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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

ADAPTIVE CONTROL SCHEME FOR ANTI- SYNCHRONIZATION OF
CHAOTIC DYNAMICAL SYSTEMS

By

MAHMOUD MAHERI

November 2016

Chairman: Norihan Md Arifin, PhD
Faculty: Institute for Mathematical Research

Due to physical limitation in most real-world applications, the assumption on chaotic dy-
namical systems with identical drive and response systems is somehow unrealistic. Hence,
synchronization of two different chaotic systems in the presence of unknown parameters
is more essential and useful in real-world applications. Recently, several techniques have
been proposed in the literature to synchronize chaotic dynamical systems. Therefore,
this thesis presents chaos synchronization of a couple of chaotic systems. Based on the
exponential and Lyapunov stability theory, the controller with the corresponding param-
eter update rules is designed such that the different chaotic systems can be synchronized
asymptotically. The proposed function control is composed of both variable proportional
and adaptive control actions for guaranteeing the convergence of the residual synchroniza-
tion error to zero in the presence of disturbances. Three proposed chaos synchronization
techniques are considered. The first technique considered chaos synchronization of two
different chaotic systems with the same and different parametric perturbation by non-
linear control functions. Second technique studied an adaptive synchronization, phase
synchronization and functional phase synchronization of two different chaotic systems
with nonlinear control functions and the third technique, a robust adaptive nonlinear feed-
back controller technique is proposed to realize the synchronization between two different
fractional order chaotic systems with fully unknown parameters, external disturbance and
uncertainties. The proposed techniques are applied to achieve chaos synchronization for
the chaotic dynamical systems We demonstrate that a coupled chaotic dynamical systems
can be synchronized and numerical simulations show the effectiveness of the proposed
control techniques. Moreover, as an application, a new technique for transmitting digital
signals was proposed based on chaos masking using chaotic dynamical system. Also,
simulation results verify the proposed technique’s success in the communication applica-
tion.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

SKIM KAWALAN MUDAH SUAI UNTUK ANTI PENSINKRONIAN
SISTEM DINAMIK KALUT

Oleh

MAHMOUD MAHERI

November 2016

Chairman: Norihan Md Arifin, PhD
Fakulti: Institut Penyelidikan Matematik

Disebabkan oleh batasan fizikal dalam kebanyakan aplikasi dunia sebenar, andaian sistem
dinamik kalut dengan sistem-sistem pemacu dan tindak balas itu walaubagaimanupun
tidak realistik. Oleh itu, pensinkronian dua sistem kalut yang berbeza dengan adanya
parameter tidak diketahui adalah lebih penting dan berguna dalam aplikasi dunia sebe-
nar. Terkini, beberapa teknik telah dicadangkan dalam literatur untuk sinkroni sistem
dinamik kalut. Oleh yang demikian, tesis ini mengkaji pensinkronian kalut untuk sis-
tem kalut berpasangan. Berdasarkan teori kestabilan Lyapunov, pengawal dengan at-
uran terkini parameter yang sepadan direkabentuk supaya sistem kalut yang berbeza
boleh disinkroni secara asimptot. Kawalan fungsi yang dicadangkan ini dibentuk un-
tuk kedua-dua pembolehubah berkadaran dan tindakan kawalan sesuai bagi menjamin
memastikan penumpuan ralat pensinkronian reja kepada sifar dengan kehadiran gang-
guan. Tiga cadangan teknik pensinkronian kalut dipertimbangkan. Teknik pertama mem-
pertimbangkan pensinkronian kalut dua sistem kalut berbeza dengan gangguan parameter
yang sama dan berbeza oleh fungsi kawalan tak linear. Teknik kedua mengkaji pensinkro-
nian mudah suai, pensinkronian fasa dan pensinkronian fasa berfungsi dua sistem kalut
yang berbeza dengan fungsi kawalan tak linear dan teknik ketiga, teknik kawalan suapba-
lik teguh tak linear mudah suai dicadangkan untuk merealisasikan pensinkronian antara
dua sistem kalut peringkat pecahan berbeza dengan parameter tidak diketahui sepenuh-
nya, gangguan luar dan ketidaktentuan. Teknik-teknik yang dicadangkan ini diaplikasi
untuk mencapai pensinkronian kalut untuk sistem dinamik kalut. Kami tunjukkan sis-
tem dinamik kalut berpasangan boleh disinkroni dan simulasi berangka menunjukkan ke-
berkesanan teknik kawalan yang dicadangkan. Selain itu, sebagai applikasi, satu teknik
baru untuk penghantaran isyarat digital telah dicadangkan berdasarkan pada penopengan
kalut dengan menggunakan sistem dinamik kalut. Juga, keputusan simulasi mengesahkan
kejayaan teknik yang dicadangkan dalam aplikasi komunikasi.
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CHAPTER 1

INTRODUCTION

Dynamical system is certain rule that explains the position of each point in the phase space
over the time which is used in the modeling of both natural and technological sciences. If
a model of a practical problem has been explained by a dynamical system, it is possible
to predict future status of it by knowing the current position of the system in a particular
moment.

Chaotic systems are special cases of nonlinear dynamical systems that are highly sensitive
to their initial conditions. In the recent years, chaos synchronization is widely used as an
important topic in the discussion of nonlinear dynamical systems. Control and synchro-
nization of chaotic dynamical system are playing a significant role in the study of applied
sciences such as communications, cryptography, biology, economics and so on.

This chapter first gives the basic concepts of continuous dynamical systems such as fixed
point, eigenvalues, linear stability, phase space in linear systems, chaos, bifurcation and
Lyapunov exponent. Then, after a brief description of chaos in the classical form by an
example, objectives and outline of this thesis is discussed.

1.1 Basic concepts of dynamical systems

Generally a dynamical system is described by:

ẋ = f (x), (1.1)

or

ẋ = f (x, t), (1.2)

where x = (x1,x2, · · · ,xn)∈ Rn is state variables vector. Systems (1.1) and (1.2) are called
autonomous and non-autonomous respectively (Guckenheimer and Holmes, 2013).

A suitable method for describing solution of the differential equation is to find an explicit
formula for the answer. However, generally it is not possible to find such solutions. But
there are other methods to describe the solution such as study of the systems behavior
near fixed points.

1.1.1 Fixed points and stability

Assume the following nonlinear differential equation:

ẋ =
dx
dt

= f (x). (1.3)

1
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Definition 1.1 Suppose D ⊆ Rn+1, it is said that f ∈C(D) if f is a continuous function
and if f have continuous derivatives in order k > 0, it is called f ∈Ck(D) (Guckenheimer
and Holmes, 2013).

Theorem 1.1 [Existence and uniqueness condition:] Suppose D is an open subset in
Rn+1 include x0. If f ∈C(D) then initial value problem

ẋ = f (t,x), ;x(0) = x0,

has solution and if ∂ f
∂x ∈C(D), then the solution is unique on I (Perko, 2013).

Remark 1.1 In theorem 1.1, I is the biggest interval that the initial value problem has
solution in it. Interval I is called maximal interval.

Definition 1.2 In system (1.3), a point x0 is called fixed point ( critical point) if

ẋ = f (x0) = 0,

which plays an important role in the survey of system’s behavior. If a trajectory starts
from these points, remains at there forever (Perko, 2013).

Definition 1.3 A fixed point x0 in system (1.3) is called singular if there exist a neighbor-
hood of point x0 so that x0 is only fixed point in that neighborhood (Perko, 2013).

Definition 1.4 A fixed point x0 of system (1.3) is called stable if for any neighborhoods
N, there exist smaller neighborhood N′ ⊆ N of x0 so that, when each trajectory of system
entered to N′, remain in N for all time t, Figure 1.1 (Perko, 2013).

N

N ′

Figure 1.1: Neighborhoods N and N′ of definition 1.4 in origin at R2.

Definition 1.5 A fixed point, x0 of system (1.3), is called asymptotically stable if (Guck-
enheimer and Holmes, 2013):

2
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(i) It is stable.

(ii) There exists a neighborhood N′ of x0 where for each trajectory entered to N′, tends
to x0 by increase of t, see Figure (1.2).

N

N ′

Figure 1.2: Neighborhoods N and N′ in definition (1.5) in origin at R2.

Definition 1.6 A fixed point x0 of system (1.3) is called center stable if is stable but does
not satisfy definition 1.5 (Guckenheimer and Holmes, 2013).

Definition 1.7 A fixed point x0 of system (1.3) is called unstable if it not is stable, see
Figure (1.3) (Guckenheimer and Holmes, 2013).

N

N ′

Figure 1.3: Neighborhoods N and N′ at definition 1.7 in origin at R2.

Remark 1.2 Fixed points of system (1.3) based on the behaviors near these points are
classified in three types, attractive, repulsive and transit points.

Theorem 1.2 If x0 be fixed point of system (1.3) then (Teschl, 2012)

3
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(i) It is called attractive point if d f
dx (x0)< 0.

(ii) It is called repulsive point if d f
dx (x0)> 0.

(iii) If d f
dx (x0) = 0 it is necessary to use higher order derivatives to determine the nature

of the point.

1.1.2 Phase space of linearized system

Most of the nonlinear systems locally, are equivalent to their linear systems, so by know-
ing the characteristics of linear system it is possible to identify properties of a wide range
of nonlinear systems (Teschl, 2012).

Qualitative behavior of linear systems leads to the classification finite numbers of phase
space for the corresponding non-linear systems. Extension of these techniques is useful
in the study of qualitative behavior of nonlinear systems. Consider linear system,

ẋ = f (x) = Ax, (1.4)

where A is a nonsingular matrix. This system, by changing variable x = Py, it’s canonical
system

ẏ = Jy,

where A is coefficient matrix and J is the Jordan canonical form of matrix A such that
J = P−1AP. In fact, the columns of P form a basis in Rn and y is the coordinates of
x respect to this new base. Since the matrices A and J are similar, the solutions of the
system ẋ = Ax and ẏ = Jy are related together by relations

x = Py, P−1AP = J. (1.5)

Thus, if one of these systems is solved, the solutions of the other class is achieved (Teschl,
2012).

Definition 1.8 Each answer of the system (1.4), namely φ(t) = (x(t),y(t)), displays by
a curve in plane. These curves is called phase space, orbit or trajectory (Guckenheimer
and Holmes, 2013).

Definition 1.9 The phase portrait is a two dimension figure that shows system qualitative
behavior respect to x1 and x2 by changing variable t (Guckenheimer and Holmes, 2013).

Theorem 1.3 Jordan matrix that appear in the transformation of system (1.4) to its
canonical form has one of these four cases,

J1 =

[
λ1 0
0 λ2

]
, λ1 > λ2; J2 =

[
λ0 0
0 λ0

]
,

J3 =

[
λ0 1
0 λ0

]
; J4 =

[
α −β

β α

]
, β > 0

4
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where α , β , λ0, λ1 and λ2 are real numbers (Arrowsmith and Place, 1992).

Consider system (1.4) where λ1 and λ2 are roots of the characteristic polynomial of matrix
A. Assume ẏ = Jy is the corresponding canonical system for (1.4). The nature of fixed
point (0,0) of the simple canonical form is depended to the nature of eigenvalues λ1 and
λ2. For classification of eigenvalues see appendix A.

Proposition 1.1 The fixed point (0,0) of system ẋ = Ax :

• is asymptotically stable if the real part of the eigenvalues in the characteristics
polynomial A is negative.

• is center stable if the eigenvalues are pure imaginary.

• is unstable if at least one the eigenvalues are positive (Brockett, 2015).

Definition 1.10 Assume that the origin is the fixed point of system (1.4). In this case,
the stable and unstable manifold of the origin respectively are shown by Es(0) and Eu(0)
which are determined by eigenvectors of matrix A (Brockett, 2015).

1.1.3 Linearization nonlinear systems at fixed points

Phase space of a linear system is determined by the nature of the fixed points. In most
cases, it is possible to approximate nonlinear systems with their corresponding linear
system near the fixed points. Nonlinear systems, can have more than a fixed point and
it is possible to obtain local phase space of all of them. However, local phase spaces,
always can not display the global phase spaces nature. In other words, unlike linear
systems, phase spaces of non linear systems can not specify by the nature of their fixed
points. in this part, the linearization process is explained on two-dimensional systems that
can extend to higher orders systems easily (Sastry, 2013).

Assume (ξ ,η) are the fixed points of the nonlinear system{
ẋ1 = f1(x1,x2),

ẋ2 = f2(x1,x2)
(1.6)

and suppose the local coordinate y1 = x1−ξ and y2 = x2−η . As a result, we have

ẏi = fi(y1 +ξ ,y2 +η) (1.7)

= fi(ξ ,η)+ y1
∂ fi
∂x1

(ξ ,η)+ y2
∂ fi
∂x2

(ξ ,η+)+Ri(y1,y2), i = 1,2,

where the function Ri satisfies the relation

lim
(y1,y2)→(ξ ,η)

Ri(y1,y2)√
y2

1 + y2
2

= 0.
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Since (ξ ,η) is the fixed point of system (1.6), so fi(ξ ,η) = 0. By ignoring nonlinear
expressions, the resulting linearization of system (1.6) at point (ξ ,η) is given by ẏ = Jy
where

J =

 ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2


(x1,x2)=(ξ ,η)

is the Jacobian matrix of system (1.6).

Theorem 1.4 (Hartman linearization theorem) Assume that (ξ ,η) is a hyperbolic
fixed point of nonlinear system ẋ = f (x). In this case, in a neighborhood of this point,
the phase space of nonlinear system and the linearized system are qualitative equivalence
(Hartman, 1964).

Remark 1.3 Stable and unstable manifolds of a non linear system is given respectively
by Ws and Wu. Hartman theorem guarantees that Ws and Wu are tangent respectively on
Es and Eu at fixed point.

1.2 Chaos theory

Chaos chaos theory, refers to an apparent lack of arrangement in a system that neverthe-
less obeys particular law of rules. This concept of chaos is synonymous with dynamical
instability, a condition discovered by the physicist Henri Poincare (Miller and Ross, 1993)
in the early 20th century that refers to an inherent lack of predictability in some physical
systems.

The main components of chaos theory is the idea that very simple or small changes and
events can cause very complex behaviors or events. This latter idea in known as sensitive
dependence on initial conditions, a condition discovered by Edward Lorenz (who is gen-
erally credited as the first experimenter in the area of chaos) in the early 1960s (Lorenz,
1993). Chaos theory successfully can describe many phenomena in various disciplines
branches such as engineering, economics, science, biology, meteorology, astrophysics,
management and so on.

This part, first explains the detection methods of a chaotic system including bifurcation,
sensitivity to initial conditions and Lyapunov exponent. Then, these concepts are applied
to the Lorenz system.

1.2.1 Bifurcation

Most of mathematical models in addition to variables have parameters. Due to various
applications of a model, parameters can have different values. For example, suppose the
exponential growth model represented by ẋ = ax, where a is the parameter for growth.
Value of a for rabbits is much higher than that for humans.
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Study on changes in the behavior of a dynamic system by changing its parameters, is one
of the topics studies in the dynamical systems. If the behavior of the system is changed
suddenly by changing the parameters, it is called a bifurcation occurs in the system.

The point where the bifurcation occurs, is called the bifurcation point. At one bifurcation
point the number of fixed points or its stability can change. In most applied problems,
there do not exist exact values of the parameters and there are only an approximation of
them. For having useful modeling for such problems, it is necessary to evaluate the effect
of small changes in the value of parameters on the behavior of the system. In a chaotic
system, by changing the parameters of bifurcation, different behaviors occur in the system
(Morin et al., 2003).

Definition 1.11 A vector field f , f ∈C1(D), is called structurally stable if a small change
in the system ẋ = f (x), does not change the qualitative behavior of it. If a small change in
the system change the qualitative behavior of the system, it is called structurally unstable
(Kuznetsov, 2013).

Theorem 1.5 (Peixoto theorem) Assume that the vector field f is continuous differen-
tiable on the compressed set D ⊆ R2. In this case, f on D is structurally stable if and if
(Peixoto, 1962)

• The number of fixed point and limit cycles are finite, and all fixed points are hyper-
bolic;

• There do not exist any orbit to connect two saddle points to each other.

Definition 1.12 Assume that a system as ẋ = f (x,µ), where f ∈C1(D), x ∈ D⊆ R2 and
µ ∈ R. The value µ0, where ẋ = f (x,µ0) is structurally unstable, is called bifurcation
value (Kuznetsov, 2013).

These concepts are explained on the Lorenz system in the next section.

1.2.1.1 Sensitivity to initial conditions

When a chaotic system is in the chaos area, the smallest change in the initial value case
system show quite different behavior after a long time. Consider two different answers
in a certain system that are in the chaotic region and the difference is only in the initial
values. These two solutions, over time diverge from each other, while both are remain in
the bounded area of the phase space. In the chaotic systems two orbits are separated ex-
ponentially from each other with close initial conditions (Willems and Polderman, 2013).
This behavior also is shown in the Lorenz system in the next section.
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1.2.2 Lyapunov exponent

Lyapunov exponents have played a key role in the studying of the behaviors in chaotic
systems. These exponents measure the mean rate of divergence and convergence of orbits
which started together from a very closed initial points. Hence, the Lyapunov exponents
can apply to analysis the stability of a system and for the assessment of the sensitivity to
initial conditions to find chaotic behavior or existing strength attractors.

Assume the points x0 and x0 + u0 that are on two closed paths of phase space of a con-
tinuous system where u0 is a small perturb on x0 as shown in Figure 1.4. After time t,

Figure 1.4: Divergence or convergence of two close path

projection of these points will change to φt(x0) and φt(x0 + u0) under the effect of flow.
Difference ut is

ut = φt(x0 +u0)−φt(x0) = Dx0φt(x0).u0,

where the right hand expression comes from the linearization of φt around x0. Assume
after the time t, distance of two paths is

‖ ut ‖=‖ u0 ‖ eLt .

In this case, the exponent rate of divergence is defined as

L = lim
t→∞

1
t

ln
‖ ut ‖
‖ u0 ‖

,

where ‖ . ‖ is the length of vector. Determination of L (Lyapunov exponent) is possible
when the right hand of equation (1.8) is exist. Selecting base e is an appropriate choice
but arbitrary.

The divergence rate of orbits that represents the chaotic behavior, is only measurable
locally. When a system is bounded, over time t, ut can not tend to infinity. So, to have
an appropriate criteria for measure of the divergence of these paths, it is necessary to use
average of numerous points for the calculation of it. Using the results of these exponents
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can help to discern between the fixed points, quasi periodic or chaotic motions. If axis
coordinates and theirs correspond Lyapunov exponent classify in descending order as
ε1 ≥ ·· · ≥ εn and λ1,≥, · · · ,λn, each λi, i = 1,2, . . . ,n, shows average exponential rate
of divergence for axis εi. So, the number of Lyapunov exponents have to be equal with
the phase space dimension (Teschl, 2012).

1.3 Chaotic Lorenz system

The first numerical investigation which led to the introduction of chaos is presented by
Edward Norton Lorenz in 1960 (Marsden and McCracken, 2012). He was a meteorologist
and tried to model and solve weather convention as shown in Figure 1.5. He introduced

∆T temprature difference
cold air

warm air

Figure 1.5: A layer of material fluid is heated from below.

the nonlinear autonomous systems which is called the Lorenz system:
ẋ1 = σ(−x1 + x2),

ẋ2 = rx1− x2− x1x3,

ẋ3 =−bx3 + x1x2,

(1.8)

where the parameters σ , r and b are positive real number. The variable x1 is the intensity
of fluid motion and x2 and x3 respectively show the temperature changes horizontally and
vertically. Parameters σ and b depend on the geometric and material properties of fluid
layer. Lorenz observed that simulations result is quite different due to the very small
changes in initial conditions. He published a paper in a meteorology journal that paved
the way to start new investigation on the chaotic dynamical system. For σ = 10, b = 8

3
and r = 28 the system is chaotic as shown in Figure 1.6.

Figure 1.6: Lorenz chaotic dynamical system

For of detection chaotic behavior in a system, there are some known methods such as bi-
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furcation, invariant manifold, Poincare section and more importantly Lyapunov exponent.
In the next part bifurcation and Lyapunov exponent are explained on the Lorenz system.

1.3.1 Bifurcation in the Lorenz system

In this part the qualitative behaviors on the Lorenz system (1.8) are explained based on
the concept of bifurcation (Arnold et al., 2013).
Lorenz system (1.8) properties are:

• Symmetry: There is no changes in the equations of the Lorenz system by
transformation (x1,x2,x3)→ (−x1,−x2,x3), so if (x1,x2,x3) be a solution, then
(−x1,−x2,x3) is also a response.

• Invariant manifold x3: When x1 = x2 = 0, then ẋ1 = ẋ2 = 0 and ẋ3 = −bx3. So
on axis x3, all trajectories go to origin that means x3 is an invariant manifold.

• Damping: Lorenz system is damped in other words, the volume of phase space is
shrink towards zero over time. By using divergence theorem, where v is for volume:

V̇ =
∫

V
5.XdV =

∫
V

divXdV (1.9)

For Lorenz system, divX =−(σ +b+1) is fixed and

V̇ =−(σ +b+1)
∫

V
dV =−(σ +b+1)V.

So V (t) =V (0)e−(σ+b+1)t results in phase space all volume shrink to
V (0)e−(σ+b+1)t , and all paths in the Lorenz system go to a set with zero volume.
In a damped system, orbits go to fixed points, limit cycles or strong attractors.

• Fixed points: For 0≤ r < 1, the origin is the only fixed point of the Lorenz system.
For r > 1, in addition of the origin there are two other fixed points,

C± = (±
√

b(r−1),±
√

b(r−1),r−1).

That when r→ 1+, C± go to the origin and there is a bifurcation in r = 1.

• Linear stability of origin: linearized Lorenz system is given by


ẋ1 = σ(x2− x1),

ẋ2 = rx1− x2,

ẋ3 =−bx3.

(1.10)

10
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System (1.10) shows that x3 over the time will go to zero and the eigenvalues that come
from the system from the:(

ẋ1
ẋ2

)
=

(
−σ σ

r −1

)(
x1
x2

)
, (1.11)

are λ± = 1
2

(
− (σ + 1)±

√
(σ +1)2−4σ(1− r)

)
. For 0 ≤ r < 1 the eigenvalues are

negative so the origin is a stable node. For r > 1, λ+ > 0 and λ− < 0 so the origin is
saddle point.

• Global stability: For r < 1, tha Lorenz path converges to the origin so it is
stable and there is no limit cycle or strong attractor, using Lyapunov function,
V (x1,x2,x3) = x2

1 +σx2
2 +σx2

3, σ > 0, derivative along Lorenz trajectory is

V̇ = −2σ(x2
1 + x2

2− (1+ r)x1x2)−2σbx2
3

= −2σ(x1−
r+1

2
x2)

2−2σ(1−
( r+1

2

)2
)x2

2−2σbx2
3,

that is strictly negative, so it is stable asymptomatically.

• C± stability: For r > 1 the origin is unstable. Linearizion at two other fixed points
C± described by ẋ1

ẋ2
ẋ3

 =

 −σ σ 0
1 −1 ∓

√
b(r−1)

±
√

b(r−1) ±
√

b(r−1) −b

 x1
x2
x3


= A

 x1
x2
x3

 (1.12)

and the characteristic polynomial is:

λ
3 +(1+b+σ)λ 2 +b(σ + r)λ +2bσ(r−1) = 0.

Suppose σ −b−1 > 0, so the fixed point is stable if

1 < r < rH = σ

(
σ +b+3
σ −b−1

)
,

where the parameters values are σ = 10 , b = 8
3 and rH ≈ 24.74. For 1 < r < r1 = 1.3456

all eigenvalues are real and negative. For r1 < r < rH , there are one real negative and two
complex eigenvalue with negative real part, therefore, for 1 < r < rH real parts is negative
and fixed points C± are stable. In r = rH there exist one negative eigenvalue and two
complex. For r > rH there are one negative real number and two complex with positive
real part. So for r > rH fixed points C± are unstable that result to have bifurcation in
r = rH .
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Chaos in the Lorenz system: For r > rH all fixed points are unstable so the Lorenz
trajectory goes to infinity over the time. But the Lorenz system is damping therefore for
r > 0 finally it approaches to zero volume, for r > rH and it has strong attractor. Anyway
all trajectories stay at limit area of phase space (Marsden and McCracken, 2012).
It is possible to show the behavior of Lorenz system using bifurcation graph. Fig-
ure 1.7 shows the result for σ = 10, b = 8

3 , 0 < r < 30 while initial condition is
(x1(0),x2(0),x3(0)) = (2,3,5).

(a) (b) (c)

Figure 1.7: Bifurcation diagram of the Lorenz system for 0≤ r≤ 30: (a) variable x1;
(b) variable x2 and (c) variable x3.

1.3.2 Sensitivity to initial conditions

When a system is in the chaotic area, a slightest change in the initial value causes to
completely different behavior in the system. For Lorenz system, the effect of small
changes in initial condition confirms chaotic behavior of the system. For initial condi-
tions x1(0) = x2(0) = x3(0) = 1 and x1(0) = 1.0001,x2(0) = x3(0) = 1, two different
behavior is shown in Figure 1.8.

Figure 1.8: Time series of x1(t) for the Lorenz system, shows sensitivity to initial
condition x1(0) = x2(0) = x3(0) = 1 and x1(0) = 1.0001,x2(0) = x3(0) = 1
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1.3.3 Lyapunov exponent

For Lorenz system, for initial conditions (x1(0),x2(0),x3(0)) = (1,1,1) and parameters
σ = 10, b = 8

3 , r = 28, Lyapunov exponents are

L1 = 0.9057,L2 = 0.0005,L3 =−14.5729,

Figure 1.9 shows Lyapunov exponent for the Lorenz system.

Figure 1.9: The Lyapunov exponent of Lorenz system for 0≤ r ≤ 30.

1.4 Fractional order systems

Theory of Fractional order systems have been an attractive and important field over last
decade. Recently a lot of forward movement have been done in both control and the
calculus of fractional order systems. A called fractional order system means the order
of system is no longer an integer. The operator Dα is used to show fractional order
integration and derivations, where α can be positive, negative or zero.

The idea of derivative extension d p f (x)
dxp to non-integral orders p, was proposed by Leibniz

for p = 1/2 on 1695 and Euler introduced this derivative type to exponential function xα

on 1738. In 1832, Liouville introduced his first description for functions with exponential
series which are indicated as

f (x) =
∞

∑
n=0

cneanx, (1.13)

in form

Dα f (x) =
∞

∑
n=0

cnaα
n eanx, (1.14)

and
D−α f (x) =

1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, (1.15)

which, then was known as Liouville formula to fractional integral (Aghababa, 2013).

In 1892, the idea of fractional derivative of analytical function was posed as (Herrmann,
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2014)

Dα f (z) =
∞

∑
k=0

Γ(k+1)
Γ(−α +1+ k)

ck(z− z0)
k−α , ck =

f k(z0)

k!
. (1.16)

Taylor series in the paper of Hadamard who described it as

Iα f (x) =
zα

Γ(α)

∫ 1

0
(1− τ)α−1 f (zτ)dτ. (1.17)

Later, this subject changed into idea to describe fractional integral as
∫ 1

0 ν(t) f (zτ)dτ. Of
course, Hadamard could not expand it and then on 1968, this work was performed by
Dzherbashyan (Gorenflo et al., 2014).

By development of mathematic analysis and functions theory, as mathematician, Wiley,
described fractional integral for periodic functions and defined it by (Herrmann, 2014)

Iα
±ϕ =

1
2π

∫ 2π

0
ψ

α
±(x− t)ϕ(t)d(t) (1.18)

and then demonstrated as

Iα
+ϕ =

1
Γ(α)

∫ x

−∞

ϕ(t)dt
(x− t)1−α

d(t), (1.19)

Iα
−ϕ =

1
Γ(α)

∫
∞

x

ϕ(t)dt
(x− t)1−α

d(t). (1.20)

where 0 < α < 1, which nowadays is known as fractional right & left integrals. He also
proved that, function f (x) has continuous derivative by order α , if Lipschitz is in order
α < λ . The similar theory for non-periodic functions was posed by Montel (1918) and
the theorem of mean value for fractional integral was described by Riese on 1922 as well
as other theorems were proved by Hardy and Littlewood (1931) for fractional calculus.
On 1938, the improper fractional integral was described by Love for functions which dont
defined in infinite as

Iα
+ϕ =

1
Γ(α)

lim
n→∞

∫ n

0
ϕ(x− t)α−1d(t). (1.21)

And on same year, the partial method to fractional integral was posed by Love & Young
as ∫ b

a
(Dα

a f )(x)g(x)dx =
∫ b

a
f (x)(Dα

b g)(x)dx. (1.22)

The novel definition was posed by Love for fractional derivative as

cDα
t f (t) =

1
Γ(α−n)

∫ t

a

f (n)(τ)dτ

(t− τ)α−n+1 , (1.23)

for n−1 < α < n which nowadays is known as Caputo derivative (Baleanu et al., 2016).
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1.5 Problem statement and objectives

Chaos control and synchronization have been studied extensively in recent years, but,
there are many more problems in this area needed to be solved that motivated me for
carrying research on this thesis and applying synchronization in secure communication.

Almost most recent studies have generally focused on classic chaotic dynamical systems
such as the Lorenz system, Rossler and the Chua’s circuit system, among that, very low
has been achieved for exponential stability in synchronization. In addition, the study
of chaos synchronization of fractional order systems are more complicated and have a
lot of application in most interdisciplinary sciences such as electromagnetic with great
application in secure communication.

Based on the literature, in synchronization, all mentioned previous works they just used
Lyapunov stability theorem for synchronization as well as on classical non-linear systems.
Also, in projective synchronization almost all of the mentioned methods are applied on
partially linear systems. In this study we applied synchronization to control chaotic sys-
tems using exponential stability which used to synchronize on a chaotic system without
any linear term. Also we applied phase synchronization in adaptive chaos while scaling
factor is a arbitrary function.

To our best knowledge, most of the previous works in the literatures, which have been
proposed to stabilize or synchronize fractional non-autonomous chaotic systems, either
have not considered the effects of unknown nonlinear terms, model uncertainties, and ex-
ternal disturbances or are sometimes specific and multi-input. Motivated by the above
discussions, this thesis proposes a novel fractional-order nonlinear mode controller for
robust stabilization-synchronization of second-order fractional non-autonomous chaotic
systems in the presence of both model uncertainties and external disturbances. After in-
troducing a novel terminal fractional-order nonlinear controller, its stability is proven.
Then, on the basis of fractional-order Lyapunov stability theory, a robust nonlinear con-
trol law is derived to guarantee the occurrence of the stability in a given finite time. The
proposed control law is single and practical in real world applications. Also adaptive con-
trol schemes for synchronization fractional is applied to encryption both text and image
signals.

In application of chaos, all studied method, for application in secure communication, just
applied modulation and masking method on active systems in classical systems to sent
and received text signal. We applied modulation and masking schemes for encryption
text and image signal using adaptive control methods based on the exponential stability
for fast recovery in classical and fractional order systems.

The main objectives of this thesis are to propose some methods of chaos synchronization
between two different chaotic classical and fractional order systems and its application
in secure communication based and the exponential and Lyapunov stability theorems.
The analytical conditions for synchronization of these chaotic systems are derived and
numerical simulations are used to verify the proposed methods for the following problems
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1. To propose exponential stability for fast synchronization classical chaotic dynami-
cal systems using nonlinear control functions.

2. To apply active exponential and Lyapunov synchronization of classical chaotic sys-
tems in secure communication using nonlinear control functions.

3. To design adaptive control schemes for functional phase synchronization chaotic
systems with unknown parameter using nonlinear feedback controllers based on
the Lyapunov stability.

4. To use adaptive synchronization in encryption context text and image signals using
masking and modulation methods based on the exponential and Lyapunov stability
theorems.

5. To establish the stability of fractional order systems and applying robust adaptive
nonlinear feedback controllers in Caputo definition in presence of unknown param-
eters, disturbance and uncertainties.

6. To apply adaptive synchronization of fractional order systems in encryption text
and images signals using masking methods.

Scope of the study is synchronization in the classic and fractional order systems. The
design of the proposed method are based on the exponential, Lyapunov first and second
stability theorems. Lorenz system, Chen system, Yang system, hyper chaotic Qi and hyper
chaotic Lorenz system in the classic case and in the fractional order case Liu, Cenesio and
Rossler chaotic system have been used to validate the suggested theoretical results.

1.6 Thesis outline

There are six chapters in this thesis. The first chapter, chapter 1 is an introductory chapter
which gives general introduction on dynamical system. Then, the objectives and scopes
of study will be stated.

In chapter 2, literature review on the earlier works will be presented. The review will
be divided into several parts based on the relevant aspects to current investigation on
chaotic dynamical system. The second Lyapunov, exponential stability and synchroniza-
tion of different chaotic dynamical with certain parameters will be presented in chapter
3. Numerical simulation and application in the encryption are presented to illustrate the
application of proposed method. In chapter 4, the adaptive synchronization is expansively
to phase synchronization with uncertain parameters and the total possible states based on
the exponential and Lyapunov stability theorem with application in secure communica-
tions of context and pictorial data. The fractional chaotic dynamic system, its descriptions
and theorems are provided and reviewed then the synchronization of same and different
systems presented using new stability theorems will be given in chapter 5. the applica-
tion of fractional order systems in the encryption and secure communications are applied.
Finally, chapter 6 will summarized all the results from the previous chapters and further
work will be given in the section later.
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