 220 at 15-30 cm soil depth</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

C Carbon
Cu Copper
CEC Cation exchange capacity
CO₂ Carbon dioxide
CO₃ Carbonate ion
CRD Completely randomized design
CuSO₄ Copper sulphate
CuU Cu coated urea
CuZn Cu + Zn coated urea
DCD Dicyandiamide
DMPP Dimethylpyrazol-phosphate
DMPPCuZn DMPP + Cu + Zn coated urea
DMPPU DMPP coated urea
DU Dolomite coated urea
H Hydrogen ion
HCL Hydrochloric acid
HNO₃ Nitric acid
H₂SO₄ Sulfuric acid
IPCC Intergovernmental Panel on Climate Change
MARDI Malaysia Agriculture Research Development Institute
MOP Muriate of potash
N Nitrogen
N₂ Dinitrogen
N₂O Nitrous oxide
NBPT N-(n-Butyl) thiophosphoric triamide
NH₃ Ammonia
NH₄ Ammonium ion
Nar Nitrate reductase
Nir Nitrile reductase
NO₂ Nitrite ion
NO₃ Nitrate ion
O Ozone
OH Hydroxyl ion
PPD Phenylphosphorodiamidate
RCBD Randomized completely block design
SU Sulfur coated urea
TSP Triple superphosphate
Zn Zinc
ZnSO₄ Zinc sulphate
ZnU Zn coated urea
CHAPTER 1

INTRODUCTION

The world is currently facing a new set of multiple challenges. Achieving food security on existing agricultural land without causing undue damage to the environment is a major challenge. World population is continuing to grow, the current world population of 7.3 billion is projected to reach 8.5 billion by 2030 and 9.7 billion in 2050 and with that, food demand is estimated to escalate substantially (United Nations, 2015). Rice production has to be increased, as it is the main staple food for nearly half of the world’s population (Muthayya et al., 2014). Hence, rice yield should increase without further increase in rice cultivated area. In order to address the matter, more grain per area must be produced and this requires more fertilizer input (Zhang et al., 2012).

Among nutrients required by plants, nitrogen (N) is applied at the highest quantities and has the greatest potential for losses (Linquist et al., 2013). Urea is extensively being used as a source of N in rice cropping and it is the cheapest source of N in addition to its ease of handling. Unfortunately, recovery of applied urea is low in rice system. The recovery efficiency of applied N was reported to be at 26 - 50% in Malaysian rice soils implying that a large portion of the applied N is not being used for productive purposes (Hashim et al., 2015; Khanif, 1988; Sariam and Khanif, 2006).

The inefficient use of N in rice cultivation can be attributed to synchronization release of N from fertilizers with the plant demand due to the N losses via various pathways such as volatilization, nitrification and denitrification. Nitrogen losses result in significant yield loss and environmental consequences with respect to the emissions of gases such as nitrous oxide (N\textsubscript{2}O), ammonia (NH\textsubscript{3}) and aquatic pollution through nitrate (NO\textsubscript{3}) leaching (Chen et al., 2014; Saggar et al., 2013). Recent report, revealed that N export to the environment from rice fields accounted for 13.1 - 31.7% of the N input (Yang et al., 2015). Yield loss also pararrels with economic implication to the farmers and increase expense for the rice production.

For the above reasons, it is desirable to reduce N losses so as to improve N use efficiency, improve rice yields for food demand, reduce cost of production and maintain environmental quality. The minimal modifications and improvement of the fertilizer itself is one of the approaches to reduce losses (Junejo et al., 2011a; Zaman et al., 2009). The use of specially formulated form of fertilizer by coating and supplemented with inhibitors or inorganic material might have a great prospect. Application of nitrification inhibitor has proven to be efficient in mitigating N\textsubscript{2}O emission and improving N use efficiency (Qiao et al., 2105). Addition of urease inhibitor to urea increase the efficiency of fertilizer by reducing NH\textsubscript{3} volatilization in flooded soil (Xue et al., 2013).
The use of micronutrients such as copper (Cu) and zinc (Zn) as urease inhibitor was recorded to be effective in reducing NH₃ volatilization loss and improved crop N uptake (Junejo et al., 2011b; Junejo et al., 2012). Application of these elements as urease inhibitors can give double benefits; in addition to inhibit urease activity, these elements can serve as micronutrients for plant growth particularly in micronutrients deficient soil. To the date, there have been limited studies of the inhibitory effect of micronutrient as urease inhibitor.

In addition, the use of nitrification inhibitor should be part of fertilizer N. Among the nitrification inhibitors, dimethylpyrazol-phosphate (DMPP) has been reported by many researchers as the most efficient in improving efficiency of N fertilizer and effective at low rate (Liu et al., 2013; Weiske et al., 2001). Many compounds are capable of inhibiting urease activity and nitrification process. However their efficacy under tropical condition especially in flooded soil have not been documented and the study to evaluate the efficacy of Cu, Zn as urease inhibitor, DMPP as nitrification inhibitor and combination of these in rice cultivation system is limited.

Instead of fertilizer technologies, hybrid rice technology is one of the most important and practically feasible technologies to boost rice productivity. Hybrid rice was first developed in China in the 1960s and has a yield advantage over the inbred rice varieties, facilitating a 44.1% increment in rice production (Cheng et al., 2007). With concern about the sustainable food production and environmental issue, there is a need to conduct comprehensive studies on urease and nitrification inhibitor on rice in order to improve N use efficiency and enhancing rice production. With this in view, the current study was carried out with the following objectives:

1. To evaluate the effect of different coated urea on N transformation, N₂O emission and NH₃ volatilization in selected Malaysian rice soil under laboratory and glasshouse conditions,
2. to determine the pattern of N fertilizer uptake and utilization by selected hybrid rice variety in comparison to non-hybrid rice variety and
3. to determine the efficacy of different coated urea on yield and nutrient uptake of hybrid and non-hybrid rice under glasshouse and field conditions.
REFERENCES

Weiske, A., Benckiser, G., & Ottow, J. C. (2001). Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N\textsubscript{2}O) emissions and methane (CH\textsubscript{4}) oxidation during 3 years of repeated applications in field experiments. *Nutrient Cycling in Agroecosystems*, 60(1-3), 57-64.

LIST OF PUBLICATIONS

Publications

Proceedings

TITLE OF THESIS / PROJECT REPORT :
EVALUATION OF SELECTED COATED UREA ON NITROGEN USE EFFICIENCY OF RICE

NAME OF STUDENT: ROSMARINA BINTI AHMAD KARIRI

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).
☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).
☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from ______________ until ______________
 (date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)
New IC No/ Passport No.: Name:
Date : Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]