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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

requirement for the degree of Doctor of Philosophy 

SINGLE AND MULTIPLE TIME–POINT ARTIFICIAL NEURAL NETWORK 

MODELS FOR PREDICTING THE SURVIVAL OF GASTRIC CANCER 

PATIENTS 

By 

HAMID NIL SAZ DEZFOULI 

September 2016 

Chairman   : Mohd Rizam Abu Bakar, PhD 

Institute  : Mathematical Research 

The extensive availability of recent computational models and data mining techniques 

for data analysis calls for researchers and practitioners in the medical field to opt for the 

most suitable strategies to confront clinical prediction problems. In many clinical 

research work, the main outcome under investigation is the time until an event occurs. 

Survival models are a collection of statistical procedures used to analyse data where the 

time until an event is of interest. Particularly the application of a data mining method 

known as ‘neural networks’ offers methodological and technical solutions to the 
problems of survival data analysis and prognostic model development.  

In this context, artificial neural networks (ANN) have some advantages over 

conventional statistical tools, especially in the presence of complex prognostic 

relationships. ANN model applications for modeling the survival of gastric cancer 

patients have been highlighted in a number of studies but without a full account of 

censored survival data. The primary task under investigation in this thesis is to develop 

neural network methodologies for modeling gastric cancer survivability and fill the gap 

in the current literature by adopting strategies that directly incorporate censored 

observations in the process of constructing a neural network model. The dataset used in 
the study comprises of patients with confirmed gastric cancer who underwent surgery at 

the Cancer Registry Center of Taleghani Hospital, Tehran, Iran.  

 To achieve the research aims, single and multiple time-point ANN models are proposed. 

The first model is a single time-point ANN designed to predict the survival of patients at 

specific time points. The second is a multiple time-point model specifically designed to 

provide individualized survival predictions at different time points. Thus, an individual 

survival curve can be generated for a particular patient by plotting the survival 

probabilities produced by output units, which render the system more useful in clinical 

settings. The third model is a softmax ANN designed to estimate the unconditional 
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probability of death and predict the time period during which death is likely to occur for 

an individual patient. All models are extended to incorporate censored data. Employing 

the strategies for imputing the eventual outcome for censored patients has allowed all the 

available data to be used in developing an ANN predictor model. Several criteria are 

employed to validate the models. The research demonstrated how ANNs can be used in 

the survival analysis for predictive purposes without imposing any restricting 
assumptions. The proposed models provide accurate predictions of survival with high 

levels of sensitivity and specificity. Additionally, the sensitivity analysis provided 

information about the relative importance of each input variable in predicting the 

outcome. To sum up,  

The ANN survival models presented in this thesis provide a framework for modelling 

survival data with censorship and facilitate individualized survival predictions. The 

findings will provide physicians and medical practitioners with information to improve 

gastric cancer prognosis and may assist in the selection of appropriate treatment plans 

for individual patients as well as efficient follow-up planning. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL RANGKAIAN NEURAL BUATAN TITIK MASA TUNGGAL DAN 

BERGANDA UNTUK MERAMAL MANDIRIAN PESAKIT KANSER 

GASTRIK 

Oleh 

HAMID NILSAZ DEZFOULI 

September 2016 

Pengerusi   :   Mohd Rizam Abu Bakar, PhD 

Institut       :   Penyelidikan Matematik 

Kemudahan secara meluas untuk mendapatkan model pengiraan dan teknik 

perlombongan data terkini untuk analisis data memerlukan penyelidik dan pengamal 

dalam bidang perubatan untuk memilih strategi yang paling sesuai dalam berhadapan 

dengan masalah ramalan klinikal. Dalam kebanyakan kerja-kerja penyelidikan klinikal, 

hasil utama dalam siasatan adalah masa sehingga berlakunya kejadian. Model mandirian 

atau survival adalah koleksi prosedur statistik yang digunakan untuk menganalisis data 

di mana masa sehingga peristiwa kejadian berlaku. Ini terutamanya aplikasi suatu kaedah 
perlombongan data yang dikenali sebagai 'rangkaian neural' yang menawarkan 

penyelesaian metodologi dan teknikal kepada masalah analisis data mandirian dan 

pembangunan model ramalan. 

Dalam konteks ini, rangkaian neural tiruan (ANN) mempunyai beberapa kelebihan 

berbanding alat statistik konvensional, terutamanya dengan kehadiran hubungan ramalan 

yang kompleks. Aplikasi model ANN untuk model  mandirian pesakit kanser perut telah 

ditonjolkan dalam beberapa kajian tetapi tanpa mengira  sepenuhnya ‘data  mandirian’ 

yang telah  ditapis. Tugas utama dalam siasatan di dalam tesis ini adalah untuk 

membangunkan kaedah rangkaian neural untuk memodelkan mandirian kanser perut dan 
mengisi jurang dalam literatur semasa dengan menggunapakai strategi yang secara 

langsung menggabungkan tapisan pemerhatian dalam proses membina model rangkaian 

neural. Set data yang digunakan dalam kajian ini terdiri daripada pesakit yang disahkan 

mengidap  kanser perut  dan telah menjalani pembedahan di Pusat Pendaftaran Kanser, 

Hospital Taleghani, Tehran, Iran. 

Untuk mencapai matlamat kajian, model titik masa tunggal dan berganda ANN telah 

dicadangkan. Model pertama adalah model ANN titik masa tunggal yang direka untuk 

meramalkan mandirian pesakit di titik  masa tertentu. Yang kedua adalah model titik 

masa berganda yang direka khusus untuk menyediakan ramalan hidup individu di titik-
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masa yang berbeza.  Oleh itu, keluk  mandirian individu boleh dihasilkan untuk pesakit 

tertentu dengan memplot kebarangkalian mandirian yang  dihasilkan oleh unit output, 

yang menjadikan sistem tersebut lebih berguna dalam persekitaran klinikal. Model ketiga 

ialah softmax ANN yang direka untuk menganggarkan kebarangkalian tanpa syarat 

kematian dan meramal tempoh masa dalam mana kematian mungkin berlaku untuk 

individu pesakit. Semua model diperluas untuk merangkumi data yang telah ditapis. 
Dengan menggunakan strategi untuk mengandaikan keputusan akhir untuk pesakit yang 

telah ditapis, ia membenarkan semua data yang ada digunakan dalam membangunkan 

model peramal ANN. Beberapa kriteria yang digunakan adalah  untuk menentukan 

keberkesanan model.   Kajian menunjukkan bagaimana ANN boleh digunakan dalam 

analisis mandirian untuk tujuan ramalan tanpa mengenakan apa-apa andaian yang 

menjadi batasan. Model yang disarankan memberikan ramalan mandirian yang tepat 

dengan aras sensitiviti dan pengkhususan yang tinggi.  Tambahan lagi,  analisis sensitiviti 

memberi maklumat tentang kepentingan relatif setiap pembolehubah input dalam 

meramal hasilnya.   

 

 
Kesimpulannya, model-model mandirian ANN yang dibentangkan dalam tesis ini 

menyediakan rangka kerja untuk data model mandirian yang ditapis dan membantu 

ramalan mandirian secara individu. Dalam konteks perubatan, maklumat ini  amat 

berharga untuk kedua-dua doktor dan juga pesakit. Hasil kajian akan memberikan pakar-

pakar dan pengamal perubatan dengan maklumat untuk meningkatkan prognosis kanser 

perut dan boleh membantu dalam pemilihan pelan rawatan  untuk individu penyakit dan 

dengan perancangan susulan yang efisien. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Overview  

 

Machine learning, particularly Artificial Neural Networks (ANNs), provide valuable 

tools for the diagnosis, prognosis, and detection of certain outcomes in healthcare 

research (Figure1.1). ANNs also offer a potentially useful means of developing 

classification and prognostic models for cancer patients  and have been used in  clinical 

decision support (Marchevsky, 2007). On hearing the terms ‘machine learning’ and 

‘clinical decision support,’ one might imagine a patient walking into a doctor’s office, 

inputting their symptoms and vital values into a terminal, dispensing a blood drop, and 

allowing a computer to announce the most likely illness and a suitable course of 

treatment, but this is not the point at all. The goal is to assist clinicians to determine the 
prognoses of patients, and to offer treatment specifically suited for each individual 

(Kalderstam, 2015). Clinical decision support could mean several things, but the aspect 

which is the focus of this thesis is survival prediction. Many cancer studies concern 

cancer prognosis with the aim of predicting outcomes, such as life expectancy, 

survivability, progression, and tumor-drug sensitivity, subsequent to the diagnosis (Cruz 

and Wishart, 2006).  

 

 

 

 

 

 

 
Figure 1.1 :ANN Applications in Health Care Research 

 
 

Current statistical methods for survival analysis offer the possibility to model cancer 

survivability but require unrealistic assumptions about the survival time distribution or 

proportionality of hazard. As an alternative, the application of ANN models in survival 

analysis has drawn considerable interest (Bakker et al., 2004). In this regard, multilayer 

feed forward ANNs, also known as universal function approximators (Bishop, 2006), 

can overcome the proportionality and linearity constraints imposed by conventional 

survival analysis techniques. In addition, ANNs have the potential to provide more 

accurate prognosis models (Mani et al., 1999).     
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From a statistical viewpoint, the central challenge in developing an ANN model for 

cancer survivability is related to the presence of censoring (Crowther and Lambert, 

2014). Censoring implies that for some patients, the time to the event of interest is not 

precisely known. This occurs either because a follow-up is no longer available to the 

patients for some reason, or simply because no significant event has yet occurred.  

 
 

Such patients provide partial information about the disease survival characteristics, but 

are challenging to include in neural network models (Kalderstam, 2015). Disregarding 

censored patients not only results in disposing of a lot of information but also leads to a 

small and biased training dataset (Mani et al., 1999). In this regard, focus should be 

directed to developing ANN survival approaches that are able to handle censored 

observations. The current study investigates the feasibility of applying different ANN 

models to predict gastric cancer survivability, while the censored data are not omitted 

from the study. The results presented herein are from a retrospective study of patients 

with gastric cancer. 

 
 

1.2 Background of the Study 

 

Survival analysis is a group of statistical methods for data analysis, where the outcome 

variable is time until a certain event occurs (Lee and Wang, 2003). The event may be 

failure, injury, death, disease relapse, divorce, recovery or any other potential experience 

of interest to an individual. The time describes the distance from the beginning of follow-

up until an event occurs. In survival analysis, the generic name for time is survival time 

(Clark et al., 2003). For the data set employed in this thesis, the endpoint of interest is 

typically death.  

 

 
The specific difficulties concerning survival data analysis is that survival data are usually 

censored or incomplete in some way. Censoring occurs when incomplete information is 

available about some individuals’ survival time. ‘Right censored’ data occurs when an 

individual experiences failure time after its final observed time. Right censoring means 

that the survival time is only known to exceed a certain value. 

 

 

Censoring may arise in any of the following ways: 

 A patient has not experienced the event by the end of the study period; 

 A patient has lost to follow up at any time during the study period;  

 A patient experienced a different event, for example he exited the study for 
reasons other than cancer-related death, making further follow-ups impossible 

(Clark et al., 2003). 

 

It may also be unclear when the patients entered the study. For instance, for patients 

infected with HIV, the date of infection is usually unclear. Data from these patients are 

considered left censored. Moreover, event time data may also be interval censored. It 

means that the event time lies within an interval and is not precisely observed (Clark et 

al, 2003). 

 



© C
OPYRIG

HT U
PM

3 

The data points in this thesis are considered to be right censored because the exact 

survival times of the patients are unknown, but it is known that each patient’s time of 

death will occur after a specified time point. From a statistical perspective, standard 

methods used for survival analysis are valid only if the censoring is non-informative, e.g. 

random and uncorrelated with the true survival time (Cook, 2007). Non-informative 

censoring is assumed in the present study. In practical terms, it is assumed that censored 
patients should be as likely to subsequently die as the patients who remain in the study 

(Kleinbaum and Klein, 2005). 

1.2.1 General Formulation 

The distribution of survival times is usually described using the survival function, 

probability density function, and hazard function. Let T be a non-negative random 
variable that denotes the time elapsed from a particular starting time point to the 

occurrence of an event. A small t  denotes any specific value for variable T. The 

probability density function is explained as the probability of failure in a small interval 

( , )t t t  per unit time.

   
0

( )
( ) lim

t

P t T T t
f t

t 

  



 (1.1) 

The survival function, also called the survivor or survivorship function, is a basic 

quantity employed in survival analysis (Brandon et al., 2014). The survival function 

( )S t  is defined as the probability that an individual will survive beyond a specific time 

t . Since T is a continuous random variable, the survival function can be obtained by 

integrating it over the probability density function from time t to infinity  

        
t

S t P T t f x dx


   
 (1.2) 

The hazard function ( )h t  gives the conditional failure rate and is defined as the 

probability of failure during a very short interval  ,t t t , assuming that the

individual has survived until time .t  

 
0

( ) lim
Pr ( | ) ( )

( )t

t T t t T t f t

t
h t

S t 

 





   (1.3) 

The hazard function represents the instantaneous potential per unit time for an event to 
occur given that the patient has survived up to time t (Kleinbaum and Klein, 2005) 
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1.2.2 Methods of Survival Data Analysis 

The survival probability can be estimated non-parametrically using the Kaplan-Meier 

(K-M), or product-limit estimator (Kaplan and Meier, 1958). The K-M estimator utilizes 

the information of a censored case until the patient becomes censored. Suppose the event 

times are ordered as 1 2, ,..., nt t t . The general formula for the K-M survival probability 

at event time it  is given by: 

 
1

ˆ ˆ( ) ( ) (1- )i
i i

i

d
S t S t

n
  (1.4) 

where 0 0t   and (0) 1S  . Thus, the probability of being alive at time it  is calculated 

from 1
ˆ( )iS t   the probability of being alive at 1it  , 

jd  the number of events at time it

, and in the total number of patients at risk just before time it . 

Product-limit estimators perform well in describing the survival of a group of individuals. 

However, when predicting survival or comparing treatments in terms of survival, it is 
often rational to adjust for some patient-related factors known as covariates, which could 

potentially affect patient survival time. One drawback of the K-M method is that the K-

M estimator only describes survival with respect to the factor under investigation and 

ignores the impact of any other covariates with potential effect on patient prognosis.  

Parametric survival models are a premise for a particular form of survival distribution. 

For parametric models the functional form is completely specified except for the 

unknown parameters’ values. The data are then used to estimates the model parameters 

that fully specify that distribution. The parameters are estimated using maximum 

likelihood estimation (MLE). The most commonly employed parametric models in 

survival data analysis are the exponential, Weibull, lognormal, and log-logistic, which 
get their names from the distribution that the survival times are assumed to follow 

(Kleinbaum and Klein, 2005).  

Cox (1972) suggested the proportional hazard (PH) model for analyzing survival data. 

This model does not require knowledge of the underlying distribution. The Cox 

proportional hazard model is a multivariate regression method that describes the 

relationship between the occurrence of an event as explained by a hazard function and a 

set of explanatory variables 1 2( , ,..., )px x x x . Mathematically, the Cox model is 

presented as: 

0( | ) ( ) exp( )Th t x h t x  (1.5) 
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where 
1 2( , ,..., )p     denote the coefficients of covariates. The hazard at time t

depends on two quantities. The first quantity,
0
( )h t , is called the baseline hazard 

function and it describes the risk for an individual with covariate vector 0x  . The 

second quantity is exp( )T x , which is an exponential expression involving 

covariate x . The baseline hazard can be any complicated function of t and is estimated 

non-parametrically. The Cox proportional hazard model assumes that the hazard ratio of 

two patients with different covariate values is independent of time. The second 

assumption is that the impact of the covariates on the log risk scale is additive and linear. 

However, these assumptions are not applicable or not thoroughly checked  in different 

clinical conditions where a Cox model is used to fit survival data (Jerez et al., 2005). 

There are other techniques that have been applied in survival data analysis. Local fitting 

methods, spline function, tree-based methods, and artificial neural networks are the four 

major non-linear approaches used for analyzing survival data (Crowther and Lambert, 

2014; Van Belle et al., 2011; Bakker et al., 2004; Ripley et al., 2004). Among all 

methods, neural networks are proven to integrate the consistency of conventional models 

and offer a relatively parsimonious framework compared to the other models (Biganzoli 

et al., 2003). 

1.2.3 Neural Network Models in Survival Analysis 

The artificial neural network is an approach based on a very simple and abstract version 

of how the biological neural networks in our brains function. Since ancient Greek times, 

there has been long-standing interest in understanding “intelligence” (Russell and 

Norvig, 1995). In 1943, McCulloch and Pitts devised a simple neuron model and 

described how neurons might work (Bishop, 2006). They also provided a model of a 

simple artificial neural network with electrical circuits. In 1949, Donald Hebb described 

several fundamental concepts of artificial neurons and their behavior.Neural network 

(NN) applications are deliberated into the three following categories (Jones, 2004): 

 Predicting one or more outcomes from input data  

 Classifying input data into one or more categories 

 Statistical pattern recognition for uncovering patterns among a set of variables 

Therefore, neural networks provide a framework for solving several prevalent traditional 

problems of prediction, classification and pattern recognition. In some situations, they 

also extend the range of problems that can be solved by conventional methods. 

A neural network is comprised of a collection of neurons. Each neuron has a number of 

input and output connections to other neurons, called synapses. Biological neurons send 

signals to other neurons by “firing” electrical impulses via these connections. Multiple 

impulses from different neurons may amplify or dampen each other, depending on the 
synapses. A simplified biological neuron structure is illustrated on the left of Figure 1.2. 

Information enters the biological neuron via dendrites, and the cell body (soma) 

processes the information and expresses it via an axon. 
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Figure 1.2 : Biological and Artificial Neuron Designs 

 
 
A simplified model of an artificial neuron, called a perceptron (Rosenblatt, 1958), is 

illustrated on the right of Figure 1.2. The information enters the artificial neuron via 

inputs denoted by iX  and is multiplied by corresponding weights iw . An artificial 

neuron also contains a bias, b , which is an external input for adjusting the net input of 

the activation function. The artificial neuron body sums the weighted inputs and biases, 

and then processes the sum with an activation function, f . The processed information 

then goes through the neuron output expressed by O. The output of a neuron can be 

formulated as: 

 

 

                                              
i i

i

w xo f b
 
 
 

 
                                             (1.6) 

 

 

The activation function defines the neuron’s output level for a given input. There are 
three general types of activation functions: identity, threshold and sigmoid transfer 

functions, which are described in Chapter 2. Among various ANN architectures, 

Multilayer perceptron (MLP) has been the most extensively used method for cancer 

prediction and prognosis  (Ahmed, 2005; Schwarze et al., 2000)The effectiveness of 

MLPs in cancer diagnosis and prognosis has been evaluated using clinical, pathological 

and immunohistochemical data, which signify that MLP is a powerful cancer prediction 

technique.  

 

 

MLP learning process is performed by adjusting the connection weights linking the 

layers. This is done by a training algorithm that adjusts the weights by minimizing the 
network error with respect to its weights. Back-propagation (BP) is the most widely 

implemented training algorithm for MLP training (An et al., 2015; Haykin et al., 2009)  

 

 

Censoring in the data is the main reason it is difficult to use standard ANN techniques to 

model survival (Stajduhar and Dalbelo-Basic, 2010). Several approaches have been 

proposed for dealing with censored data in an ANN model. As such, various efforts have 
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been devoted to extending the Cox proportional hazard model. An ANN extension of the 

Cox proportional hazard model was proposed by Faraggi and Simon (1995). They 

developed the maximum likelihood neural network model for the general classification 

problem by replacing the linear predictor
T X in the Cox PH model with a non-linear 

network output. Other scholars (Bakker et al., 2004; Bakker and Heskes, 1999; Lisboa 

and Wong, 2001; Mariani et al., 1997) have also provided ANN models as extensions of 

the Cox proportional hazard model.  

 
 

Hierarchical and modular ANN survival models have been introduced as well  (Lapuerta 

et al., 1995; Ohno-Machado et al., 1995; Ohno-Machado, 1997). In these models, several 

neural networks were employed, where each neural network predicts the survival at a 

specific time point. In another form of ANN models, prognostic covariates are 

considered input variables, whereas the time to an event serves as the neural network 

output (Brown et al., 1997;  Laurentiis et al., 1999;  Jerez et al., 2003, Jerez et al., 2005; 

Zhu et al., 2013).   

 

 

Closely related to this approach are the so-called “time coded models.” In this ANN 

structure, time is added as a covariate and the model output indicates the event or no 
event at a given time (Ravdin and Clark, 1992; De Laurentiis and Ravdin, 1994;  

Boracchi, Biganzoli, and Marubini, 2001; Liestol and Andersen, 2002; Biganzoli et al., 

2003; Biganzoli and Boracchi, 2009). The output of these models can be interpreted as 

conditional or cumulative probabilities depending on the structure considered for input 

data. These methods are explained in more in detail in Chapter 2. 

 

 

1.3 Motivation  

 

Predicting cancer outcome based on a set of prognostic variables has been a long-

standing topic of interest in cancer studies. Among the different cancer types, gastric 
cancer accounts for considerable morbidity and mortality levels worldwide (McLean and 

El-Omar, 2014; Ferlay et al., 2013). The findings of the International Agency for 

Research on Cancer in 2012 ranked gastric cancer as the fifth most widespread 

malignancy in the world after lung, breast, colorectal, and prostate cancers. Furthermore, 

gastric cancer is the third leading cause of cancer death worldwide (McLean and El-

Omar, 2014). Given these facts, gastric cancer represents one of the most preferred fields 

of investigation. Nonetheless, a comparison between the number of published papers and 

cancer incidence (Lisboa and Taktak, 2006) has revealed that there is a less-than-

expected proportion of publications on gastric cancer, arguably signifying the need for 

greater consideration and investigation in this field. 

 

 Existing survival analysis methods, as described in Section 1.1, are usually utilized to 
explain data or determine the predictive value of different variables in the progression of 

disease rather than make predictions for individual patients. Parametric models are based 

on strict assumptions concerning the distribution of failure time and the effect of the 

covariates on the distribution parameters. These assumptions are mostly not feasible in 

applied situations (Eleuteri et al., 2007). In the domain of gastric cancer, the most 

commonly used method is the Cox proportional hazards model when the task is to define 

which variables influence survival. However, there are still a number of assumptions that 
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need to be assessed before applying the Cox model. Violations of the underlying 

assumptions invalidate the results (Bewick et al., 2004). Additionally, some of the 

assumptions are not carefully assessed in many different clinical conditions where the 

Cox model is applied for survival data analysis (George et al.,  2014; Jerez et al., 2005). 

 

 
 To address these limitations, attention must be paid to the development of nonlinear 

models with less restrictive assumptions. Models based on ANN appear to be suited for 

this task and have been successfully employed in the field of medical diagnosis and 

prognosis. The usefulness of the ANN methodology is justified by the fact that ANNs do 

not assume a certain prior functional form and do not necessitate fulfilling the 

assumptions required by statistical techniques. In other words, the ANN approach is 

driven and confined by data in hand. The mathematical structure of neural networks 

enables them to analyze complex data with non-linear covariates, high-order interaction 

among covariates, and time-dependent covariates (Lisboa and Taktak, 2006). These 

characteristics have motivated us to develop prognostic models through survival 

analysis.  

 

 

The application of ANN models to survival analysis also has implications from a 

biological point of view, as highlighted by Jerez et al. (2005) since the relationship 

among prognostic covariates and patients’ outcomes is not necessarily linear in nature. 

Thus, the traditional methods of survival analysis, which rely utterly on the linear 

relationship among variables, may be inadequate. 
 

 

 Predicting the probability of survival for a patient can be very challenging for many 

diseases. Developing better clinical decision support systems for gastric cancer prognosis 

could decrease uncertainty in prognosis, allowing treatment to be focused on patients 

with the worst expected survival chances (Kalderstam, 2015). Neural networks can 

provide individualized survival predictions. In a medical context, such information is 

valuable for both clinicians and patients. As mentioned before, NNs assist clinicians to 

select appropriate treatments and plan follow-ups efficiently. Patients at high risk could 

be followed up more frequently than those at lower risk, such that valuable resources are 

channeled to those who need them the most. For patients, obtaining information about 
their prognosis is also valuable for planning their lives (Eleuteri et al., 2007). 

 

 

1.4 Problem Statement 

 

In recent years, considerable attention has been directed to the application of ANN-based 

methods for developing prognostic models in medicine. ANNs have been used in 

diagnosis, prognosis, and outcome prediction in numerous cancer research works. 

However, predicting the probability of survival or disease outcome for an individual 

patient remains a challenging task for many diseases.  

 

 
A prominent analytical feature in most survival analysis studies pertains to censoring, 

where survival times are not precisely determined for some patients. This may happen 

during the follow-up period when some patients leave the study for various reasons like 
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accident death. Others may survive the study without cancer recurring or death. What 

complicates matters is that the standard structure of a neural network does not allow 

direct modeling of censored survival data. Thus, the presence of this certain characteristic 

of medical data makes it difficult to use ANN methods. This implies that merging the 

survival analysis theory with ANN methodology requires introducing some strategies to 

overcome those difficulties and deal with censored data. One approach to handling this 
is to simply discard all censored patients and train the ANN model directly with the 

remaining non-censored data, but this would introduce bias in the model.  

 

 

A lot of research has been conducted on the application of ANN structures in gastric 

cancer survival prediction (Zhu et al., 2013; Amiri et al., 2013; Gohari et al., 2011; 

Biglarian et al., 2011). Nevertheless, no work has been done on constructing different 

ANN strategies for modeling censored survival data. A review of some prominent studies 

in the field of gastric cancer revealed that scarce attention has been given to the problem 

of censoring in these studies. A literature review of ANN models applied for gastric 

cancer prognosis demonstrated that in many studies, censored patients have been 
excluded from the dataset or no clear strategies have been addressed for dealing with 

censoring (Zhu et al., 2013; Amiri et al., 2008, 2013; Gohari et al., 2011; Biglarian et al., 

2011; Baghestani et al., 2009; Qiu et al., 2009).  

 

 

This gap encouraged the researcher to focus on the development of specified ANN 

models for modeling gastric cancer survivability and making personalized survival 

predictions in the presence of censored data. This can be done by either modifying the 

standard way a dataset is presented to a standard neural network or by proposing some 

strategies that directly incorporate the censored observations in a neural network model. 

This would assist physicians and medical scientists to improve the clinical care and 

management of gastric cancer. 
 

 

1.5 Objectives of the Study 

 

The primary aim of this study is to make a new contribution to the development of single 

and multiple time-point ANNs for gastric cancer prognosis in terms of predicting the 

outcomes of patients. The current study also intends to fill the gap in comparative studies 

by developing strategies that directly incorporate censored observations in the process of 

constructing a survival analysis neural network model. More specifically, the objectives 

are listed as follows: 

 

 To propose a specifically designed single time-point ANN method for modeling 

gastric cancer survivability, which is efficient in predicting the outcome at specific 

time points  

 

 To propose multiple time-point ANN models that are able to predict the probability 

of survival in different time periods and generate an individualized survival curve 

for every patient in the data set  
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 To develop an ANN model that are able to estimate unconditional probability of 

death at different intervals and predict the time period during which a death is likely 

to occur for an individual patient  

 

 To propose strategies for incorporating censored data in constructing ANN-based 

survival models rather than simply excluding censored data 
 

 To determine the  predictive value of  different  variables for the progression of 

gastric cancer  and to define an effective combination of prognostic covariates and 

tumor markers for predicting the outcome of gastric cancer patients 

 To analyze the data using the KM and Cox models and compare the ANN results 

with standard methods  

 

 

1.6 Scope of the Study 

 

The focus of this thesis is on developing ANNs for modeling gastric cancer survival. 
More specifically, the aim is to develop ANN-based models that are able to incorporate 

censored survival data instead of merely excluding these data from the study. Survival 

analysis can be viewed as a classification problem by establishing meaningful intervals 

of time according to a particular situation. Focus will be restricted to constructing ANN 

classification models that predict the probability of events occurring during one or more 

fixed time intervals. In other words, survival analysis is considered as a classification 

problem in this thesis. The endpoint of interest in this study is typically death. In this 

case, the outputs of the ANN classification models correspond to predetermined intervals 

of time and a prognostic estimate will be produced for each interval.  

 

 
Real datasets of gastric cancer survival with a significant number of cases are not easy 

to obtain. Although the use of artificial data sets facilitates control of data, the results 

might not be generalizable to real data sets, which contain noise, are incomplete and have 

few cases (Ohno-Machado, 1997). The use of real data sets provides more useable and 

convincing information. The data set in the present study was derived from a 

retrospective study on patients with confirmed gastric cancer who underwent total or 

subtotal gastrectomy at the Cancer Registry Center of Taleghani Hospital, Tehran, Iran. 

All patients were diagnosed by endoscopy and/or biopsy and their disease was 

confirmed.  In our data set, censored observations and missing data are frequently 

presented and hard to control. However, a good survival predictor must be able to deal 

with these obstacles.  

 
 

1.7 Organization of the Remainder of the Study 

 

The overall organization of this thesis is as follows: After the introduction, chapter 2 is 

dedicated to a review of the statistical and ANN methods previously employed for 

survival analysis. A literature of the most widely used ANN structures in gastric cancer 

prognosis along with the advantages and disadvantages of these methods is also detailed. 

A general introduction of gastric cancer, its risk factors, and stages of gastric cancer is 

also described. 
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Chapter 3 introduces a single time-point ANN model for modeling the survival of gastric 

cancer patients that is suitable for prediction at specific time points. The method of 

imputing the outcome to censored patients is also described. This chapter discusses the 

data set characteristics and prognostic variables used in the study. The final section of 

this chapter includes an analysis of the importance of prognostic covariates to 

demonstrate the degree of significance of each covariate for predicting the survival of 
patients. 

Chapter 4 presents the proposed multiple time-point ANN model, which predicts the 

probability of survival at different time intervals for a patient with gastric cancer. This 

model generates a set of survival probabilities across all time periods and can predict any 

time-specific survival rate. Thus, for a particular patient, an individual survival curve can 

be generated by plotting the survival probabilities predicted by output units.  

The ANN model presented in chapter 5 predicts how long after surgery a patient is 
expected to die. The model was designed to estimate unconditional probability of death 

in time intervals of less than one year, one to two years, two to three years, three to four 

years, four to five years, and greater than 5 years. More specifically, we have modeled 

the unconditional probability of death using a softmax ANN model.  

Chapter 6 presents the analysis of gastric cancer dataset using Cox model and Kaplan-

Meier method. The rest of the chapter compares and contrasts the results obtained by 

Kaplan-Meier and Cox proportional hazard analysis with those obtained by the Cox 

model. 

Finally, Chapter 7 contains a brief summary of the main findings and the thesis 

conclusions, the consequences of the findings from this study and some directions for 

further research in the future 
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