

UNIVERSITI PUTRA MALAYSIA

ADAPTIVE CONTROL SCHEME FOR ANTI- SYNCHRONIZATION OF CHAOTIC DYNAMICAL SYSTEMS

MAHMOUD MAHERI

IPM 2016 16

ADAPTIVE CONTROL SCHEME FOR ANTI- SYNCHRONIZATION OF CHAOTIC DYNAMICAL SYSTEMS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2016

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia

DEDICATIONS

This thesis is dedicated to: The soul of my late grandmother Roghayyeh My mother Ashraf My uncle Hossein My dear son Arash

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ADAPTIVE CONTROL SCHEME FOR ANTI- SYNCHRONIZATION OF CHAOTIC DYNAMICAL SYSTEMS

By

MAHMOUD MAHERI

November 2016

Chairman: Norihan Md Arifin, PhD Faculty: Institute for Mathematical Research

Due to physical limitation in most real-world applications, the assumption on chaotic dynamical systems with identical drive and response systems is somehow unrealistic. Hence, synchronization of two different chaotic systems in the presence of unknown parameters is more essential and useful in real-world applications. Recently, several techniques have been proposed in the literature to synchronize chaotic dynamical systems. Therefore, this thesis presents chaos synchronization of a couple of chaotic systems. Based on the exponential and Lyapunov stability theory, the controller with the corresponding parameter update rules is designed such that the different chaotic systems can be synchronized asymptotically. The proposed function control is composed of both variable proportional and adaptive control actions for guaranteeing the convergence of the residual synchronization error to zero in the presence of disturbances. Three proposed chaos synchronization techniques are considered. The first technique considered chaos synchronization of two different chaotic systems with the same and different parametric perturbation by nonlinear control functions. Second technique studied an adaptive synchronization, phase synchronization and functional phase synchronization of two different chaotic systems with nonlinear control functions and the third technique, a robust adaptive nonlinear feedback controller technique is proposed to realize the synchronization between two different fractional order chaotic systems with fully unknown parameters, external disturbance and uncertainties. The proposed techniques are applied to achieve chaos synchronization for the chaotic dynamical systems We demonstrate that a coupled chaotic dynamical systems can be synchronized and numerical simulations show the effectiveness of the proposed control techniques. Moreover, as an application, a new technique for transmitting digital signals was proposed based on chaos masking using chaotic dynamical system. Also, simulation results verify the proposed technique's success in the communication application.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SKIM KAWALAN MUDAH SUAI UNTUK ANTI PENSINKRONIAN SISTEM DINAMIK KALUT

Oleh

MAHMOUD MAHERI

November 2016

Chairman: Norihan Md Arifin, PhD Fakulti: Institut Penyelidikan Matematik

Disebabkan oleh batasan fizikal dalam kebanyakan aplikasi dunia sebenar, andaian sistem dinamik kalut dengan sistem-sistem pemacu dan tindak balas itu walaubagaimanupun tidak realistik. Oleh itu, pensinkronian dua sistem kalut yang berbeza dengan adanya parameter tidak diketahui adalah lebih penting dan berguna dalam aplikasi dunia sebenar. Terkini, beberapa teknik telah dicadangkan dalam literatur untuk sinkroni sistem dinamik kalut. Oleh yang demikian, tesis ini mengkaji pensinkronian kalut untuk sistem kalut berpasangan. Berdasarkan teori kestabilan Lyapunov, pengawal dengan aturan terkini parameter yang sepadan direkabentuk supaya sistem kalut yang berbeza boleh disinkroni secara asimptot. Kawalan fungsi yang dicadangkan ini dibentuk untuk kedua-dua pembolehubah berkadaran dan tindakan kawalan sesuai bagi menjamin memastikan penumpuan ralat pensinkronian reja kepada sifar dengan kehadiran gangguan. Tiga cadangan teknik pensinkronian kalut dipertimbangkan. Teknik pertama mempertimbangkan pensinkronian kalut dua sistem kalut berbeza dengan gangguan parameter yang sama dan berbeza oleh fungsi kawalan tak linear. Teknik kedua mengkaji pensinkronian mudah suai, pensinkronian fasa dan pensinkronian fasa berfungsi dua sistem kalut yang berbeza dengan fungsi kawalan tak linear dan teknik ketiga, teknik kawalan suapbalik teguh tak linear mudah suai dicadangkan untuk merealisasikan pensinkronian antara dua sistem kalut peringkat pecahan berbeza dengan parameter tidak diketahui sepenuhnya, gangguan luar dan ketidaktentuan. Teknik-teknik yang dicadangkan ini diaplikasi untuk mencapai pensinkronian kalut untuk sistem dinamik kalut. Kami tunjukkan sistem dinamik kalut berpasangan boleh disinkroni dan simulasi berangka menunjukkan keberkesanan teknik kawalan yang dicadangkan. Selain itu, sebagai applikasi, satu teknik baru untuk penghantaran isyarat digital telah dicadangkan berdasarkan pada penopengan kalut dengan menggunakan sistem dinamik kalut. Juga, keputusan simulasi mengesahkan kejayaan teknik yang dicadangkan dalam aplikasi komunikasi.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah, for giving me opportunity to complete this thesis.

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Madaya Norihan Md Arifin, for her excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I have the honor to learn from Prof. Dr. Fudziah Ismail and Prof. Dr. Ibragimov Gafurjan the members of my supervisor committee whom I gratefully acknowledge.

I also appreciate the assistance of the director, academic and general staffs of the Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, who support and provide all facilities for postgraduate students.

Furthermore, I would like to thank my dear friends Professor Hossein Kheiri, Dr. Bashir Naderi, Dr. Mohammad Reza Maghami and Dr. Vahid Khodamoradi for their help and supports during this process.

Last but not least, great appreciation goes to my dear and lovely son Arash for his motivation which guided me through this long journey towards earning my PhD. I certify that a Thesis Examination Committee has met on 29 November 2016 to conduct the final examination of Mahmoud Maheri on his thesis entitled "Adaptive Control Scheme for Anti-Synchronization of Chaotic Dynamical Systems" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zanariah binti Abdul Majid, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Leong Wah June, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Adem Kilicman, PhD Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Raid Kamel Naji, PhD Professor

University of Baghdad Iraq (External Examiner)

NOR AINI AB. SHUKOR, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 June 2017

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Norihan Md Arifin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairperson)

Fudziah Ismail, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Ibragimov Gafurjan, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies

School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:_

Date:_

Name and Matric No: Mahmoud Maheri, GS32116

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of PROF, MADYA DR. NORIHAN MD. ARIFIN Chairman of Pengarah Supervisory Pusat Asasi Sains Pertanian Committee: Norihan Mal Aritin, Philaysia 43400 UPM, Serdang Signature: DR. FUDZIAH ISMAIL Name of Pensyarah Jabatan Matematik Member of Fakulti Sains Supervisory iti Putra Malaysia 11. PhD A, Serdang, Selangor Committee: Fudz VERSIT Signature: N Name of Member of PROF. MADYA DR. IBRAGIMOV GAFURJAN Supervisory Penasihat Akademik Committee: Ibragimov Gafurjan, PhD Jabatan Matematik Fakulti Sains 1 Y A S

TABLE OF CONTENTS

ABSTRACT i ABSTRAK ii ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF FABBREVIATIONS xiii CHAPTER iii 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems 4 1.1.3 Linearization nonlinear systems 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 6 1.3.2 Sensitivity to initial conditions 12 1.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization insecure communication 21 3 Synchronization Stability AD THEIR APPLICATION IN SEE CURE COMMUNICATION STABILITY AND THEIR APPLICATION IN SEE CURE COMMUNICATION STABILITY AND THEIR APPLICATION IN SEE	ABSTRACT i ABSTRAK ii ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF FIGURES vi LIST OF FIGURES vi LIST OF ABBREVIATIONS viii CHAPTER vi 1 NTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation in the Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 9 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 17 2.2 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 Machanization fractional order chaotic systems 22 3.1.1 Lyapunov function 22 3.1.1 Analysis of stability 0 3.1.1 Stability of non-autonomous systems 25 3.1.4 Exponential stability 127 3.1.3 Stability of non-autonomous systems 25 3.1.4 Exponential stability 17 3.2 Synchronization using nonlinear control functions 29 3.2.1 Active synchronization 10 3.2.1 Active synchronization 10 3.3.1 Analysis of stability 10 3.3.1 Analy			Page
ABSTRAK ii ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION iv LIST OF FIGURES x LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER ii 1.1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 1 1.2 Lyapunov exponent 1 3.1 Bifurcation 1 1.3.1 Bifurcation 1 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 1 3.4 Fractional order systems 1 5.5 Problem statement and objectives 15 1.6 Thesis outline 1 5.7 CHAPTER 1 5.7 Chartic Norther Systems 1 5.8 Problem statement and objectives 1 5.9 Application of synchronization in secure communication 2 5.3 Application of synchronization in secure communication 2 5.3 Application of synchronization in secure communication 2 5.1.1 Lyapunov function 2 5.1.1 Lyapunov function 2 5.1.2 Synchronization function 2 5.1.1 Lyapunov function 2 5.1.2 Stability of non-autonomous systems 25	ABSTRAK ii ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS x IIST OF ABBREVIATIONS x IIST OF ABBREVIATIONS 1 CHAPTER 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized systems 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.3.1 Bifurcation 1 1.3.1 Bifurcation 1 1.3.1 Bifurcation 1 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 1 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 15 1.6 Thesis outline 16 3 SYNCHRONIZATION STABLITY AND THEIR APPLICATION IN SE CURE COMMUNICATION 2 3.1 Analysis of stability 22 3.1.1 Lyapunov function 22 3.1.3 Stability of non-autonomous systems 25 3.1.4 Exponential stability 27 3.2 Synchronization using nonlinear control functions 25 3.1.4 Exponential stability 27 3.2 Synchronization using nonlinear control functions 29 3.2.1 Active synchronization 30	ABST	RACT	i
ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER iii 1.1 Basic concepts of dynamical systems iii 1.1.1 Fixed points and stability iii 1.1.2 Phase space of linearized system iii 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation in the Lorenz system 10 1.3.2 Linearization in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Linearization in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 10 SVNCHRONIZATION STABILITY AND THEIR APPLICATION IN SEF CURE COMMUNICATION STABILITY AND THEIR APPLICATION IN SEF CURE COMMUNICATION STABILITY AND THEIR APPLICATION IN SEF	ACKNOWLEDGEMENTS iii APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 1 1.3.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 19 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 22 3.1.1 A fability of non-autonomous systems 22 3.1.2 Stability of non-autonomous systems 25 3.1.4 Exponential stability 27 3.1.2 Stability of non-autonomous systems 25 3.1.4 Exponential stability 27 3.2 Synchronization using nonlinear control functions 29 3.2.1 Active synchronization using nonlinear control functions 20 3.2.1 Active synchronization 10 3.2.2 Synchronization us	ABST	RAK	ii
APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 12 3.1.1 Lyapunov function 22 3.1.1 Lyapunov function 22 3.1.1 Lyapunov function 22 3.1.3 Stability of non-autonomous systems 25	APPROVAL iv DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation in onlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation in the Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 22 3.1.1 Lyapunov function 22 3.1.3 Stability of non-autonomous systems 25 3.1.4 Exponential stability 27 3.2 Synchronization using nonlinear control functions 29 3.2.1 Active synchronization using nonlinear control functions 29 3.2.1 Active synchronization using nonlinear control functions 29 3.2.1 Active synchronization using nonlinear control functions 29	ACKN	IOWLEDGEMENTS	iii
DECLARATIONvi Vi LIST OF FIGURESvi X LIST OF ABBREVIATIONSvii X XiiiCHAPTER1INTRODUCTION1 1.1.11.1.1Fixed points and stability1 1.1.21.1.2Phase space of linearized systems4 1.1.31.1.3Linearization nonlinear systems at fixed points5 1.21.2.1Bifurcation6 1.2.21.2.2Lyapunov exponent81.3Chaotic Lorenz system9 1.3.11.3.1Bifurcation in the Lorenz system10 1.3.21.3.2Sensitivity to initial conditions12 1.3.31.3Lyapunov exponent13 1.41.4Fractional order systems13 1.51.5Problem statement and objectives15 1.61.6Thesis outline16 2 2.33Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SECURE COMMUNICATION 2.3.1.122 3.1.33.1.1Lyapunov function22 3.1.33.1.3Stability of non-autonomous systems25	DECLARATION vi LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Lipearization in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 Application of synchronization in secure communication 21 3.1.1 Lyapunov function 22 3.1.3 Stability of autonomous systems 22 3.1.1 Lyapunov function 22	APPR	OVAL	iv
LIST OF FIGURES x LIST OF ABBREVIATIONS xiiii CHAPTER 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 1 1.3.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 22 3.1 Analysis of stability of autonomous systems 22 3.1.3 Stability of non-autonomous systems 25	LIST OF FIGURES x LIST OF ABBREVIATIONS xiii CHAPTER 1 INTRODUCTION 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized systems 1 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 1 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 22 3.1.1 Lyapunov function 22 3.1.2 Stability of non-autonomous systems 25 3.1.4 Exponential stability 22 3.1.1 Lyapunov function 22 3.1.3 Stability of non-autonomous systems 25 3.1.4 Exponential stability 27 3.2 Synchronization sing nonlinear control functions 29 3.2.1 Active synchronization 30	DECI	ARATION	vi
LIST OF ABBREVIATIONS xiii LIST OF ABBREVIATIONS xiii CHAPTER 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation in the Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3	LIST OF ABBREVIATIONS xiii LIST OF ABBREVIATIONS xiii CHAPTER 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 17 2.2 Synchronization frager order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 22 3.1.1 Lyapunov function 21 3.1.2 Stability of nutonomous systems 25 3.1.4 Exponential stability 27 3.2 Synchronization systems 25 3.1.4 Exponential stability 27 3.2 Syn	L IST	OF FIGURES	v
INDUCTION 1 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation nonlinear systems 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 Synchronization integer order chaotic systems 17 2.1 Synchronization fractional order chaotic systems 19 2.3 Application of synchronizatio	INDUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaoit Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 Synchronization fractional order chaotic systems 19 2.3 Application of stability 22 3.1.4 Exponential stabi	LIST	OF ABBREVIATIONS	xiii
CHAPTER1INTRODUCTION11.1Basic concepts of dynamical systems11.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213Synchronization fractional order chaotic systems192.3Application of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of autonomous systems25	CHAPTER 1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization integer order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 2.1.2 Stability of autonom			AIII
1INTRODUCTION11.1Basic concepts of dynamical systems11.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.3Stability of autonomous systems25	1 INTRODUCTION 1 1.1 Basic concepts of dynamical systems 1 1.1.1 Fixed points and stability 1 1.1.2 Phase space of linearized system 4 1.1.3 Linearization nonlinear systems at fixed points 5 1.2 Chaos theory 6 1.2.1 Bifurcation 6 1.2.2 Lyapunov exponent 8 1.3 Chaotic Lorenz system 9 1.3.1 Bifurcation in the Lorenz system 10 1.3.2 Sensitivity to initial conditions 12 1.3.3 Lyapunov exponent 13 1.4 Fractional order systems 13 1.5 Problem statement and objectives 15 1.6 Thesis outline 16 2 LITERATURE REVIEW 17 2.1 Synchronization in tractional order chaotic systems 19 2.3 Application of synchronization in secure communication 21 3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION 2.1 Analysis of stability 22	CHAI	PTER	
1.1Basic concepts of dynamical systems11.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.1Basic concepts of dynamical systems11.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability223.1.3Stability223.1.4Exponential stability273.2Synchronization sugn ponlinear control functions293.1.4Exponential stability273.2.1Active synchronization30	1 IN	TRODUCTION	1
1.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITTERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.1.1Fixed points and stability11.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability223.1.3Stability223.1.4Exponential stability273.2.1Active synchronization21	1.1	Basic concepts of dynamical systems	1
1.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability223.1.3Stability of autonomous systems25	1.1.2Phase space of linearized system41.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability223.1.3Stability of non-autonomous systems223.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.1.1 Fixed points and stability	1
1.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.1.3Linearization nonlinear systems at fixed points51.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability223.1.3Stability of non-autonomous systems223.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.1.2 Phase space of linearized system	4
1.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.2Chaos theory61.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.1.3 Linearization nonlinear systems at fixed points	5
1.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.2.1Bifurcation61.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.3Stability of autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	1.2	2 Chaos theory	6
1.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.2.2Lyapunov exponent81.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.2.1 Bifurcation	6
1.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems22	1.3Chaotic Lorenz system91.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.2.2 Lyapunov exponent	8
1.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.3.1Bifurcation in the Lorenz system101.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.3Stability of autonomous systems223.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	1.3	Chaotic Lorenz system	9
1.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.3.2Sensitivity to initial conditions121.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.3.1 Bifurcation in the Lorenz system	10
1.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.3.3Lyapunov exponent131.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.3.2 Sensitivity to initial conditions	12
1.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.4Fractional order systems131.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		1.3.3 Lyapunov exponent	13
1.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.5Problem statement and objectives151.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	1.4	Fractional order systems	13
1.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	1.6Thesis outline162LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	1.5	Problem statement and objectives	15
2LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	2LITERATURE REVIEW172.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	1.6	5 Thesis outline	16
2.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	2.1Synchronization integer order chaotic systems172.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	2 LI	TERATURE REVIEW	17
2.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	2.2Synchronization fractional order chaotic systems192.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	2.1	Synchronization integer order chaotic systems	17
2.3 Application of synchronization in secure communication213 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1 Analysis of stability223.1.1 Lyapunov function223.1.2 Stability of autonomous systems223.1.3 Stability of non-autonomous systems25	2.3Application of synchronization in secure communication213SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SECURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	2.2	2 Synchronization fractional order chaotic systems	19
3SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	3 SYNCHRONIZATION STABILITY AND THEIR APPLICATION IN SE- CURE COMMUNICATION223.1 Analysis of stability223.1.1 Lyapunov function223.1.2 Stability of autonomous systems223.1.3 Stability of non-autonomous systems253.1.4 Exponential stability273.2 Synchronization using nonlinear control functions293.2.1 Active synchronization30	2.3	Application of synchronization in secure communication	21
CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	CURE COMMUNICATION223.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	2 SV	NCHDONIZATION STADILITY AND THEID ADDLICATION IN SU	C.
3.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	3.1Analysis of stability223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	5 51 CI	IRE COMMUNICATION	2- 22
3.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	3.1Lyapunov function223.1.1Lyapunov function223.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		Analysis of stability	22
3.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems25	3.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30	5.1	3.1.1 Lyanunov function	22
3.1.3Stability of non-autonomous systems2225	3.1.2Stability of autonomous systems223.1.3Stability of non-autonomous systems253.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		312 Stability of autonomous systems	22
5.1.5 Subirty of non-autonomous systems 25	3.1.4Exponential stability273.2Synchronization using nonlinear control functions293.2.1Active synchronization30		313 Stability of non-autonomous systems	25
3.1.4 Exponential stability 27	3.2Synchronization using nonlinear control functions293.2.1Active synchronization30		3.1.4 Exponential stability	23
3.2 Synchronization using nonlinear control functions 29	3.2.1 Active synchronization 30	32	2 Synchronization using nonlinear control functions	29
3.2.1 Active synchronization 30		5.2	3.2.1 Active synchronization	30
3.2.2 Active anti-synchronization hyper-chaotic Oi-Lorenz systems 30	3.2.2 Active anti-synchronization hyper-chaotic Oi-Lorenz systems 30		3.2.2 Active anti-synchronization hyper-chaotic Oi-Lorenz systems	30
	3.2.3 Synchronization based on the exponential stability 35		3.2.3 Synchronization based on the exponential stability	35

	3.3	Application of chaos in secure communication	40
		3.3.1 Text encryption by chaos masking	40
		3.3.2 Image encryption using chaos	43
4	ADA	PTIVE SYNCHRONIZATION INTEGER ORDER CHAOTIC DY	-
	NAN	IICAL SYSTEMS	47
	4.1	Adaptive synchronization	47
		4.1.1 Adaptive anti-synchronization between two different hyper	
		chaotic systems	48
	4.2	Phase synchronization in chaotic systems	53
	4.3	Phase synchronization in cylindrical coordinates	55
	4.4	Functional phase synchronization in chaotic systems	58
	4.5	Adaptive functional phases synchronization on chaotic systems	01 70
	4.0	4.6.1 Text message energyption via adaptive chaos modulation	70
		4.6.1 Text and image message encryption via adaptive chaos modulation	74
		4.0.2 Text and image message cheryption via adaptive chaos masking	/+
5	SYN	CHRONIZATION OF CHAOTIC SYSTEMS WITH FRACTIONAL	- 00
	5 1	Pasic definitions	80
	5.1	5.1.1 Basic definitions of fractional operator	80
		5.1.2 Stability of fractional order systems	83
	5.2	Synchronization fractional order systems	90
		5.2.1 Problem statement and stability theorems	90
		5.2.2 Design of robust nonlinear adaptive feedback controller	92
		5.2.3 Adaptive synchronization of Genesio and Rossler fractional or-	
		der systems	99
	5.3	New method for stability in synchronization fractional order systems	104
	5.4	Image encryption by adaptive masking fractional order chaotic systems	113
6	CON	CLUSION AND FUTURE WORKS	117
	6.1	Conclusion	117
	6.2	Future work	117
R	EFER	ENCES	119
A	PPEN	DICES	124
B	[ODA]	TA OF STUDENT	144
L	IST O	F PUBLICATIONS	145

LIST OF FIGURES

Figure

 \bigcirc

1.1	Neighborhoods N and N' of definition 1.4 in origin at R^2 .	2
1.2	Neighborhoods N and N' in definition (1.5) in origin at R^2 .	3
1.3	Neighborhoods N and N' at definition 1.7 in origin at R^2 .	3
1.4	Divergence or convergence of two close path	8
1.5	A layer of material fluid is heated from below.	9
1.6	Lorenz chaotic dynamical system	9
1.7	Bifurcation diagram of the Lorenz system for $0 \le r \le 30$: (a) variable x_1 ; (b) variable x_2 and (c) variable x_3 .	12
1.8	Time series of $x_1(t)$ for the Lorenz system, shows sensitivity to initial condition $x_1(0) = x_2(0) = x_3(0) = 1$ and $x_1(0) = 1.0001, x_2(0) = x_3(0) = 1$	12
1.9	The Lyapunov exponent of Lorenz system for $0 \le r \le 30$.	13
3.1	Qi hyper-chaotic system	31
3.2	Lorenz hyper chaotic system	31
3.2 3.3	Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x_1 and y_1 (b) sows the signal signals x_2 and y_2 (c) shows the signal signals x_3 and y_3 (d) shows the signal signals x_4 and y_4 .	31 34
3.23.33.4	Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x_1 and y_1 (b) sows the signal signals x_2 and y_2 (c) shows the signal signals x_3 and y_3 (d) shows the signal signals x_4 and y_4 . Dynamics of synchronization errors (e_1, e_2, e_3, e_4) states for hyper chaotic Qi-Lorenz system with time, t .	31 34 35
3.23.33.43.5	Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x_1 and y_1 (b) sows the signal signals x_2 and y_2 (c) shows the signal signals x_3 and y_3 (d) shows the signal signals x_4 and y_4 . Dynamics of synchronization errors (e_1, e_2, e_3, e_4) states for hyper chaotic Qi-Lorenz system with time, t . Xu and Wang system without linear term	31343536
 3.2 3.3 3.4 3.5 3.6 	Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x_1 and y_1 (b) sows the signal signals x_2 and y_2 (c) shows the signal signals x_3 and y_3 (d) shows the signal signals x_4 and y_4 . Dynamics of synchronization errors (e_1, e_2, e_3, e_4) states for hyper chaotic Qi-Lorenz system with time, t . Xu and Wang system without linear term Lyapunov exponent of without linear term chaotic system	 31 34 35 36 36
 3.2 3.3 3.4 3.5 3.6 3.7 	 Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x₁ and y₁ (b) sows the signal signals x₂ and y₂ (c) shows the signal signals x₃ and y₃ (d) shows the signal signals x₄ and y₄. Dynamics of synchronization errors (e₁, e₂, e₃, e₄) states for hyper chaotic Qi-Lorenz system with time, t. Xu and Wang system without linear term Lyapunov exponent of without linear term chaotic system Solution of the two active identical Wang systems with nonlinear control. (a) signal x₁ and y₁ (b) signal x₂ and y₂ (c) signal x₃ and y₃. 	 31 34 35 36 36 39
 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	 Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x₁ and y₁ (b) sows the signal signals x₂ and y₂ (c) shows the signal signals x₃ and y₃ (d) shows the signal signals x₄ and y₄. Dynamics of synchronization errors (e₁, e₂, e₃, e₄) states for hyper chaotic Qi-Lorenz system with time, t. Xu and Wang system without linear term Lyapunov exponent of without linear term chaotic system Solution of the two active identical Wang systems with nonlinear control. (a) signal x₁ and y₁ (b) signal x₂ and y₂ (c) signal x₃ and y₃. Evaluation difference of variables two drive and response systems 	 31 34 35 36 36 39 40
 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	 Lorenz hyper chaotic system The diagram of the Qi system controlled to be Lorenz system by using nonlinear control functions (a) shows the time series of signals x₁ and y₁ (b) sows the signal signals x₂ and y₂ (c) shows the signal signals x₃ and y₃ (d) shows the signal signals x₄ and y₄. Dynamics of synchronization errors (e₁, e₂, e₃, e₄) states for hyper chaotic Qi-Lorenz system with time, t. Xu and Wang system without linear term Lyapunov exponent of without linear term chaotic system Solution of the two active identical Wang systems with nonlinear control. (a) signal x₁ and y₁ (b) signal x₂ and y₂ (c) signal x₃ and y₃. Evaluation difference of variables two drive and response systems Design for two channels encryption system 	 31 34 35 36 36 39 40 41

3.11	Encrypted message	43
3.12	Received signal	43
3.13	Sent and received signals error	43
3.14	Image encryption using synchronization	46
4.2	The diagram of the Lorenz system controlled to be Qi system using adap- tive anti-synchronization: (a) shows the time series of signals x_1 and y_1 , (b) shows the time series of signals x_2 and y_2 , (c) shows the time series of signals x_3 and y_3 and (d) shows the time series of signals x_4 and y_4 .	52
4.3	Dynamics of anti-synchronization errors a) e_1 , b) e_2 , c) e_3 , 4) e_4 states for Qi system and Lorenz system over time.	52
4.4	Changes in the parameters $\hat{a_1}$, $\hat{b_1}$, $\hat{c_1}$, $\hat{d_1}$, $\hat{f_1}$ and $\hat{g_1}$ over the time.	53
4.5	Changes in the parameters \hat{a}_2 , \hat{b}_2 , \hat{c}_2 and \hat{d}_2 over the time.	53
4.6	Time series of system (4.17) for parameters $\sigma = 10$, $b = \frac{8}{3}$, $r = 60$ and initial conditions $(x_1(0), y_1(0), z(0), x_2(0), y_2(0)) = (0, 1, 1, 0.5, 1.3)$.	55
4.7	Scaling factor for system (4.17) for parameters $\sigma = 10, b = \frac{8}{3}, r = 60$ and initial conditions $(x_1(0), y_1(0), z(0), x_2(0), y_2(0)) = (0, 1, 1, 0.5, 1.3).$	55
4.8	Scaling factor for system (4.17) for parameters $\sigma = 10$, $b = \frac{8}{3}$, $r = 60$ and initial conditions $(x_1(0), y_1(0), z(0), x_2(0), y_2(0)) = (0, 1, 1, 0.5, 1.3)$ for red curve and initial conditions $(x_1(0), y_1(0), z(0), x_2(0), y_2(0)) = (0, 1, 1, -2, 3)$ for dash curve.	56
4.9	Phase space of coupled drive and response system (4.33).	61
4.10	Time series of the FPS error.	61
4.11	time series of the component (a) x_1 , (b) y_1 , (c) x_2 and (d) y_2 of the system (4.33).	62
4.12	Time series error FPS between systems (4.42) and (4.43): (a) e_1 ; (b) e_2 ; (c) e_3	65
4.13	Changes in the parameters of systems (4.42) and (4.43) over the time.	66
4.14	Changes of scaling function for systems (4.42) and (4.43) over the time.	67
4.15	Time series error FPS between systems (4.42) and (4.43): (a) e_1 ; (b) e_2 ; (c) e_3	69
4.16	Changes in the parameters of systems (4.54) and (4.55) over the time.	70
4.17	Error signal between systems (4.65) and (4.67) over the time.	73

4.18	Error signal between the original message and the recovered.	73
4.19	The value of the unknown parameters <i>b</i> .	74
4.20	Liu attractor	74
4.21	Lyapunov exponent of Liu system	75
4.22	Time series of the drive system (4.74) and response system (4.75) for component x_1 and x_2 ; component y_1 and y_2 and component z_1 and z_2 .	77
4.23	Time series of the error system between the drive system (4.74) and response system (4.75) for (e_1,t) ; component (e_2,t) and component (e_3,t) .	77
4.24	Changes in the parameters \hat{a} , \hat{b} , \hat{c} and \hat{d} over the time.	78
4.25	Text message encryption and decryption using adaptive Liu attractor	78
4.26	Image encryption using adaptive Liu attractor	79
5.1	Fractional order Lorenz system	85
5.2	Fractional order Liu system	86
5.3	Fractional order Rossler system	88
5.4	Genisio Fractional order system	89
5.5	Time evaluation fractional Genisio- Rossler system	102
5.6	Error evaluation fractional Genisio- Rossler system	103
5.7	Parameters evaluation fractional Rossler system	103
5.8	Parameters evaluation fractional Genisio system	103
5.9	Uncertainties evaluation fractional Genisio system	104
5.10	External disturbance evaluation fractional Genisio system	104
5.11	Time series of the drive system (5.151) and response system (5.152) for component x_1 and x_2 ; component y_1 and y_2 and component z_1 and z_2 .	114
5.12	Time series of the error system between the master system (5.151) and response system (5.152) for (e_1,t) ; component (e_2,t) and component (e_3,t)	.115
5.13	Changes in the parameters \hat{a} , \hat{b} , \hat{c} and \hat{d} over the time.	115
5.14	Image encryption using adaptive fractional Liu attractor	116

A.1 Real and distinct leads to (a) unstable node $(\lambda_1 > \lambda_2 > 0)$; (b) stable node $(\lambda_2 < \lambda_1 < 0)$ and (c) saddle point $(\lambda_2 < 0 < \lambda_1)$ 125 A.2 When matrix A is diagonal, same eigenvalues $(\lambda_1 = \lambda_2 = \lambda_0)$ leads to star node: (a) stable; (b) unstable 126 A.3 When matrix A is non diagonal, same eigenvalues $(\lambda_1 = \lambda_2 = \lambda_0)$ leads to spiral focus: (a) stable $(\lambda_0 < 0)$; (b) unstable $(\lambda_0 > 0)$ 126 A.4 Complex eigenvalues leads to (a) spiral focus $\alpha > 0$ (unstable); (b) center 127 $\alpha = 0$ (stable) and (c) spiral focus $\alpha > 0$ (stable). Time series of the Lorenz system 129 A.5 A.6 Time series of error system, figures a, b and c are respectively for compo-133 nent e_1, e_2 and e_3

LIST OF ABBREVIATIONS

FOS	Fractional Order System
ODEs	Ordinary Differential Equations
DS	Dynamical System
ABM	Adams-Bashforth-Moulton
RK4	Fourth-order Runge-Kutta Method
OPF	Occasional Proportional Feedback
TDFB	Time Delay Feedback
OGY	Ott- Grobgi- Yorke
OPF	Occasional Proportional Feedback
RKF	Runge-Kutta-Fehlberg
TV	Time Variant
LTI	Linear Time Invariant
FPS	Functional Phase Synchronization
RSA	Rivest- Shamir- Adlemen
DES	Data Encryption Standard
GPS	Generalized Projective Synchronization
CS	Complete Synchronization
LMI	Linear Matrix Inequality

()

CHAPTER 1

INTRODUCTION

Dynamical system is certain rule that explains the position of each point in the phase space over the time which is used in the modeling of both natural and technological sciences. If a model of a practical problem has been explained by a dynamical system, it is possible to predict future status of it by knowing the current position of the system in a particular moment.

Chaotic systems are special cases of nonlinear dynamical systems that are highly sensitive to their initial conditions. In the recent years, chaos synchronization is widely used as an important topic in the discussion of nonlinear dynamical systems. Control and synchronization of chaotic dynamical system are playing a significant role in the study of applied sciences such as communications, cryptography, biology, economics and so on.

This chapter first gives the basic concepts of continuous dynamical systems such as fixed point, eigenvalues, linear stability, phase space in linear systems, chaos, bifurcation and Lyapunov exponent. Then, after a brief description of chaos in the classical form by an example, objectives and outline of this thesis is discussed.

1.1 Basic concepts of dynamical systems

Generally a dynamical system is described by:

or

$$= f(x), \tag{1.1}$$

$$\dot{\mathbf{x}} = f(\mathbf{x}, t), \tag{1.2}$$

where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ is state variables vector. Systems (1.1) and (1.2) are called autonomous and non-autonomous respectively (Guckenheimer and Holmes, 2013).

A suitable method for describing solution of the differential equation is to find an explicit formula for the answer. However, generally it is not possible to find such solutions. But there are other methods to describe the solution such as study of the systems behavior near fixed points.

1.1.1 Fixed points and stability

Assume the following nonlinear differential equation:

$$\dot{x} = \frac{dx}{dt} = f(x). \tag{1.3}$$

Definition 1.1 Suppose $D \subseteq \mathbb{R}^{n+1}$, it is said that $f \in C(D)$ if f is a continuous function and if f have continuous derivatives in order k > 0, it is called $f \in C^k(D)$ (Guckenheimer and Holmes, 2013).

Theorem 1.1 [Existence and uniqueness condition:] Suppose D is an open subset in \mathbb{R}^{n+1} include x_0 . If $f \in C(D)$ then initial value problem

 $\dot{x} = f(t, x), \quad ; x(0) = x_0,$

has solution and if $\frac{\partial f}{\partial x} \in C(D)$, then the solution is unique on I (Perko, 2013).

Remark 1.1 In theorem 1.1, I is the biggest interval that the initial value problem has solution in it. Interval I is called maximal interval.

Definition 1.2 In system (1.3), a point x_0 is called fixed point (critical point) if

$$\dot{x} = f(x_0) = 0,$$

which plays an important role in the survey of system's behavior. If a trajectory starts from these points, remains at there forever (Perko, 2013).

Definition 1.3 A fixed point x_0 in system (1.3) is called singular if there exist a neighborhood of point x_0 so that x_0 is only fixed point in that neighborhood (Perko, 2013).

Definition 1.4 A fixed point x_0 of system (1.3) is called stable if for any neighborhoods N, there exist smaller neighborhood $N' \subseteq N$ of x_0 so that, when each trajectory of system entered to N', remain in N for all time t, Figure 1.1 (Perko, 2013).

Figure 1.1: Neighborhoods N and N' of definition 1.4 in origin at R^2 .

Definition 1.5 A fixed point, x_0 of system (1.3), is called asymptotically stable if (Guck-enheimer and Holmes, 2013):

(i) It is stable.

(ii) There exists a neighborhood N' of x_0 where for each trajectory entered to N', tends to x_0 by increase of t, see Figure (1.2).

Figure 1.2: Neighborhoods N and N' in definition (1.5) in origin at R^2 .

Definition 1.6 A fixed point x_0 of system (1.3) is called center stable if is stable but does not satisfy definition 1.5 (Guckenheimer and Holmes, 2013).

Definition 1.7 A fixed point x_0 of system (1.3) is called unstable if it not is stable, see Figure (1.3) (Guckenheimer and Holmes, 2013).

Figure 1.3: Neighborhoods *N* and *N'* at definition 1.7 in origin at R^2 .

Remark 1.2 *Fixed points of system (1.3) based on the behaviors near these points are classified in three types, attractive, repulsive and transit points.*

Theorem 1.2 If x_0 be fixed point of system (1.3) then (Teschl, 2012)

- (i) It is called attractive point if $\frac{df}{dx}(x_0) < 0$.
- (ii) It is called repulsive point if $\frac{df}{dx}(x_0) > 0$.
- (iii) If $\frac{df}{dx}(x_0) = 0$ it is necessary to use higher order derivatives to determine the nature of the point.

1.1.2 Phase space of linearized system

Most of the nonlinear systems locally, are equivalent to their linear systems, so by knowing the characteristics of linear system it is possible to identify properties of a wide range of nonlinear systems (Teschl, 2012).

Qualitative behavior of linear systems leads to the classification finite numbers of phase space for the corresponding non-linear systems. Extension of these techniques is useful in the study of qualitative behavior of nonlinear systems. Consider linear system,

$$\dot{x} = f(x) = Ax,\tag{1.4}$$

where A is a nonsingular matrix. This system, by changing variable x = Py, it's canonical system

$$\dot{y} = Jy,$$

where A is coefficient matrix and J is the Jordan canonical form of matrix A such that $J = P^{-1}AP$. In fact, the columns of P form a basis in \mathbb{R}^n and y is the coordinates of x respect to this new base. Since the matrices A and J are similar, the solutions of the system $\dot{x} = Ax$ and $\dot{y} = Jy$ are related together by relations

$$x = Py, \quad P^{-1}AP = J. \tag{1.5}$$

Thus, if one of these systems is solved, the solutions of the other class is achieved (Teschl, 2012).

Definition 1.8 Each answer of the system (1.4), namely $\phi(t) = (x(t), y(t))$, displays by a curve in plane. These curves is called phase space, orbit or trajectory (Guckenheimer and Holmes, 2013).

Definition 1.9 The phase portrait is a two dimension figure that shows system qualitative behavior respect to x_1 and x_2 by changing variable t (Guckenheimer and Holmes, 2013).

Theorem 1.3 Jordan matrix that appear in the transformation of system (1.4) to its canonical form has one of these four cases,

$$J_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \quad \lambda_1 > \lambda_2; \qquad J_2 = \begin{bmatrix} \lambda_0 & 0 \\ 0 & \lambda_0 \end{bmatrix},$$

 $J_3 = \begin{bmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{bmatrix}; \qquad \qquad J_4 = \begin{bmatrix} lpha & -eta \\ eta & lpha \end{bmatrix}, \quad eta > 0$

Consider system (1.4) where λ_1 and λ_2 are roots of the characteristic polynomial of matrix *A*. Assume $\dot{y} = Jy$ is the corresponding canonical system for (1.4). The nature of fixed point (0,0) of the simple canonical form is depended to the nature of eigenvalues λ_1 and λ_2 . For classification of eigenvalues see appendix A.

Proposition 1.1 *The fixed point* (0,0) *of system* $\dot{x} = Ax$:

- is asymptotically stable if the real part of the eigenvalues in the characteristics polynomial A is negative.
- is center stable if the eigenvalues are pure imaginary.
- is unstable if at least one the eigenvalues are positive (Brockett, 2015).

Definition 1.10 Assume that the origin is the fixed point of system (1.4). In this case, the stable and unstable manifold of the origin respectively are shown by $E_s(0)$ and $E_u(0)$ which are determined by eigenvectors of matrix A (Brockett, 2015).

1.1.3 Linearization nonlinear systems at fixed points

Phase space of a linear system is determined by the nature of the fixed points. In most cases, it is possible to approximate nonlinear systems with their corresponding linear system near the fixed points. Nonlinear systems, can have more than a fixed point and it is possible to obtain local phase space of all of them. However, local phase spaces, always can not display the global phase spaces nature. In other words, unlike linear systems, phase spaces of non linear systems can not specify by the nature of their fixed points. In this part, the linearization process is explained on two-dimensional systems that can extend to higher orders systems easily (Sastry, 2013).

Assume (ξ, η) are the fixed points of the nonlinear system

$$\begin{cases} \dot{x_1} = f_1(x_1, x_2), \\ \dot{x_2} = f_2(x_1, x_2) \end{cases}$$
(1.6)

and suppose the local coordinate $y_1 = x_1 - \xi$ and $y_2 = x_2 - \eta$. As a result, we have

$$\dot{y}_{i} = f_{i}(y_{1} + \xi, y_{2} + \eta)$$

$$= f_{i}(\xi, \eta) + y_{1} \frac{\partial f_{i}}{\partial x_{1}}(\xi, \eta) + y_{2} \frac{\partial f_{i}}{\partial x_{2}}(\xi, \eta +) + R_{i}(y_{1}, y_{2}), \quad i = 1, 2,$$
(1.7)

where the function R_i satisfies the relation

$$\lim_{(y_1, y_2) \to (\xi, \eta)} \frac{R_i(y_1, y_2)}{\sqrt{y_1^2 + y_2^2}} = 0.$$

Since (ξ, η) is the fixed point of system (1.6), so $f_i(\xi, \eta) = 0$. By ignoring nonlinear expressions, the resulting linearization of system (1.6) at point (ξ, η) is given by $\dot{y} = Jy$ where

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(x_1, x_2) = (\xi, \eta)}$$

is the Jacobian matrix of system (1.6).

Theorem 1.4 (Hartman linearization theorem) Assume that (ξ, η) is a hyperbolic fixed point of nonlinear system $\dot{x} = f(x)$. In this case, in a neighborhood of this point, the phase space of nonlinear system and the linearized system are qualitative equivalence (Hartman, 1964).

Remark 1.3 Stable and unstable manifolds of a non linear system is given respectively by W_s and W_u . Hartman theorem guarantees that W_s and W_u are tangent respectively on E_s and E_u at fixed point.

1.2 Chaos theory

Chaos chaos theory, refers to an apparent lack of arrangement in a system that nevertheless obeys particular law of rules. This concept of chaos is synonymous with dynamical instability, a condition discovered by the physicist Henri Poincare (Miller and Ross, 1993) in the early 20th century that refers to an inherent lack of predictability in some physical systems.

The main components of chaos theory is the idea that very simple or small changes and events can cause very complex behaviors or events. This latter idea in known as sensitive dependence on initial conditions, a condition discovered by Edward Lorenz (who is generally credited as the first experimenter in the area of chaos) in the early 1960s (Lorenz, 1993). Chaos theory successfully can describe many phenomena in various disciplines branches such as engineering, economics, science, biology, meteorology, astrophysics, management and so on.

This part, first explains the detection methods of a chaotic system including bifurcation, sensitivity to initial conditions and Lyapunov exponent. Then, these concepts are applied to the Lorenz system.

1.2.1 Bifurcation

Most of mathematical models in addition to variables have parameters. Due to various applications of a model, parameters can have different values. For example, suppose the exponential growth model represented by $\dot{x} = ax$, where *a* is the parameter for growth. Value of *a* for rabbits is much higher than that for humans.

Study on changes in the behavior of a dynamic system by changing its parameters, is one of the topics studies in the dynamical systems. If the behavior of the system is changed suddenly by changing the parameters, it is called a bifurcation occurs in the system.

The point where the bifurcation occurs, is called the bifurcation point. At one bifurcation point the number of fixed points or its stability can change. In most applied problems, there do not exist exact values of the parameters and there are only an approximation of them. For having useful modeling for such problems, it is necessary to evaluate the effect of small changes in the value of parameters on the behavior of the system. In a chaotic system, by changing the parameters of bifurcation, different behaviors occur in the system (Morin et al., 2003).

Definition 1.11 A vector field $f, f \in C^1(D)$, is called structurally stable if a small change in the system $\dot{x} = f(x)$, does not change the qualitative behavior of it. If a small change in the system change the qualitative behavior of the system, it is called structurally unstable (Kuznetsov, 2013).

Theorem 1.5 (Peixoto theorem) Assume that the vector field f is continuous differentiable on the compressed set $D \subseteq \mathbb{R}^2$. In this case, f on D is structurally stable if and if (Peixoto, 1962)

- The number of fixed point and limit cycles are finite, and all fixed points are hyperbolic;
- There do not exist any orbit to connect two saddle points to each other.

Definition 1.12 Assume that a system as $\dot{x} = f(x, \mu)$, where $f \in C^1(D)$, $x \in D \subseteq R^2$ and $\mu \in R$. The value μ_0 , where $\dot{x} = f(x, \mu_0)$ is structurally unstable, is called bifurcation value (Kuznetsov, 2013).

These concepts are explained on the Lorenz system in the next section.

1.2.1.1 Sensitivity to initial conditions

When a chaotic system is in the chaos area, the smallest change in the initial value case system show quite different behavior after a long time. Consider two different answers in a certain system that are in the chaotic region and the difference is only in the initial values. These two solutions, over time diverge from each other, while both are remain in the bounded area of the phase space. In the chaotic systems two orbits are separated exponentially from each other with close initial conditions (Willems and Polderman, 2013). This behavior also is shown in the Lorenz system in the next section.

1.2.2 Lyapunov exponent

Lyapunov exponents have played a key role in the studying of the behaviors in chaotic systems. These exponents measure the mean rate of divergence and convergence of orbits which started together from a very closed initial points. Hence, the Lyapunov exponents can apply to analysis the stability of a system and for the assessment of the sensitivity to initial conditions to find chaotic behavior or existing strength attractors.

Assume the points x_0 and $x_0 + u_0$ that are on two closed paths of phase space of a continuous system where u_0 is a small perturb on x_0 as shown in Figure 1.4. After time t,

Figure 1.4: Divergence or convergence of two close path

projection of these points will change to $\phi_t(x_0)$ and $\phi_t(x_0 + u_0)$ under the effect of flow. Difference u_t is

$$u_t = \phi_t(x_0 + u_0) - \phi_t(x_0) = D_{x_0}\phi_t(x_0).u_0,$$

where the right hand expression comes from the linearization of ϕ_t around x_0 . Assume after the time *t*, distance of two paths is

 $|| u_t || = || u_0 || e^{Lt}.$

In this case, the exponent rate of divergence is defined as

$$L = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\parallel u_t \parallel}{\parallel u_0 \parallel},$$

where $\| \cdot \|$ is the length of vector. Determination of *L* (Lyapunov exponent) is possible when the right hand of equation (1.8) is exist. Selecting base *e* is an appropriate choice but arbitrary.

The divergence rate of orbits that represents the chaotic behavior, is only measurable locally. When a system is bounded, over time t, u_t can not tend to infinity. So, to have an appropriate criteria for measure of the divergence of these paths, it is necessary to use average of numerous points for the calculation of it. Using the results of these exponents

can help to discern between the fixed points, quasi periodic or chaotic motions. If axis coordinates and theirs correspond Lyapunov exponent classify in descending order as $\varepsilon_1 \ge \cdots \ge \varepsilon_n$ and $\lambda_1, \ge, \cdots, \lambda_n$, each λ_i , $i = 1, 2, \dots, n$, shows average exponential rate of divergence for axis ε_i . So, the number of Lyapunov exponents have to be equal with the phase space dimension (Teschl, 2012).

1.3 Chaotic Lorenz system

The first numerical investigation which led to the introduction of chaos is presented by Edward Norton Lorenz in 1960 (Marsden and McCracken, 2012). He was a meteorologist and tried to model and solve weather convention as shown in Figure 1.5. He introduced

Figure 1.5: A layer of material fluid is heated from below.

the nonlinear autonomous systems which is called the Lorenz system:

$$\begin{cases} \dot{x}_1 = \sigma(-x_1 + x_2), \\ \dot{x}_2 = rx_1 - x_2 - x_1 x_3, \\ \dot{x}_3 = -bx_3 + x_1 x_2, \end{cases}$$
(1.8)

where the parameters σ , r and b are positive real number. The variable x_1 is the intensity of fluid motion and x_2 and x_3 respectively show the temperature changes horizontally and vertically. Parameters σ and b depend on the geometric and material properties of fluid layer. Lorenz observed that simulations result is quite different due to the very small changes in initial conditions. He published a paper in a meteorology journal that paved the way to start new investigation on the chaotic dynamical system. For $\sigma = 10$, $b = \frac{8}{3}$ and r = 28 the system is chaotic as shown in Figure 1.6.

Figure 1.6: Lorenz chaotic dynamical system

For of detection chaotic behavior in a system, there are some known methods such as bi-

furcation, invariant manifold, Poincare section and more importantly Lyapunov exponent. In the next part bifurcation and Lyapunov exponent are explained on the Lorenz system.

1.3.1 Bifurcation in the Lorenz system

In this part the qualitative behaviors on the Lorenz system (1.8) are explained based on the concept of bifurcation (Arnold et al., 2013). Lorenz system (1.8) properties are:

- Symmetry: There is no changes in the equations of the Lorenz system by transformation $(x_1, x_2, x_3) \rightarrow (-x_1, -x_2, x_3)$, so if (x_1, x_2, x_3) be a solution, then $(-x_1, -x_2, x_3)$ is also a response.
- Invariant manifold x_3 : When $x_1 = x_2 = 0$, then $\dot{x}_1 = \dot{x}_2 = 0$ and $\dot{x}_3 = -bx_3$. So on axis x_3 , all trajectories go to origin that means x_3 is an invariant manifold.
- **Damping:** Lorenz system is damped in other words, the volume of phase space is shrink towards zero over time. By using divergence theorem, where v is for volume:

$$\dot{V} = \int_{V} \nabla . X dV = \int_{V} \operatorname{div} X dV \tag{1.9}$$

For Lorenz system, $div X = -(\sigma + b + 1)$ is fixed and

$$\dot{V} = -(\sigma+b+1)\int_V dV = -(\sigma+b+1)V.$$

So $V(t) = V(0)e^{-(\sigma+b+1)t}$ results in phase space all volume shrink to $V(0)e^{-(\sigma+b+1)t}$, and all paths in the Lorenz system go to a set with zero volume. In a damped system, orbits go to fixed points, limit cycles or strong attractors.

• **Fixed points:** For $0 \le r < 1$, the origin is the only fixed point of the Lorenz system. For r > 1, in addition of the origin there are two other fixed points,

$$C_{\pm} = (\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1).$$

That when $r \to 1^+$, C_{\pm} go to the origin and there is a bifurcation in r = 1.

• Linear stability of origin: linearized Lorenz system is given by

$$\begin{aligned}
\dot{x}_1 &= \sigma(x_2 - x_1), \\
\dot{x}_2 &= rx_1 - x_2, \\
\dot{x}_3 &= -bx_3.
\end{aligned}$$
(1.10)

System (1.10) shows that x_3 over the time will go to zero and the eigenvalues that come from the system from the:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -\sigma & \sigma \\ r & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$
(1.11)

are $\lambda_{\pm} = \frac{1}{2} \left(-(\sigma+1) \pm \sqrt{(\sigma+1)^2 - 4\sigma(1-r)} \right)$. For $0 \le r < 1$ the eigenvalues are negative so the origin is a stable node. For r > 1, $\lambda_+ > 0$ and $\lambda_- < 0$ so the origin is saddle point.

• Global stability: For r < 1, the Lorenz path converges to the origin so it is stable and there is no limit cycle or strong attractor, using Lyapunov function, $V(x_1, x_2, x_3) = x_1^2 + \sigma x_2^2 + \sigma x_3^2$, $\sigma > 0$, derivative along Lorenz trajectory is

$$\dot{V} = -2\sigma(x_1^2 + x_2^2 - (1+r)x_1x_2) - 2\sigma bx_3^2$$

= $-2\sigma(x_1 - \frac{r+1}{2}x_2)^2 - 2\sigma(1 - (\frac{r+1}{2})^2)x_2^2 - 2\sigma bx_3^2$,

that is strictly negative, so it is stable asymptomatically.

• C_{\pm} stability: For r > 1 the origin is unstable. Linearizion at two other fixed points C_{\pm} described by

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} -\sigma & \sigma & 0 \\ 1 & -1 & \mp \sqrt{b(r-1)} \\ \pm \sqrt{b(r-1)} & \pm \sqrt{b(r-1)} & -b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
(1.12)

and the characteristic polynomial is:

$$\lambda^3 + (1+b+\sigma)\lambda^2 + b(\sigma+r)\lambda + 2b\sigma(r-1) = 0.$$

Suppose $\sigma - b - 1 > 0$, so the fixed point is stable if

$$1 < r < r_H = \sigma\left(\frac{\sigma+b+3}{\sigma-b-1}\right),$$

where the parameters values are $\sigma = 10$, $b = \frac{8}{3}$ and $r_H \approx 24.74$. For $1 < r < r_1 = 1.3456$ all eigenvalues are real and negative. For $r_1 < r < r_H$, there are one real negative and two complex eigenvalue with negative real part, therefore, for $1 < r < r_H$ real parts is negative and fixed points C_{\pm} are stable. In $r = r_H$ there exist one negative eigenvalue and two complex. For $r > r_H$ there are one negative real number and two complex with positive real part. So for $r > r_H$ fixed points C_{\pm} are unstable that result to have bifurcation in $r = r_H$. **Chaos in the Lorenz system:** For $r > r_H$ all fixed points are unstable so the Lorenz trajectory goes to infinity over the time. But the Lorenz system is damping therefore for r > 0 finally it approaches to zero volume, for $r > r_H$ and it has strong attractor. Anyway all trajectories stay at limit area of phase space (Marsden and McCracken, 2012).

It is possible to show the behavior of Lorenz system using bifurcation graph. Figure 1.7 shows the result for $\sigma = 10$, $b = \frac{8}{3}$, 0 < r < 30 while initial condition is $(x_1(0), x_2(0), x_3(0)) = (2, 3, 5)$.

Figure 1.7: Bifurcation diagram of the Lorenz system for $0 \le r \le 30$: (a) variable x_1 ; (b) variable x_2 and (c) variable x_3 .

1.3.2 Sensitivity to initial conditions

When a system is in the chaotic area, a slightest change in the initial value causes to completely different behavior in the system. For Lorenz system, the effect of small changes in initial condition confirms chaotic behavior of the system. For initial conditions $x_1(0) = x_2(0) = x_3(0) = 1$ and $x_1(0) = 1.0001, x_2(0) = x_3(0) = 1$, two different behavior is shown in Figure 1.8.

Figure 1.8: Time series of $x_1(t)$ for the Lorenz system, shows sensitivity to initial condition $x_1(0) = x_2(0) = x_3(0) = 1$ and $x_1(0) = 1.0001, x_2(0) = x_3(0) = 1$

1.3.3 Lyapunov exponent

For Lorenz system, for initial conditions $(x_1(0), x_2(0), x_3(0)) = (1, 1, 1)$ and parameters $\sigma = 10, b = \frac{8}{3}, r = 28$, Lyapunov exponents are

$$L_1 = 0.9057, L_2 = 0.0005, L_3 = -14.5729,$$

Figure 1.9 shows Lyapunov exponent for the Lorenz system.

Figure 1.9: The Lyapunov exponent of Lorenz system for $0 \le r \le 30$.

1.4 Fractional order systems

Theory of Fractional order systems have been an attractive and important field over last decade. Recently a lot of forward movement have been done in both control and the calculus of fractional order systems. A called fractional order system means the order of system is no longer an integer. The operator D^{α} is used to show fractional order integration and derivations, where α can be positive, negative or zero.

The idea of derivative extension $\frac{d^p f(x)}{dx^p}$ to non-integral orders p, was proposed by Leibniz for p = 1/2 on 1695 and Euler introduced this derivative type to exponential function x^{α} on 1738. In 1832, Liouville introduced his first description for functions with exponential series which are indicated as

$$f(x) = \sum_{n=0}^{\infty} c_n e^{a_n x},$$
 (1.13)

in form

$$D^{\alpha}f(x) = \sum_{n=0}^{\infty} c_n a_n^{\alpha} e^{a_n x}, \qquad (1.14)$$

and

$$D^{-\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt,$$
 (1.15)

which, then was known as Liouville formula to fractional integral (Aghababa, 2013).

In 1892, the idea of fractional derivative of analytical function was posed as (Herrmann,

2014)

$$D^{\alpha}f(z) = \sum_{k=0}^{\infty} \frac{\Gamma(k+1)}{\Gamma(-\alpha+1+k)} c_k (z-z_0)^{k-\alpha}, \ c_k = \frac{f^k(z_0)}{k!}.$$
 (1.16)

Taylor series in the paper of Hadamard who described it as

$$I^{\alpha}f(x) = \frac{z^{\alpha}}{\Gamma(\alpha)} \int_0^1 (1-\tau)^{\alpha-1} f(z\tau) d\tau.$$
(1.17)

Later, this subject changed into idea to describe fractional integral as $\int_0^1 v(t) f(z\tau) d\tau$. Of course, Hadamard could not expand it and then on 1968, this work was performed by Dzherbashyan (Gorenflo et al., 2014).

By development of mathematic analysis and functions theory, as mathematician, Wiley, described fractional integral for periodic functions and defined it by (Herrmann, 2014)

$$I_{\pm}^{\alpha}\varphi = \frac{1}{2\pi} \int_{0}^{2\pi} \psi_{\pm}^{\alpha}(x-t)\varphi(t)d(t)$$
(1.18)

and then demonstrated as

$$I^{\alpha}_{+}\varphi = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x} \frac{\varphi(t)dt}{(x-t)^{1-\alpha}} d(t), \qquad (1.19)$$

$$I_{-}^{\alpha} \varphi = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} \frac{\varphi(t)dt}{(x-t)^{1-\alpha}} d(t).$$
(1.20)

where $0 < \alpha < 1$, which nowadays is known as fractional right & left integrals. He also proved that, function f(x) has continuous derivative by order α , if Lipschitz is in order $\alpha < \lambda$. The similar theory for non-periodic functions was posed by Montel (1918) and the theorem of mean value for fractional integral was described by Riese on 1922 as well as other theorems were proved by Hardy and Littlewood (1931) for fractional calculus. On 1938, the improper fractional integral was described by Love for functions which dont defined in infinite as

$$I_{+}^{\alpha}\varphi = \frac{1}{\Gamma(\alpha)} \lim_{n \to \infty} \int_{0}^{n} \varphi(x-t)^{\alpha-1} d(t).$$
(1.21)

And on same year, the partial method to fractional integral was posed by Love & Young as

$$\int_{a}^{b} (D_{a}^{\alpha} f)(x)g(x)dx = \int_{a}^{b} f(x)(D_{b}^{\alpha} g)(x)dx.$$
(1.22)

The novel definition was posed by Love for fractional derivative as

$${}^{c}D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha - n)} \int_{a}^{t} \frac{f^{(n)}(\tau)d\tau}{(t - \tau)^{\alpha - n + 1}},$$
(1.23)

for $n - 1 < \alpha < n$ which nowadays is known as Caputo derivative (Baleanu et al., 2016).

1.5 Problem statement and objectives

Chaos control and synchronization have been studied extensively in recent years, but, there are many more problems in this area needed to be solved that motivated me for carrying research on this thesis and applying synchronization in secure communication.

Almost most recent studies have generally focused on classic chaotic dynamical systems such as the Lorenz system, Rossler and the Chua's circuit system, among that, very low has been achieved for exponential stability in synchronization. In addition, the study of chaos synchronization of fractional order systems are more complicated and have a lot of application in most interdisciplinary sciences such as electromagnetic with great application in secure communication.

Based on the literature, in synchronization, all mentioned previous works they just used Lyapunov stability theorem for synchronization as well as on classical non-linear systems. Also, in projective synchronization almost all of the mentioned methods are applied on partially linear systems. In this study we applied synchronization to control chaotic systems using exponential stability which used to synchronize on a chaotic system without any linear term. Also we applied phase synchronization in adaptive chaos while scaling factor is a arbitrary function.

To our best knowledge, most of the previous works in the literatures, which have been proposed to stabilize or synchronize fractional non-autonomous chaotic systems, either have not considered the effects of unknown nonlinear terms, model uncertainties, and external disturbances or are sometimes specific and multi-input. Motivated by the above discussions, this thesis proposes a novel fractional-order nonlinear mode controller for robust stabilization-synchronization of second-order fractional non-autonomous chaotic systems in the presence of both model uncertainties and external disturbances. After introducing a novel terminal fractional-order nonlinear controller, its stability is proven. Then, on the basis of fractional-order Lyapunov stability theory, a robust nonlinear control law is derived to guarantee the occurrence of the stability in a given finite time. The proposed control law is single and practical in real world applications. Also adaptive control schemes for synchronization fractional is applied to encryption both text and image signals.

In application of chaos, all studied method, for application in secure communication, just applied modulation and masking method on active systems in classical systems to sent and received text signal. We applied modulation and masking schemes for encryption text and image signal using adaptive control methods based on the exponential stability for fast recovery in classical and fractional order systems.

The main objectives of this thesis are to propose some methods of chaos synchronization between two different chaotic classical and fractional order systems and its application in secure communication based and the exponential and Lyapunov stability theorems. The analytical conditions for synchronization of these chaotic systems are derived and numerical simulations are used to verify the proposed methods for the following problems

- 1. To propose exponential stability for fast synchronization classical chaotic dynamical systems using nonlinear control functions.
- 2. To apply active exponential and Lyapunov synchronization of classical chaotic systems in secure communication using nonlinear control functions.
- 3. To design adaptive control schemes for functional phase synchronization chaotic systems with unknown parameter using nonlinear feedback controllers based on the Lyapunov stability.
- 4. To use adaptive synchronization in encryption context text and image signals using masking and modulation methods based on the exponential and Lyapunov stability theorems.
- 5. To establish the stability of fractional order systems and applying robust adaptive nonlinear feedback controllers in Caputo definition in presence of unknown parameters, disturbance and uncertainties.
- 6. To apply adaptive synchronization of fractional order systems in encryption text and images signals using masking methods.

Scope of the study is synchronization in the classic and fractional order systems. The design of the proposed method are based on the exponential, Lyapunov first and second stability theorems. Lorenz system, Chen system, Yang system, hyper chaotic Qi and hyper chaotic Lorenz system in the classic case and in the fractional order case Liu, Cenesio and Rossler chaotic system have been used to validate the suggested theoretical results.

1.6 Thesis outline

There are six chapters in this thesis. The first chapter, chapter 1 is an introductory chapter which gives general introduction on dynamical system. Then, the objectives and scopes of study will be stated.

In chapter 2, literature review on the earlier works will be presented. The review will be divided into several parts based on the relevant aspects to current investigation on chaotic dynamical system. The second Lyapunov, exponential stability and synchronization of different chaotic dynamical with certain parameters will be presented in chapter 3. Numerical simulation and application in the encryption are presented to illustrate the application of proposed method. In chapter 4, the adaptive synchronization is expansively to phase synchronization with uncertain parameters and the total possible states based on the exponential and Lyapunov stability theorem with application in secure communications of context and pictorial data. The fractional chaotic dynamic system, its descriptions and theorems are provided and reviewed then the synchronization of same and different systems presented using new stability theorems will be given in chapter 5. the application of fractional order systems in the encryption and secure communications are applied. Finally, chapter 6 will summarized all the results from the previous chapters and further work will be given in the section later.

REFERENCES

- Abarbanel, H. D., Rulkov, N. F., and Sushchik, M. M. (1996). Generalized synchronization of chaos: The auxiliary system approach. *Physical Review E*, 53(5):4528.
- Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. *Nonlinear Dynamics*, 69(1):247–261.
- Aghababa, M. P. (2013). A novel terminal sliding mode controller for a class of nonautonomous fractional-order systems. *Nonlinear Dynamics*, 73(2):679–688.
- Aguila-Camacho, N., Duarte-Mermoud, M. A., and Gallegos, J. A. (2014). Lyapunov functions for fractional order systems. *Communications in Nonlinear Science and Numerical Simulation*, 19(9):2951–2957.
- Aharmim, B., Ahmad, Q., Ahmed, S., Allen, R., Andersen, T., Anglin, J., Bühler, G., Barton, J., Beier, E., and Bercovitch, M. (2007). Determination of the v e and total b 8 solar neutrino fluxes using the sudbury neutrino observatory phase i data set. *Physical Review C*, 75(4):045502.
- Arnold, V. I., Afrajmovich, V., Il'yashenko, Y. S., and Shil'nikov, L. (2013). Dynamical systems V: bifurcation theory and catastrophe theory, volume 5. Springer Science & Business Media.
- Arrowsmith, D. and Place, C. (1992). Dynamical systems: Differential equations, maps and chaotic behavior. *Chapman and Hall, London*.
- Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J. (2016). *Fractional calculus: models and numerical methods*, volume 5. World Scientific.
- Brindley, J., Kapitaniak, T., and Barcilon, A. (1992). Chaos and noisy periodicity in forced ocean-atmosphere models. *Physics Letters A*, 167(2):179–184.
- Brockett, R. W. (2015). Finite dimensional linear systems, volume 5. SIAM.
- Caponetto, R. (2010). *Fractional order systems: modeling and control applications*, volume 72. World Scientific.
- Chen, H.-H., Sheu, G.-J., Lin, Y.-L., and Chen, C.-S. (2009). Chaos synchronization between two different chaotic systems via nonlinear feedback control. *Nonlinear Analysis: Theory, Methods & Applications*, 70(12):4393–4401.
- Chen, S. and Lü, J. (2002). Synchronization of an uncertain unified chaotic system via adaptive control. *Chaos, Solitons & Fractals*, 14(4):643–647.
- Chen, Y., Li, M., and Cheng, Z. (2010). Global anti-synchronization of master–slave chaotic modified chuas circuits coupled by linear feedback control. *Mathematical and Computer Modelling*, 52(3):567–573.
- Deering, R. and Kaiser, J. F. (2005). The use of a masking signal to improve empirical mode decomposition. In Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP'05). IEEE International Conference on, volume 4, pages iv–485. IEEE.

- Du, H., He, Y., and Cheng, Y. (2014). Finite-time synchronization of a class of secondorder nonlinear multi-agent systems using output feedback control. *IEEE Transactions* on Circuits and Systems I: Regular Papers, 61(6):1778–1788.
- Du, H., Zeng, Q., and Wang, C. (2008). Function projective synchronization of different chaotic systems with uncertain parameters. *Physics Letters A*, 372(33):5402–5410.
- Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., and Castro-Linares, R. (2015). Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. *Communications in Nonlinear Science and Numerical Simulation*, 22(1):650–659.
- Filali, R. L., Benrejeb, M., and Borne, P. (2014). On observer-based secure communication design using discrete-time hyperchaotic systems. *Communications in Nonlinear Science and Numerical Simulation*, 19(5):1424–1432.
- Ge, Z.-M. and Yang, C.-H. (2009). Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control. *Chaos, Solitons & Fractals*, 42(2):994–1002.
- Gorenflo, R., Kilbas, A. A., Mainardi, F., and Rogosin, S. V. (2014). *Mittag-Leffler functions, related topics and applications.* Springer.
- Guckenheimer, J. and Holmes, P. J. (2013). *Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, volume 42. Springer Science & Business Media.
- Hardy, G. H. and Littlewood, J. (1931). Some properties of conjugate functions. J. reine angew. Math, 167(193):405–423.
- Hartman, P. (1964). Ordinary differential equations. Wiley, New York.
- Herrmann, R. (2014). *Fractional calculus: an introduction for physicists*. World Scientific.
- Hosseinnia, S., Ghaderi, R., Mahmoudian, M., Momani, S., et al. (2010). Sliding mode synchronization of an uncertain fractional order chaotic system. *Computers & Mathematics with Applications*, 59(5):1637–1643.
- Jia, Q. (2007). Hyperchaos generated from the lorenz chaotic system and its control. *Physics Letters A*, 366(3):217–222.
- Kaddoum, G., Richardson, F.-D., and Gagnon, F. (2013). Design and analysis of a multicarrier differential chaos shift keying communication system. *IEEE Transactions on Communications*, 61(8):3281–3291.
- Kanso, A. and Ghebleh, M. (2012). A novel image encryption algorithm based on a 3d chaotic map. *Communications in Nonlinear Science and Numerical Simulation*, 17(7):2943–2959.
- Khalil, H. K. (2002). Nonlinear systems, Third. Prentice Hall Inc., New Jersey.
- Kuznetsov, Y. A. (2013). *Elements of applied bifurcation theory*, volume 112. Springer Science & Business Media.

- Lakshmikantham, V., Matrosov, V. M., and Sivasundaram, S. (2013). *Vector Lyapunov functions and stability analysis of nonlinear systems*, volume 63. Springer Science & Business Media.
- Lawande, Q., Ivan, B., and Dhodapkar, S. (2005). Chaos based cryptography: a new approach to secure communications. *Bhabha Atomic Research Center(BARC) newsletter*, 258(258).
- Leipnik, R. and Newton, T. (1981). Double strange attractors in rigid body motion with linear feedback control. *Physics Letters A*, 86(2):63–67.
- Li, C. and Liao, X. (2006). Anti-synchronization of a class of coupled chaotic systems via linear feedback control. *International Journal of Bifurcation and Chaos*, 16(04):1041– 1047.
- Li, G.-H. (2007). Modified projective synchronization of chaotic system. *Chaos, Solitons & Fractals*, 32(5):1786–1790.
- Li, Y., Chen, Y., and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag–leffler stability. *Computers & Mathematics with Applications*, 59(5):1810–1821.
- Liu, C., Liu, L., and Liu, T. (2009). A novel three-dimensional autonomous chaos system. *Chaos, Solitons & Fractals*, 39(4):1950–1958.
- Liu, C., Liu, T., Liu, L., and Liu, K. (2004). A new chaotic attractor. *Chaos, Solitons & Fractals*, 22(5):1031–1038.
- Liu, Shutang, P. (2011). Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. *Nonlinear Analysis: Real World Applications*, 12(6):3046–3055.
- Lorenz, H.-W. (1993). Nonlinear dynamical economics and chaotic motion. Springer.
- Lu, J. and Cao, J. (2005). Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 15(4):43–58.
- Lu, J. G. (2006). Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal. *Physica A: Statistical Mechanics and its Applications*, 359:107–118.
- Lu, J. G. and Chen, G. (2006). A note on the fractional-order chen system. *Chaos, Solitons & Fractals*, 27(3):685–688.
- Mainieri, R. and Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic systems. *Physical Review Letters*, 82(15):3042.
- Markus, L. (2016). Ii. asymptotically autonomous differential systems. *Contributions to the Theory of Nonlinear Oscillations (AM-36)*, 3:17.
- Marsden, J. E. and McCracken, M. (2012). *The Hopf bifurcation and its applications*, volume 19. Springer Science & Business Media.

- Mata-Machuca, J. L., Martínez-Guerra, R., Aguilar-López, R., and Aguilar-Ibañez, C. (2012). A chaotic system in synchronization and secure communications. *Communications in Nonlinear Science and Numerical Simulation*, 17(4):1706–1713.
- McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, G. M., Olson, J. J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature*, 455(7216):1061–1068.
- Miller, K. S. and Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations.
- Montel, P. (1918). Sur les polynomes d'approximation. Bulletin de la Société *Mathématique de France*, 46:151–192.
- Morin, L. P., Blanchard, J. H., and Provencio, I. (2003). Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. *Journal of Comparative Neurology*, 465(3):401–416.
- Naderi, B. and Kheiri, H. (2016). Exponential synchronization of chaotic system and application in secure communication. *Optik-International Journal for Light and Electron Optics*, 127(5):2407–2412.
- Odibat, Z. (2012). A note on phase synchronization in coupled chaotic fractional order systems. *Nonlinear Analysis: Real World Applications*, 13(2):779–789.
- Oldham, K. B. and Spanier, J. (1974). *The fractional calculus: theory and applications of differentiation and integration to arbitrary order*, volume 111. Academic press New York.
- Park, J. H. (2005). Adaptive synchronization of a unified chaotic systems with an uncertain parameter. Int. J. Nonlinear Sci. Numer. Simul, 6(2):201–206.
- Pecora, L. M. and Carroll, T. L. (1990). Synchronization in chaotic systems. *Physical Review Letters*, 64(8):821.
- Pecora, L. M. and Carroll, T. L. (1991). Driving systems with chaotic signals. *Physical Review A*, 44(4):2374.
- Peixoto, M. M. (1962). Structural stability on two-dimensional manifolds. *Topology*, 1(2):101–120.
- Peng, G. (2007). Synchronization of fractional order chaotic systems. *Physics Letters A*, 363(5):426–432.
- Perko, L. (2013). *Differential equations and dynamical systems*, volume 7. Springer Science & Business Media.
- Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198. Academic press.

- Podlubny, I. (1999). Fractional-order systems and controllers. *Automatic Control, IEEE Transactions on*, 44(1):208–214.
- Pourmahmood, M., Khanmohammadi, S., and Alizadeh, G. (2011). Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. *Communications in Nonlinear Science and Numerical Simulation*, 16(7):2853–2868.
- Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. *Physics Letters A*, 170(6):421–428.
- Qi, G., van Wyk, M. A., van Wyk, B. J., and Chen, G. (2008). On a new hyperchaotic system. *Physics Letters A*, 372(2):124–136.
- Rafikov, M. and Balthazar, J. M. (2008). On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. *Communications in Nonlinear Science and Numerical Simulation*, 13(7):1246–1255.
- Rössler, O. E. (1976). An equation for continuous chaos. *Physics Letters A*, 57(5):397–398.
- Sarasu, P. and Sundarapandian, V. (2012). Generalized projective synchronization of twoscroll systems via adaptive control. *Int J Soft Comput*, 7(4):146–156.
- Sastry, S. S. (2013). *Nonlinear systems: analysis, stability, and control*, volume 10. Springer Science & Business Media.
- Schöll, E. and Schuster, H. G. (2008). Handbook of chaos control. John Wiley & Sons.
- Stevens, B. L., Lewis, F. L., and Johnson, E. N. (2015). Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons.
- Sun, J. and Shen, Y. (2016). Compound–combination anti-synchronization of five simplest memristor chaotic systems. *Optik-International Journal for Light and Electron Optics*, 127(20):9192–9200.
- Tang, X., Lu, J., and Zhang, W. (2007). The fps of chaotic system using backstepping design. *China Dyn Control*, 705(216):50–63.
- Tavazoei, M. S. and Haeri, M. (2008). Synchronization of chaotic fractional-order systems via active sliding mode controller. *Physica A: Statistical Mechanics and its Applications*, 387(1):57–70.
- Teschl, G. (2012). *Ordinary differential equations and dynamical systems*, volume 140. American Mathematical Soc.
- Vaidyanathan, S., Idowu, B. A., and Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of sprotts jerk systems. pages 39–58.
- Vaidyanathan, S. and Rasappan, S. (2014). Global chaos synchronization of n-scroll chua circuit and lur'e system using backstepping control design with recursive feedback. *Arabian Journal for Science & Engineering (Springer Science & Business Media BV)*, 39(4).

- Vaidyanathan, S., Volos, C. K., Kyprianidis, I., Stouboulos, I., and Pham, V. (2015b). Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. *J Eng Sci Technol Rev*, 8(2):24–36.
- Valério, D., Trujillo, J. J., Rivero, M., Machado, J. T., and Baleanu, D. (2013). Fractional calculus: a survey of useful formulas. *The European Physical Journal Special Topics*, 222(8):1827–1846.
- Wang, J.-W. and Zhang, Y.-B. (2009). Synchronization in coupled nonidentical incommensurate fractional-order systems. *Physics Letters A*, 374(2):202–207.
- Willems, J. C. and Polderman, J. W. (2013). *Introduction to mathematical systems theory: a behavioral approach*, volume 26. Springer Science & Business Media.
- Xia, Q., Zhou, Z., Lu, C., Cheng, D., Dai, F., Li, B., Zhao, P., Zha, X., Cheng, T., Chai, C., et al. (2004). A draft sequence for the genome of the domesticated silkworm (bombyx mori). *Science*, 306(5703):1937–1940.
- Xin, L. (2009). Modified projective synchronization of a new hyperchaotic system via nonlinear control. *Communications in Theoretical Physics*, 52(2):274.
- Xu, D., Li, Z., and Bishop, S. R. (2001). Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 11(3):439–442.
- Xu, Y. and Wang, Y. (2014). A new chaotic system without linear term and its impulsive synchronization. *Optik-International Journal for Light and Electron Optics*, 125(11):2526–2530.
- Yang, C.-C. (2013). One input control of exponential synchronization for a fourdimensional chaotic system. *Applied Mathematics and Computation*, 219(10):5152– 5161.
- Zhang, Q., Lu, J., Lu, J., and Chi, K. T. (2008). Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 55(2):183–187.
- Zhang, W., Zhou, S., Li, H., and Zhu, H. (2009). Chaos in a fractional-order rössler system. *Chaos, Solitons & Fractals*, 42(3):1684–1691.

BIODATA OF THE STUDENT

The student, Mahmoud Maheri, was born in April 1973. He is currently enrolled a doctoral study in the area of Applied Mathematics. His research interest involves with dynamical systems, fractional order systems and control theory. The student can be reached via email address; mahmoud.maheri@gmail.com.

LIST OF PUBLICATIONS

- Mahmoud Maheri and Norihan md Arifin, "Advances in Difference Equations Application adaptive exponential synchronization of chaotic dynamical systems in secure communications." Advances in Difference Equations 2017(1), 96.
- Mahmoud Maheri and Norihan Md Arifin. "Synchronization of two different fractionalorder chaotic systems with unknown parameters using a robust adaptive nonlinear controller." Nonlinear Dynamics 85(2): 825-838, 2016.
- Mahmoud Maheri, N. Md Arifin, and F. Ismail. "Active synchronization between two different chaotic dynamical system." International Conference On Mathematics, Engineering and Industrial Applications 2014 (ICoMEIA 2014). Vol. 1660. AIP Publishing, 2015.
- Mahmoud Maheri, Norihan Md Arifin, Gafourjan., Control and antisynchronization on Different Fractional Order Chaotic Dynamical System. Aust. J. Basic & Appl. Sci., 8(15): 172-181, 2014.

UNIVERSITI PUTRA MALAYSIA STATUS CONFIRMATION FOR THESIS/PROJECT REPORT AND COPYRIGHT ACADEMIC SESSION: 2016/2017

TITLE OF THE THESIS/PROJECT REPORT:

ADAPTIVE CONTROL SCHEME FOR ANTI-SYNCHRONIZATION OF CHAOTIC DYNAMICAL SYSTEMS

NAME OF STUDENT: MAHMOUD MAHERI

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

- 1. This thesis/project report is the property of Universiti Putra Malaysia.
- 2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
- 3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick(\checkmark)

RESTRICTED

CONFIDENTIAL

OPEN ACCESS

This thesis is submitted for: PATENT

(contain confidential information under Official Secret Act 1972).

(Contains restricted information as specified by the

organization/institution where research was done). I agree that my thesis/project report to be published as hard copy or online open acces.

Embargo from until

(date)

(date)

(Signature of Student) New IC No/Passport No .:

Date:

(Signature of Chairman of Supervisory Committee) Name: Norihan Md Arifin, PhD PROF, MADYA DR, NORIHAN MD, ARIFIN Date:

Approved

Pengarah Pusat Asasi Sains Pertanian Universiti Putra Malaysia 43400 UPM, Serdang

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]