UNIVERSITI PUTRA MALAYSIA

MACRONUTRIENTS VARIABILITY IN LATERITIC SOIL AND EFFECTS
OF ORGANIC AMENDMENT CONTENTS ON MANGO CV HARUMANIS

NURHALIZA BT. MOHAMAD SHAHIDIN

FP 2016 78
MACRONUTRIENTS VARIABILITY IN LATERITIC SOIL AND EFFECTS OF ORGANIC AMENDMENT CONTENTS ON MANGO CV HARUMANIS

By

NURHALIZA BT. MOHAMAD SHAHIDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2016
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS...

This thesis is dedicated to:

My beloved parents

Mohamad Shahidin bin Jafar
and
Faridah binti Othman

Sisters, brother and brothers in law

Nurhazami binti Mohamad Shahidin
Nur Hafizah binti Mohamad Shahidin
Mohamad Syafiq bin Mohamad Shahidin
Shahrizal bin Shahari
Muhammad Ar Maszizi bin Abd Aziz

My lovely nephews

Muhammad Syahmi Harith bin Shahrizal
Muhammad Izar Muqrish bin Ar Maszizi

and last but not least to my late supervisor

Assoc. Prof. Dr. Anuar bin Abdul Rahim
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

MACRONUTRIENTS VARIABILITY IN LATERITIC SOIL AND EFFECTS OF ORGANIC AMENDMENT CONTENTS ON MANGO CV HARUMANIS

By

NURHALIZA BT. MOHAMAD SHAHIDIN

August 2016

Chairman: Roslan Ismail, PhD
Faculty: Agriculture

Mango (*Mangifera indica* L.) is one of the 16 fruits that have been highlighted for the agricultural development in the Third National Agricultural Policy (NAP3) by Malaysian Ministry of Agriculture in 1999. Currently, production of Harumanis mango was unable to cater the increasing demand in local and international markets. Cultivation of Harumanis mango on marginal soils such as lateritic soils is quite challenging as the information regarding mango cultivated on lateritic soil is very scarce since this cultivar is mostly cultivated on soil with pH greater than 7. Application of chemical fertilizer (CF) in mango cultivation area over the years has worsened the acidity problems of lateritic soil under humid tropical climate. Application of chicken manure (CM) compost into lateritic soil could reduce the level of soil acidity and enhances the soil chemical properties.

Three field experiments have been conducted from January 2014 until June 2015 in mango cultivation area located at Universiti Teknologi Mara (UiTM) Perlis Campus (N 06.45427°; E 100.28352°) cultivated with *Mangifera indica* L. cv. Harumanis (MA 128) aged 5 years old on lateritic soil (Terap Series). Experiment 1 was implemented with the objectives i) to determine variability of selected soil chemical properties in vertical and horizontal direction and ii) to evaluate correlation between the selected chemical properties of lateritic soil. The objective of experiment 2 was to assess temporal variations in chemical properties of lateritic soil and foliar of mango with respect to plant phenological stage (PPS) (day of sampling) and slope position. The experiment 3 was implemented to evaluate the effects of chicken manure (CM) compost application on the selected soil chemical properties and macronutrients concentration in mango leaf and its effects on mango yield. All data were analysed using Analysis of Variance (ANOVA) and means separation were conducted using Tukey’s Honestly Significant Difference (HSD) test (p=0.05) using SAS Ver. 9.3. Pearson’s correlation analysis was also conducted by SAS Ver. 9.3. Experiment 1 was divided into vertical and horizontal variability study of the selected soil chemical properties. Soil samples were collected from nine soil pits at 0-15 cm, 15-30 cm, 30-45 cm and 45-60 cm depth for vertical variability study. For the horizontal variability study in 0.29 ha study plot, 50 topsoil (0-
15 cm) samples were obtained by systematic sampling scheme. Results obtained in this study revealed that soil depth significantly (p ≤ 0.05) affected soil pH, organic carbon (C), total nitrogen (N), carbon to nitrogen (C/N) ratio, available phosphorus (P), exchangeable potassium (K), magnesium (Mg) and aluminium (Al), and cation exchange capacity (CEC). Significant differences (p ≤ 0.05) were also shown in clay and sand content by soil depth. Moderate variability indicated by coefficient of variation (CV) that ranged between 13.74% and 48.19% were found in organic C, total N, available P, exchangeable K, Ca, Mg and Al and base saturation in horizontal variability study. Soil organic C, total N and C/N ratio of topsoil in both vertical and horizontal variability study showed positive correlation greater than 70%. Exchangeable Al was negatively correlated (r > 40%) with available P, exchangeable K and Ca in horizontal direction.

The experimental design used in experiment 2 was Randomized Complete Block Design (RCBD) with repeated measurement. Two independent variables in this experiment were plant phenological stage (PPS) (day of sampling); first flowering (0 day), fruiting (90 days), flushing (180 days), end of flushing (270 days) and second flowering (360 days); and slope position; upper, middle and lower. A total of 60 topsoil (0-15 cm) samples and 48 leaf samples were collected. The study results showed that soil pH, total N, available P, CEC, base saturation and exchangeable bases (K, Ca and Mg) as well as N, P, K, Ca and Mg content in the leaf were significantly (p ≤ 0.05) affected by single factor of PPS (day of sampling). Slope position single factor were also significantly (p ≤ 0.05) affected the exchangeable Ca, Mg and Al, CEC and base saturation as well as N and K content in the leaf. It was found that leaf N content was the only variable exhibited significant (p ≤ 0.05) interaction effects between PPS (day of sampling) and slope position.

The fertilizer treatments in experiment 3 consisted of a uniform rate (3.5 kg tree⁻¹) of NPK Blue fertilizer (12:12:17:2) in combination with five rates of CM compost (0, 4, 8, 12 and 16 kg tree⁻¹) with five replications which was laid out in Latin Square Design. Fertilizer was applied in two split application using pocket method in 15 cm depth. Soil and leaf sampling were conducted on 90, 180 and 270 days after the first fertilization. Yield parameters data were collected before and after fertilizer treatments, in year 2014 and 2015, respectively. The experiment results revealed that soil pH and exchangeable K, Ca and Mg in 0-15 cm and 15-30 cm soil depth has increased significantly (p ≤ 0.05) after nine months of fertilization. However, there was no significant (p > 0.05) effects of the fertilizer treatments in CEC for both soil depths. Significant (p ≤ 0.05) effects were found in leaf Ca content whereas, N, P, K and Mg content in the leaf and yield parameters were not significantly (p > 0.05) affected by the fertilizer treatments. The greatest increment in soil pH and exchangeable bases (K, Ca and Mg) was shown by the treatment of 16 kg tree⁻¹ CM compost combined with 3.5 kg tree⁻¹ CF.

Based on the findings, variability of selected soil chemical properties in vertical and horizontal direction in the respected area occurs due to the combined effects of undulating landform, soil management practices (application of fertilizer and pesticides), clay content and non-uniform availability of soil nutrients. It was found that PPS (day of sampling) and slope position single factor has resulted in variation of the selected soil chemical properties and macronutrients content in leaf of Harumanis mango. Application
of different rates of CM compost combined with CF has significantly (p≤0.05) enhanced the soil chemical properties in the study area. The recommended rate for increasing soil pH, exchangeable bases (K, Ca and Mg) and fruit yield on lateritic soil (Terap Series) of the respective area is combination of 16 kg tree$^{-1}$ CM compost with 3.5 kg tree$^{-1}$ CF.
KEPELBAGAIAN MAKRONUTRIEN DALAM TANAH LATERIT DAN KESAN KANDUNGAN PEMBAIK PULIH ORGANIK TERHADAP MANGGA CV HARUMANIS

Oleh

NURHALIZA BT. MOHAMAD SHAHIDIN

Ogos 2016

Pengerusi: Roslan Ismail, PhD
Fakulti: Pertanian

Tiga kajian lapangan telah dijalankan bermula dari Januari 2014 sehingga Jun 2015 di kawasan penanaman mangga yang terletak di kampus Universiti Teknologi Mara (UiTM) Perlis (N 06.45427°; E 100.28352°) ditanam dengan Mangifera indica L. kultivar Harumanis (MA 128) berumur 5 tahun di tanah laterit (Siri Terap). Eksperimen 1 telah dilaksanakan dengan objektif i) untuk menentukan kepelbagaian sifat kimia tanah yang dipilih dalam arah menegak dan mendatar dan ii) untuk menilai hubungan antara sifat kimia tanah laterit yang dipilih. Objektif eksperimen ke-2 adalah untuk menilai kepelbagaian masa terhadap sifat kimia tanah laterit dan daun mangga berdasarkan peringkat fenologi tumbuhan (PPS) (hari persampelan) dan kedudukan cerun. Eksperimen 3 telah dijalankan untuk menilai kesan pembaik pulih organik terhadap sifat kimia tanah yang dipilih dan kepekatan makronutrien dalam daun mangga dan kesannya terhadap hasil mangga. Kesemua data dianalisis dengan menggunakan Analisis Varians (ANOVA) dan pemisahan purata dijalankan menggunakan ujian Tukey HSD (p=0.05) menggunakan SAS versi 9.3. Analisis korelasi Pearson juga telah dijalankan menggunakan SAS versi 9.3.
Eksperimen 1 telah dibahagikan kepada kajian kepelbagaian sifat kimia tanah dipilih secara menegak dan mendatar. Sampel tanah telah dikumpulkan daripada sembilan lubang tanah pada kedalaman 0-15 sm, 15-30 sm, 30-45 sm dan 45-60 sm untuk kajian kepelbagaian secara menegak. Bagi kajian kepelbagaian secara mendatar dalam plot kajian seluas 0.29 hektar, sebanyak 50 sampel tanah atas (0-15 sm) diperolehi secara skim persampelan sistematik. Keputusan yang diperolehi dalam kajian ini mendedahkan bahawa kedalaman tanah memberi kesan secara bererti (p ≤ 0.05) terhadap pH tanah, karbon (C) organik, jumlah nitrogen (N), nisbah karbon kepada nitrogen (C/N), fosforus (P) tersedia, tukar ganti kalium (K), magnesium (Mg) dan aluminium (Al), dan keupayaan pertukaran kation (CEC). Kesannya secara bererti (p ≤ 0.05) juga ditunjukkan dalam kandungan tanah liat dan pasir dengan kedalaman tanah. Kepelbagaian sederhana yang ditunjukkan oleh pekali variasi (CV) yang berada dalam julat antara 13.74% dan 48.19% telah ditemui dalam C organik, jumlah N, P tersedia, tukar ganti K, Ca, Mg dan Al, dan ketepuan bes dalam kajian kepelbagaian secara mendatar. Organik C, jumlah N dan nisbah C kepada N tanah atas dalam kajian kepelbagaian secara menegak dan mendatar menunjukkan korelasi positif melebihi 70%. Tukar ganti Al menunjukkan korelasi negatif (r > 40%) dengan P tersedia, tukar ganti K dan Al dalam arah mendatar.

Reka bentuk eksperimen yang digunakan dalam eksperimen 2 adalah reka bentuk rawak blok lengkap (RCBD) dengan pengukuran berulang. Dua pemboleh ubah bebas dalam eksperimen ini adalah PPS (hari persampelan); pembungaan pertama (0 hari), peringkat berbuah (90 hari), peringkat pembentukan daun baru (180 hari), peringkat akhir pembentukan daun (270 hari) dan pembungaan kedua (360 hari); dan kedudukan cerun; atas, tengah dan bawah. Sebanyak 60 sampel tanah atas (0-15 sm) dan 48 sampel daun telah dikumpul. Hasil kajian menunjukkan bahawa pH tanah, jumlah N, P tersedia, CEC, ketepuan bes dan tukar ganti bes (K, Ca dan Mg) serta kandungan N, P, K Ca dan Mg dalam daun terkesan secara bererti (p ≤ 0.05) oleh faktor tunggal PPS (hari persampelan). Faktor tunggal kedudukan cerun juga memberi kesan secara bererti (p ≤ 0.05) terhadap tukar ganti Ca, Mg, dan Al, CEC dan ketepuan bes serta kandungan N dan K dalam daun. Didapati bahawa kandungan N dalam daun merupakan satu-satunya pembolehubah yang menunjukkan kesan interaksi secara bererti (p ≤ 0.05) antara PPS (hari persampelan) dan kedudukan cerun.

Rawatan baja dalam eksperimen 3 terdiri daripada kadar baja NPK biru (12:12:17:2) yang seragam (3.5 kg pokok⁻¹) dengan kombinasi lima kadar kompos tahi ayam (0, 4, 8, 12 dan 16 kg pokok⁻¹) dengan lima replikasi yang disusun dalam reka bentuk Latin Square. Aplikasi baja adalah secara berasingan iaitu dua aplikasi dengan kaedah poket pada kedalaman 15 sm. Persampelan tanah dan daun dijalankan pada hari ke 90, 180 dan 270 selepas aplikasi baja yang pertama. Data parameter hasil sebelum dan selepas rawatan pembajaan pada tahun 2014 dan 2015 telah dikumpulkan. Keputusan eksperimen menunjukkan bahawa pH tanah dan tukar ganti K, Ca dan Mg pada kedalaman 0-15 sm dan 15-30 sm telah meningkat secara bererti (p ≤ 0.05) selepas sembilan bulan pembajaan. Walau bagaimanapun, tiada kesan secara bererti (p > 0.05) rawatan pembajaan dalam CEC untuk dua kedalaman tanah. Kesana secara bererti (p ≤ 0.05) dijumpai dalam kandungan Ca dalam daun manakala, kandungan N, P, K dan Mg dalam daun dan parameter hasil tidak dipengaruhi secara bererti (p > 0.05) oleh rawatan pembajaan. Peningkatan terbesar dalam pH tanah dan tukar ganti bes (K, Ca dan
Mg) ditunjukkan oleh rawatan 16 kg pokok⁻¹ kompos tahi ayam dengan kombinasi 3.5 kg pokok⁻¹ baja kimia.

Berdasarkan dapan, kepelbagaian sifat kimia tanah yang dipilih dalam arah menegak dan mendatar dalam kawasan kajian berlaku disebabkan kesan kombinasi bentuk muka bumi yang beralun, amalan pengurusan tanah (penggunaan baja dan racun perosak), kandungan tanah liat, dan ketidakseragaman nutrien tanah yang tersedia. Didapati bahawa faktor tunggal PPS (hari persampelan) dan kedudukan cerun menyebabkan kepelbagaian dalam sifat kimia tanah dan kandungan makronutrien dalam daun mangga Harumanis. Aplikasi kompos tahi ayam dengan kadar yang berbeza dengan kombinasi baja kimia telah meningkatkan sifat kimia tanah secara bererti (p ≤ 0.05) dalam kawasan kajian. Kadar yang disyorkan untuk meningkatkan pH tanah, tukar ganti bes (K, Ca dan Mg) dan hasil buah pada tanah laterit di kawasan berkenaan adalah kombinasi 16 kg pokok⁻¹ kompos tahi ayam dengan 3.5 kg pokok⁻¹ baja kimia.
ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah s.w.t for the strengths, blessing and His guidance for me in completing this master thesis. I would never have been able to finish my thesis without the guidance from the supervisory committee, helpful colleagues and moral support from my beloved family. I would like to express my deepest gratitude to my advisor, Dr. Roslan bin Ismail for his excellent guidance throughout my research, patience, advice, knowledge sharing and opportunities which was invaluable to me. I would also like to thank Dr. Siti Zaharah binti Sakimin, my co-supervisor for her commitment and guidance throughout my candidature.

Special thanks to my father, Mohamad Shahidin bin Jafar and my colleagues, Siti Salha and Kang Seong Hun who always willing to help and accompany me especially during the hard work in the field and for their continuous support. I would also like to thank Mr. Asri Ruslan for his help especially in statistical analysis. Sincere thanks to all my colleagues at Department of Land Management for their concern and support.

Many thanks to the laboratory staff at the Department of Land Management, Universiti Putra Malaysia (UPM) and staff at the farm unit of Universiti Teknologi Mara (UiTM), Perlis for their kind cooperation and assistance during the study. I would also like to acknowledge Ministry of Higher Education (MOHE), UiTM and UPM for the financial assistance.

Last but not least, I would like to thank my beloved parents and family members for their continuous support and encourage through the good times and bad. This accomplishment would not have been possible without them. Thank you.
I certify that a Thesis Examination Committee has met on 30 August 2016 to conduct the final examination of Nurhaliza bt Mohamad Shahidin on her thesis entitled "Macronutrients Variability in Lateritic Soil and Effects of Organic Amendment Contents on Mango cv Harumanis" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohamed Hanafi bin Musa, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ahmad Husni bin Mohd Haniff, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohd Effendi Wasli, PhD
Associate Professor
Universiti Malaysia Sarawak
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 February 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Roslan bin Ismail, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Siti Zaharah binti Sakimin, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirmed that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________ Date: __________________

Name and Matric No: Nurhaliza Bt. Mohamad Shahidin (GS37321)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of study</td>
<td>3</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Mangifera indica L. varieties</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Ecological requirements</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Climate</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2 Soil</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Lateritic soils</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Lateritic soil series in Peninsular Malaysia</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Terap Series</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Soil and plant nutrients</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1 Nitrogen</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Phosphorus</td>
<td>11</td>
</tr>
<tr>
<td>2.4.3 Potassium</td>
<td>12</td>
</tr>
<tr>
<td>2.4.4 Calcium</td>
<td>13</td>
</tr>
<tr>
<td>2.4.5 Magnesium</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Mango fertilization</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Nutrients level in mango leaf</td>
<td>14</td>
</tr>
<tr>
<td>2.7 Role of organic matter in mango cultivation on lateritic soil</td>
<td>15</td>
</tr>
<tr>
<td>3 GENERAL MATERIALS AND METHODS</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Study area</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Preparation and analyses of soil samples</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Leaf tissue sampling and analyses</td>
<td>20</td>
</tr>
<tr>
<td>3.4 Data analysis</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Quality assurance</td>
<td>21</td>
</tr>
<tr>
<td>4 VERTICAL AND HORIZONTAL VARIABILITY OF SELECTED SOIL CHEMICAL PROPERTIES IN LATERITIC SOIL UNDER MANGO CULTIVATION</td>
<td>22</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>22</td>
</tr>
<tr>
<td>4.2 Materials and methods</td>
<td>23</td>
</tr>
<tr>
<td>4.2.1 Site description</td>
<td>23</td>
</tr>
<tr>
<td>4.2.2 Agronomic practices</td>
<td>24</td>
</tr>
<tr>
<td>4.2.3 Vertical soil sampling</td>
<td>25</td>
</tr>
<tr>
<td>4.2.4 Horizontal soil sampling</td>
<td>25</td>
</tr>
</tbody>
</table>
4.2.5 Soil analyses 28
4.2.6 Statistical analysis 28
4.3 Results and discussion 29
4.3.1 Vertical variability of selected soil properties 29
4.3.2 Horizontal variability of selected soil properties 40
4.4 Conclusion 45

5 TEMPORAL VARIABILITY OF SELECTED CHEMICAL PROPERTIES IN LATERITIC SOIL AND MANGO LEAF IN RELATION TO PLANT PHENOLOGICAL STAGE AND SLOPE POSITION 46
5.1 Introduction 46
5.2 Materials and methods 47
5.2.1 Site description 47
5.2.2 Experimental design and statistical analysis 48
5.2.3 Soil sampling and selected analyses 49
5.2.4 Leaf sampling and selected analyses 49
5.3 Results and discussion 50
5.3.1 Changes of soil chemical properties in relation to plant phenological stage 50
5.3.2 Changes of leaf nutrients content in relation to plant phenological stages 57
5.3.3 Changes of soil chemical properties in relation to slope positions 62
5.3.4 Changes of leaf nutrients content in relation to slope positions 65
5.4 Conclusion 67

6 EFFECTS OF ORGANIC AMENDMENT ON SOIL CHEMICAL PROPERTIES, MACRONUTRIENTS CONTENT IN THE LEAF AND YIELD OF MANGO 68
6.1 Introduction 68
6.2 Materials and methods 69
6.2.1 Study area 69
6.2.2 Experimental design and treatments 71
6.2.3 Soil sampling and selected analyses 71
6.2.4 Leaf sampling and selected analyses 73
6.2.5 Chemical analyses of chicken manure compost 73
6.2.6 Yield parameters 73
6.3 Results and discussion 74
6.3.1 Soil pH 74
6.3.2 Exchangeable base cations and CEC 77
6.3.3 Macronutrients in the leaf 89
6.3.4 Fruit yield 94
6.4 Conclusion 96

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 97
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nutrient status and ranges of primary macronutrients concentration in Malaysian soils</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Optimum ranges of nutrients level in mango leaf</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of nutrients level in mango leaf</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Soil pH, organic C, total N, C/N ratio and available P in relation to soil depths (0-15, 15-30, 30-45, and 45-60 cm) (mean ± S.E.), n=9</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Exchangeable bases (K, Ca and Mg), CEC and exchangeable Al in relation to soil depths (0-15, 15-30, 30-45, and 45-60 cm) (mean ± S.E.), n=9</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Soil textural fractions in relation to soil depth (mean ± S.E.)</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Pearson correlation coefficients (r) between soil properties at 0-15 cm depth (n=9)</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Pearson correlation coefficients (r) between soil properties at 15-30 cm depth (n=9)</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>Pearson correlation coefficients (r) between soil properties at 30-45 cm depth (n=9)</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Pearson correlation coefficients (r) between soil properties at 45-60 cm depth (n=9)</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Descriptive statistical analysis of the selected soil chemical properties</td>
<td>41</td>
</tr>
<tr>
<td>4.9</td>
<td>Pearson correlation coefficient (r) between the selected soil chemical properties in topsoil (0-15 cm) (n=50)</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>Changes of soil chemical properties in relation to plant phenological stage</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of two-way ANOVA results for soil pH, total N, and available P and exchangeable Al in relation to plant phenological stage and slope position</td>
<td>52</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of two-way ANOVA results for exchangeable bases (K, Ca and Mg), CEC and base saturation in relation to plant phenological stage and slope position</td>
<td>55</td>
</tr>
</tbody>
</table>
5.4 Changes of leaf nutrients content in relation to plant phenological stages

5.5 Summary of two-way ANOVA results for leaf nutrients content in relation to plant phenological stage and slope position

5.6 Changes of soil chemical properties in relation to slope position

5.7 Changes of leaf nutrients content in relation to slope position

6.1 Description of fertilizer treatments

6.2 Nutrients content of chicken manure compost (mean ± SD) (n=3)

A1 Shapiro-Wilk normality test

B1 ANOVA table of soil pH in relation to soil depth

B2 ANOVA table of soil organic C in relation to soil depth

B3 ANOVA table of soil total N in relation to soil depth

B4 ANOVA table of soil C/N ratio in relation to soil depth

B5 ANOVA table of soil available P in relation to soil depth

B6 ANOVA table of soil exch. K in relation to soil depth

B7 ANOVA table of soil exch. Ca in relation to soil depth

B8 ANOVA table of soil exch. Mg in relation to soil depth

B9 ANOVA table of soil CEC in relation to soil depth

B10 ANOVA table of soil exch. Al in relation to soil depth

B11 ANOVA table of sand fraction in relation to soil depth

B12 ANOVA table of silt fraction in relation to soil depth

B13 ANOVA table of clay fraction in relation to soil depth

B14 ANOVA table of soil pH in relation to slope positions and PPS

B15 ANOVA table of soil total N in relation to slope positions and PPS

B16 ANOVA table of soil available P in relation to slope positions and PPS

B17 ANOVA table of exch. K in relation to slope positions and PPS
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B18</td>
<td>ANOVA table of exch. Ca in relation to slope positions and PPS</td>
<td>120</td>
</tr>
<tr>
<td>B19</td>
<td>ANOVA table of exch. Mg in relation to slope positions and PPS</td>
<td>121</td>
</tr>
<tr>
<td>B20</td>
<td>ANOVA table of exch. Al in relation to slope positions and PPS</td>
<td>121</td>
</tr>
<tr>
<td>B21</td>
<td>ANOVA table of CEC in relation to slope positions and PPS</td>
<td>121</td>
</tr>
<tr>
<td>B22</td>
<td>ANOVA table of base saturation in relation to slope positions and PPS</td>
<td>122</td>
</tr>
<tr>
<td>B23</td>
<td>ANOVA table of foliar N in relation to slope positions and PPS</td>
<td>122</td>
</tr>
<tr>
<td>B24</td>
<td>ANOVA table of foliar P in relation to slope positions and PPS</td>
<td>122</td>
</tr>
<tr>
<td>B25</td>
<td>ANOVA table of foliar K in relation to slope positions and PPS</td>
<td>123</td>
</tr>
<tr>
<td>B26</td>
<td>ANOVA table of foliar Ca in relation to slope positions and PPS</td>
<td>123</td>
</tr>
<tr>
<td>B27</td>
<td>ANOVA table of foliar Mg in relation to slope positions and PPS</td>
<td>123</td>
</tr>
<tr>
<td>B28</td>
<td>ANOVA table of soil pH before fertilizer treatment in 0-15 cm</td>
<td>123</td>
</tr>
<tr>
<td>B29</td>
<td>ANOVA table of soil pH after fertilizer treatment in 0-15 cm</td>
<td>124</td>
</tr>
<tr>
<td>B30</td>
<td>ANOVA table of soil pH in July 2014 at 0-15 cm</td>
<td>124</td>
</tr>
<tr>
<td>B31</td>
<td>ANOVA table of soil pH in October 2014 at 0-15 cm</td>
<td>124</td>
</tr>
<tr>
<td>B32</td>
<td>ANOVA table of soil pH in January 2015 at 0-15 cm</td>
<td>125</td>
</tr>
<tr>
<td>B33</td>
<td>ANOVA table of soil pH in April 2015 at 0-15 cm</td>
<td>125</td>
</tr>
<tr>
<td>B34</td>
<td>ANOVA table of soil pH in October 2014 at 15-30 cm</td>
<td>125</td>
</tr>
<tr>
<td>B35</td>
<td>ANOVA table of soil pH in January 2015 at 15-30 cm</td>
<td>125</td>
</tr>
<tr>
<td>B36</td>
<td>ANOVA table of soil pH in April 2015 at 15-30 cm</td>
<td>126</td>
</tr>
<tr>
<td>B37</td>
<td>ANOVA table of exch. K before fertilizer treatment in 0-15 cm</td>
<td>126</td>
</tr>
<tr>
<td>B38</td>
<td>ANOVA table of exch. K after fertilizer treatment in 0-15 cm</td>
<td>126</td>
</tr>
<tr>
<td>B39</td>
<td>ANOVA table of exch. Ca before fertilizer treatment in 0-15 cm</td>
<td>126</td>
</tr>
<tr>
<td>B40</td>
<td>ANOVA table of exch. Ca after fertilizer treatment in 0-15 cm</td>
<td>127</td>
</tr>
<tr>
<td>B41</td>
<td>ANOVA table of exch. Mg before fertilizer treatment in 0-15 cm</td>
<td>127</td>
</tr>
<tr>
<td>B42</td>
<td>ANOVA table of exch. Mg after fertilizer treatment in 0-15 cm</td>
<td>127</td>
</tr>
<tr>
<td>B43</td>
<td>ANOVA table of CEC before fertilizer treatment in 0-15 cm</td>
<td>127</td>
</tr>
<tr>
<td>B44</td>
<td>ANOVA table of CEC after fertilizer treatment in 0-15 cm</td>
<td>128</td>
</tr>
<tr>
<td>B45</td>
<td>ANOVA table of exch. K in July 2014 at 0-15 cm</td>
<td>128</td>
</tr>
<tr>
<td>B46</td>
<td>ANOVA table of exch. K in October 2014 at 0-15 cm</td>
<td>128</td>
</tr>
<tr>
<td>B47</td>
<td>ANOVA table of exch. K in January 2015 at 0-15 cm</td>
<td>128</td>
</tr>
<tr>
<td>B48</td>
<td>ANOVA table of exch. K in April 2015 at 0-15 cm</td>
<td>129</td>
</tr>
<tr>
<td>B49</td>
<td>ANOVA table of exch. Ca in July 2014 at 0-15 cm</td>
<td>129</td>
</tr>
<tr>
<td>B50</td>
<td>ANOVA table of exch. Ca in October 2014 at 0-15 cm</td>
<td>129</td>
</tr>
<tr>
<td>B51</td>
<td>ANOVA table of exch. Ca in January 2015 at 0-15 cm</td>
<td>129</td>
</tr>
<tr>
<td>B52</td>
<td>ANOVA table of exch. Ca in April 2015 at 0-15 cm</td>
<td>130</td>
</tr>
<tr>
<td>B53</td>
<td>ANOVA table of exch. Mg in July 2014 at 0-15 cm</td>
<td>130</td>
</tr>
<tr>
<td>B54</td>
<td>ANOVA table of exch. Mg in October 2014 at 0-15 cm</td>
<td>130</td>
</tr>
<tr>
<td>B55</td>
<td>ANOVA table of exch. Mg in January 2015 at 0-15 cm</td>
<td>130</td>
</tr>
<tr>
<td>B56</td>
<td>ANOVA table of exch. Mg in April 2015 at 0-15 cm</td>
<td>131</td>
</tr>
<tr>
<td>B57</td>
<td>ANOVA table of CEC in July 2014 at 0-15 cm</td>
<td>131</td>
</tr>
<tr>
<td>B58</td>
<td>ANOVA table of CEC in October 2014 at 0-15 cm</td>
<td>131</td>
</tr>
<tr>
<td>B59</td>
<td>ANOVA table of CEC in January 2015 at 0-15 cm</td>
<td>131</td>
</tr>
<tr>
<td>B60</td>
<td>ANOVA table of CEC in April 2015 at 0-15 cm</td>
<td>132</td>
</tr>
<tr>
<td>B61</td>
<td>ANOVA table of exch. K in October 2014 at 15-30 cm</td>
<td>132</td>
</tr>
<tr>
<td>B62</td>
<td>ANOVA table of exch. K in January 2015 at 15-30 cm</td>
<td>132</td>
</tr>
<tr>
<td>B63</td>
<td>ANOVA table of exch. K in April 2015 at 15-30 cm</td>
<td>132</td>
</tr>
<tr>
<td>B64</td>
<td>ANOVA table of exch. Ca in October 2014 at 15-30 cm</td>
<td>133</td>
</tr>
<tr>
<td>B65</td>
<td>ANOVA table of exch. Ca in January 2015 at 15-30 cm</td>
<td>133</td>
</tr>
<tr>
<td>B66</td>
<td>ANOVA table of exch. Ca in April 2015 at 15-30 cm</td>
<td>133</td>
</tr>
<tr>
<td>B67</td>
<td>ANOVA table of exch. Mg in October 2014 at 15-30 cm</td>
<td>133</td>
</tr>
<tr>
<td>B68</td>
<td>ANOVA table of exch. Mg in January 2015 at 15-30 cm</td>
<td>134</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>B69</td>
<td>ANOVA table of exch. Mg in April 2015 at 15-30 cm</td>
<td>134</td>
</tr>
<tr>
<td>B70</td>
<td>ANOVA table of CEC in October 2014 at 15-30 cm</td>
<td>134</td>
</tr>
<tr>
<td>B71</td>
<td>ANOVA table of CEC in January 2015 at 15-30 cm</td>
<td>134</td>
</tr>
<tr>
<td>B72</td>
<td>ANOVA table of CEC in April 2015 at 15-30 cm</td>
<td>135</td>
</tr>
<tr>
<td>B73</td>
<td>ANOVA table of number of harvested fruit tree(^{-1}) before treatment</td>
<td>135</td>
</tr>
<tr>
<td>B74</td>
<td>ANOVA table of number of harvested fruit tree(^{-1}) after treatment</td>
<td>135</td>
</tr>
<tr>
<td>B75</td>
<td>ANOVA table of harvested fruit weight tree(^{-1}) before treatment</td>
<td>135</td>
</tr>
<tr>
<td>B76</td>
<td>ANOVA table of harvested fruit weight tree(^{-1}) after treatment</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Varieties of mango cultivated in Malaysia; (a) Harumanis (MA128), (b) Golek (MA 162), (c) MAHA 65 (MA 165), (d) Masmuda (MA 204), (e) Nam Dok Mai (MA 223) and (f) Chok Anan (MA 224)</td>
</tr>
<tr>
<td>2.2</td>
<td>Medium size Harumanis mango ranges between 350 g to 500 g</td>
</tr>
<tr>
<td>2.3</td>
<td>Soil profile of Terap Series</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of the study area</td>
</tr>
<tr>
<td>3.2</td>
<td>Study plot cultivated with mango cultivar Harumanis</td>
</tr>
<tr>
<td>3.3</td>
<td>Leaf position in mango terminal for sampling</td>
</tr>
<tr>
<td>4.1</td>
<td>Average precipitation and temperature recorded from 1982 to 2014</td>
</tr>
<tr>
<td>4.2</td>
<td>Soil pit of Terap Series indicate laterite zone starts at 60 cm from the soil surface</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic diagram of vertical soil sampling</td>
</tr>
<tr>
<td>4.4</td>
<td>Geo-reference sampling points in the study plot</td>
</tr>
<tr>
<td>5.1</td>
<td>Average monthly temperature and precipitation from 2013 to 2014</td>
</tr>
<tr>
<td>5.2</td>
<td>Schematic diagram of slope position in the study area</td>
</tr>
<tr>
<td>6.1</td>
<td>Experimental plot in the field at UiTM Perlis</td>
</tr>
<tr>
<td>6.2</td>
<td>Mean weather changes from January 2014 until June 2015</td>
</tr>
<tr>
<td>6.3</td>
<td>Schematic diagram of fertilizer placement</td>
</tr>
<tr>
<td>6.4</td>
<td>Soil pH before and after treatment in 0-15 cm soil depth</td>
</tr>
<tr>
<td>6.5</td>
<td>Changes of soil pH in 0-15 cm soil depth</td>
</tr>
<tr>
<td>6.6</td>
<td>Changes of soil pH in 15-30 cm soil depth</td>
</tr>
<tr>
<td>6.7</td>
<td>Concentrations of exchangeable K in soil before and after treatment in 0-15 cm soil depth</td>
</tr>
<tr>
<td>6.8</td>
<td>Concentrations of exchangeable Ca in soil before and after treatment in 0-15 cm soil depth</td>
</tr>
</tbody>
</table>
6.9 Concentrations of exchangeable Mg in soil before and after treatment in 0-15 cm soil depth
6.10 CEC in soil before and after treatment in 0-15 cm soil depth
6.11 Changes of exchangeable K concentrations in 0-15 cm soil depth
6.12 Changes of exchangeable Ca concentrations in 0-15 cm soil depth
6.13 Changes of exchangeable Mg concentrations in 0-15 cm soil depth
6.14 Changes of CEC in 0-15 cm soil depth
6.15 Changes of exchangeable K concentrations in 15-30 cm soil depth
6.16 Changes of exchangeable Ca concentrations in 15-30 cm soil depth
6.17 Changes of exchangeable Mg concentrations in 15-30 cm soil depth
6.18 Changes of CEC in 15-30 cm soil depth
6.19 Changes in N concentrations in leaf under five fertilizer treatments
6.20 Changes in P concentrations in leaf under five fertilizer treatments
6.21 Changes in K concentrations in leaf under five fertilizer treatments
6.22 Changes in Ca concentrations in leaf under five fertilizer treatments
6.23 Changes in Mg concentrations in leaf under five fertilizer treatments
6.24 Number of harvested fruit per tree and increment in fruit numbers between treatments
6.25 Harvested fruit weight per tree and increment in fruit weight between treatments
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Auto Analyzer</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CF</td>
<td>Chemical fertilizer</td>
</tr>
<tr>
<td>CM</td>
<td>Chicken manure</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>cv.</td>
<td>Cultivar</td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>EDA</td>
<td>Exploratory Data Analysis</td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agricultural and Marketing Authority</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly Significant Difference</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductive Coupled Plasma Optical Emission Spectrometer</td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture</td>
</tr>
<tr>
<td>MADA</td>
<td>Muda Agricultural and Development Authority</td>
</tr>
<tr>
<td>ME</td>
<td>Mean error</td>
</tr>
<tr>
<td>NAP3</td>
<td>Third National Agricultural Policy</td>
</tr>
<tr>
<td>PPS</td>
<td>Plant phenological stage</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis Software</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>UiTM</td>
<td>Universiti Teknologi Mara</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Mango (*Mangifera indica* L.) is one of the 16 fruits that have been highlighted for the agricultural development in the Third National Agricultural Policy (NAP3) of Malaysia (MOA, 1999). *Mangifera indica* L. cv. Harumanis (MA 128), a premium mango cultivar is widely cultivated in Perlis and possesses high market demand in both local and international markets including Japan, Singapore and Hong Kong. This mango cultivar was introduced in Perlis since early 1980s.

In general, it was estimated that more than 8,000 ha land in Peninsular Malaysia has been cultivated with various mango cultivar which are mainly in Kedah, Perlis and Perak (DOA, 2009). As in year 2015, 150 metric tons of Harumanis mango was produced from 60 ha production area by Perlis Department of Agriculture (DOA). However, current production of Harumanis mango was unable to cater the increasing demand.

Mango can grow on a wide variety of soil types ranging from high pH soils to low pH soils though it grows best on soil with pH between 5.5 and 6.5. Although mango can adapt to numerous types of soil, the physical and chemical properties of the respective soil could resulted in different growth rate and yield production and subsequently affected the fertilizer requirement. Lateritic soils which are categorized as marginal soil are commonly used for rubber (*Hevea brasiliensis*) cultivation. However, due to the abundance source of lateritic soils in the northern part of Peninsular Malaysia, mango was also cultivated on this types of soil. The lateritic soil series includes Changlun, Chuping, Gajah Mati, Jitra, Melaka, Pokok Sena and Terap Series. Each of the soil series are characterized by different soil depth to the subsoil laterite layer which results in different soil physical and chemical properties.

Lateritic soils experience nutrients imbalance in which nutrient status was indicated by low to medium level (Wong, 2009). Due to its poor nature, lateritic soil does not able to supply sufficient amount of nutrients as for optimum growth of mango. High acidity of lateritic soil also hinder nutrition uptake which subsequently affected growth rate and yield. Low organic matter content in lateritic soil has resulted in low level of essential nutrients needed for crop growth as well as low cation exchange capacity (CEC) (Kheoruenromne, 1987). Lateritic soils are known to have high level of exchangeable Al due to its low pH which in turn affected the nutrient uptake and growth of roots and in certain extent results in occurrence of Al toxicity.

Growth and yield production of mango on lateritic soil was restricted due to the above mentioned soil properties, thus, making it less suitable for agriculture. Hence, application
of chemical fertilizer (CF), mainly nitrogen (N), phosphorus (P) and potassium (K) was initially carried out for mango cultivation in order to supply macronutrients needed. However, continuous application of CF without organic amendments in mango cultivation area in long term could alter the soil physical and chemical properties and resulted in depletion of beneficial microorganisms’ population within soil as well as leads to soil acidification. In addition, the acidic soil condition can cause nutrients imbalance and suppress the availability of nutrients to the crops even though nutrients are abundant in the soils. Considering the long term consequences of CF usage, application of CF must be reduced and substituted with other natural resources which can promotes better soil health as well as to minimize the process of soil acidification and to ensure efficient nutrient supplies for optimal crop growth. Hence, application of organic matter amendments into the soil needs to be implemented in order to enhance the soil physical and chemical properties.

Various sources of organic materials are available for soil amendments such as animal manure and compost. Animal manures such as cow manure and chicken manure (CM) are widely used as soil amendments which are proven containing high concentration of major essential elements and high organic carbon (C) content. Organic amendments are widely used in agriculture practices and the impacts are globally discussed. Mylavarapu and Zinati (2009) stated that application of organic fertilizer benefits the soil by improving the soil physical and chemical properties as it contributes to aggregate stability, enhancing water holding capacity (Naeini and Cook, 2000), increases soil CEC, improve soil fertility and supplies mineral nutrients required by the crops (Simpson, 1986). Besides that, application of organic fertilizer also enhances the availability of nutrients to the crop as resulted from microbial activity (Zinati et al., 2004), which leads to a better nutrition to the plant and optimum yield production (Mylavarapu and Zinati, 2009).

Mangifera indica L. cv. Harumanis is mostly cultivated on soil with pH greater than 7. However, cultivation of Harumanis mango has been expanded on marginal soil such as lateritic soil with low soil pH. Previous research study on mango cv. Harumanis cultivated on high pH soils have been done by Razi (1992; 1996). However, there is limited research and scarce information on management practices of Harumanis mango cultivated on lateritic soils. Therefore, this study was undertaken to study the variability of macronutrients (N, P, K, Ca and Mg) in soil and mango leaf (N, P, K, Ca and Mg) under acidic soil condition. Besides that, this study aims to evaluate the effects of fertilizer management on soil and leaf nutrients concentration as well as yield of Harumanis mango on lateritic soils.
1.2 Objectives of study

The main objectives of this study were:

1. To determine variability of selected soil chemical properties in vertical and horizontal direction and correlation among the chemical properties in lateritic soil cultivated with Harumanis mango.

2. To determine temporal variability of chemical properties in lateritic soil and macronutrients concentration in mango leaf based on plant phenological stages (day of sampling) (flowering, fruiting, flushing and end of flushing) and slope positions (upper, middle and lower).

3. To evaluate the effects of CM compost application on soil chemical properties, macronutrients concentration in mango leaf and yield of Harumanis mango.
REFERENCES

BIODATA OF STUDENT

Nurhaliza binti Mohamad Shahidin was born on June 24, 1988 in Alor Setar, Kedah. She received her primary education in Sekolah Kebangsaan Seri Banai and completed her secondary education in Sekolah Menengah Kebangsaan Jitra in 2005. After that, she pursues her study at Kedah Matriculation College in science stream in 2006. After completing her matriculation for a year, she began studying at Universiti Malaysia Sarawak (UNIMAS). She graduated her first degree in Bachelor of Science (Hons) in Plant Resource Science and Management (majoring in Plantation) from UNIMAS, in 2010. After graduated her first degree, she joined Universiti Utara Malaysia as a laboratory assistant and attached with School of Economics, Finance and Banking in November 2010 until August 2013. Then, she pursues her study in master programme under Land Resource Management at the Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia. She was awarded with Skim Latihan Akademik Bumiputera (SLAB) Scholarship from Ministry of Higher Education under Universiti Teknologi Mara (UiTM) Young Lecturer Scheme Programme.

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION:

TITLE OF THESIS / PROJECT REPORT:

MACRONUTRIENTS VARIABILITY IN LATERITIC SOIL AND EFFECTS OF ORGANIC AMENDMENT CONTENTS ON MANGO CV HARUMANIS

NAME OF STUDENT: NURHALIZA BT. MOHAMAD SHAHIDIN

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (V)

[] CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

[] RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

[] OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

[] PATENT Embargo from __________ until __________ (date) (date)

Approved by:

(Signature of Student)
New IC No/ Passport No.:
Date:

(Signature of Chairman of Supervisory Committee)
Name:
Date:

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]