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Abstract of thesis presented to the Senate of Universiti Putra Malaysia 

in fulfillment of the requirement for the Master of Science 

 

EXPLICIT RUNGE-KUTTA-NYSTROM METHODS WITH HIGH ORDER 

DISPERSION AND DISSIPATION FOR SOLVING OSCILLATORY SECOND 

ORDER ORDINARY DIFFERENTIAL EQUATION 

By 

MUNIRAH BT MOHAMAD 

July 2013 

 

Chairman: Norazak Senu, PhD 

Faculty: Science 

 

An explicit Runge-Kutta-Nyström (RKN) method with high order dispersion (phase-

lag) and dissipation (amplification error) properties is studied for the integration of 

initial-value problems (IVP) of second-order ordinary differential equations (ODEs) 

possessing oscillating solutions. The constructions of RKN methods for constant step 

size and embedded RKN pair for variable step size have been derived. The effects of 

dispersion and dissipation relations are tested on homogeneous and non-homogenous 

test problems which have oscillatory solutions.  
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Derivation of symplectic explicit Runge-Kutta-Nyström method is studied for 

Hamiltonian system with oscillating solutions. Symplectic methods can be more 

efficient than non-symplectic methods for long interval of integration. Numerical 

results show that the symplectic methods with high order of dispersion are more 

efficient for solving second order ordinary differential equations. 

 

The new fourth and fifth order explicit RKN methods with dispersion (phase-fitted) 

and dissipation (amplification-fitted) of order infinity have been derived. The fifth 

order explicit RKN methods is divided into two parts; methods with phase-fitted and 

methods with both phase-fitted and amplification-fitted. In this thesis, the phase-fitted 

methods are derived based on symplectic method by Sharp and method derived in this 

thesis. For fifth order phase-fitted and amplification-fitted consists of four- and five-

stage RKN methods with First Same As Last (FSAL) technique. Numerical results 

show that our methods are much more efficient than existing method with the same 

algebraic order. 

 

In conclusion, we have derived explicit RKN methods with dispersion and dissipation 

for solving second-order ODEs that possessing oscillatory solutions. The dispersion 

constant, dissipation constant and local truncation error (LTE) terms are also 

calculated. The homogeneous and non-homogenous test problems with oscillatory 

solutions are used to prove the efficiency of our methods. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains. 

 

KAEDAH TAK TERSIRAT RUNGE-KUTTA-NYSTRÖM DENGAN CIRI-

CIRI SERAKAN DAN LESAPAN PERINGKAT TINGGI UNTUK 

MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA PERINGKAT 

KEDUA BERAYUN 

 

Oleh 

MUNIRAH BT MOHAMAD 

Julai 2013 

 

Pengerusi: Norazak Senu, PhD 

Fakulti: Sains 

 

Kaedah tak tersirat Runge-Kutta-Nyström (RKN) dengan ciri-ciri serakan dan lesapan 

peringkat tinggi dikaji untuk menyelesaikan kamiran nilai awal berayun bagi 

persamaan pembezaan biasa peringkat kedua dengan penyelesaian bentuk ayunan. 

Pembinaan kaedah RKN untuk saiz langkah tetap dan kaedah pasangan benaman RKN 

untuk saiz langkah berubah telah diterbitkan. Kesan hubungan serakan dan lesapan 

diuji pada masalah homogen dan tak homogen yang mempunyai penyelesaian bentuk 

ayunan. 

 



© C
OPYRIG

HT U
PM

v 
 

Penerbitan kaedah tak tersirat simplektik RKN dikaji untuk sistem Hamiltonian 

dengan penyelesaian bentuk berayun. Kaedah simplektik adalah lebih cekap 

berbanding kaedah tanpa simplektik untuk penyelesaian kamiran dengan selang yang 

panjang. Keputusan berangka menunjukkan kaedah simplektik dengan serakan 

peringkat tinggi adalah lebih cekap untuk menyelesaikan persamaan pembezaan biasa 

peringkat kedua. 

 

Kaedah RKN tak tersirat peringkat keempat dan kelima yang baharu dengan serakan 

peringkat tak terhingga (suai secara fasa) dan lesapan peringkat tak terhingga (suai 

secara amplifikasi) telah diterbitkan. Bagi kaedah RKN tak tersirat peringkat kelima, 

ia dibahagikan kepada dua bahagian iaitu kaedah dengan suai secara fasa dan kaedah 

dengan suai secara fasa beserta suai secara amplifikasi. Kaedah suai secara fasa adalah 

berdasarkan kaedah yang telah diterbitkan oleh Sharp dan juga kaedah yang 

diterbitkan di dalam tesis ini. Untuk kaedah peringkat ke-lima suai secara fasa beserta 

suai secara amplifikasi merangkumi kaedah RKN tahap empat dan lima dengan teknik 

Pertama Sama Seperti Akhir (PSSA). Penyelesaian berangka yang diperoleh 

menunjukkan kaedah yang telah diterbitkan adalah lebih cekap berbanding kaedah 

sedia ada yang mempunyai peringkat aljabar yang sama. 

 

Kesimpulannya, kami telah menerbitkan kaedah RKN tak tersirat dengan serakan dan 

lesapan untuk persamaan pembezaan biasa peringkat kedua dengan penyelesaian 

bentuk berayun. Pemalar serakan, pemalar lesapan dan ralat pemangkasan setempat 
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utama (RPSU) turut dikira. Masalah homogen dan tak homogen yang mempunyai 

penyelesaian bentuk ayunan digunakan untuk membuktikan kecekapan kaedah-kaedah 

yang telah diterbitkan. 
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CHAPTER 1 

INTRODUCTION 

 

The initial value problems (IVPs) as follow 

" ( , ),y f x y  0 0( ) ,y x y  0 0'( ) 'y x y    (1.1) 

where : ,N Nf   and 
0 0, ' .Ny y   The solution of (1.1) exhibits a pronounced 

oscillatory character. One way to solve oscillatory problem is by Runge-Kutta-

Nyström (RKN) method. RKN method can be divided into two groups which are 

explicit and implicit methods. In this study, we are focusing on solving problem (1.1) 

by using explicit Runge-Kutta-Nyström methods for oscillating problems. 

 

1.1 Literature Review 

 

Many RKN methods have been developed for example Bettis (1973) and Dormand et 

al.(1987) who developed explicit RKN methods. However, their methods do not relate 

with dispersion or dissipation properties. As we are dealing with oscillating problems, 

we must consider high order algebraic condition, dispersion (phase-lag) and 

dissipation (amplification error) properties in order to have accurate methods. The first 

dispersion and dissipation properties were introduced by Brusa and Nigro (1980). 

Then, Thomas (1984) uses dispersion and dissipation properties for linear multistep 
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methods. For explicit RKN methods, Van der Houwen and Sommeijer (1987) were the 

first to introduce these properties for explicit RKN methods.  

 

Another alternative way to develop an efficient method is by using the symplectic 

condition in RKN methods. A numerical method called symplectic if it preserves the 

symplectic structure in phase space, thus reproducing the main qualitative property of 

Hamiltonian systems. A symplectic method is more efficient than non-symplectic 

methods for large interval of integration. Okunbor and Skeel (1992b) derived 

symplectic explicit RKN methods up to three stages. Calvo and Sanz Serna (1993) 

introduced fourth order five-stage method with minimal error coefficients. Our attempt 

is to derive symplectic explicit RKN methods with highest possible dispersion order 

and minimum Local Truncation Error (LTE). 

 

The derivation of dispersion of order infinity (phase-fitted) and dissipation of order 

infinity (amplification-fitted) has been considered widely such as Simos and Aguiar 

(2000) and (2001) have derived modified phase-fitted RKN method for Schrodinger 

equation and modified phase-fitted for RK method. Papadopoulos et al.(2010) has 

developed a modified phase-fitted and amplification-fitted RKN method. In this thesis 

we will derive phase-fitted and amplification-fitted explicit RKN method with First 

Same As Last (FSAL) technique and minimum LTE for constant step size. 
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Therefore, the attempt that will be made here is to derive explicit RKN methods with 

highest possible dispersion and dissipation order for constant and variable step size, 

symplectic methods with dispersion and explicit RKN methods with phase-fitted and 

amplification-fitted. Essentially, our methods should have small error norm of the LTE 

as define by Dormand (1996) and suitable for solving oscillatory problem. 

 

1.2 Runge-Kutta-Nyström (RKN) methods. 

 

Nyström (1925) introduced RK methods for second order differential equations which 

has been called Runge-Kutta-Nyström (RKN) methods. The construction of RKN 

methods for integrating system of ordinary differential equations (ODEs) of the form 

 0 0 0 0" ( , ), ( ) , '( ) ' .y f x y y x y y x y    (1.2) 

The form of s-stage RKN method of order p is 

 

2

1 1

1

1

1

'

' ' '

s

n n n i i

i

s

n n i i

i

y y hy h b k

y y h b k

 







  

 




 (1.3) 

where 

 
1

2

1 1 1

1

( , ' )
s

i n i n i n ij j

j

k f x c h y c hy h a k


  



     1, 2,..,i s  (1.4) 
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The parameters , , 'ij i ia b b and 
ic  are assumed to be real and if j i  then 0ija  . s is 

the number of stages of the method. All the parameter can be tabulated in Butcher 

Tableau in the following form 

C A 

 Tb  

 'Tb  

 

where 

   [          ]
    [   ]  

  [          ]
  and     [             ]

   

RKN methods can be divided into two classes which are the explicit and implicit 

methods. In this study, we focus on explicit RKN methods where 0ija   

whenever j i .
 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

5 
 

1.3 Algebraic condition for RKN method 

 

General order condition for RKN method can be attained from direct expansion of the 

Local Truncation Error (LTE). The s-stage up to order six RKN process are given as 

follows: 

 

for y :   

 order 2: 
1

,
2

i
b   (1.5) 

 order 3: 
1

,
6

i i
b c   (1.6) 

 order 4 : 
21 1

,
2 24

i i
b c   (1.7) 

 order 5: 
31 1

,
6 120

i i
b c   (1.8) 

  
1

,
120

i ij j
b a c   (1.9) 

 order 6: 
41 1

,
24 720

i i
b c   (1.10) 

  
1 1

,
4 720

i i ij j
b c a c   (1.11) 

  
21 1

2 720
i ij j

b a c   (1.12) 
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and for 'y : 

 order 1: 
1

' ,
2

i
b   (1.13) 

 order 2: 
2 1

' ,
2

i i
b c   (1.14) 

 order 3: 
21 1

' ,
2 6

i i
b c   (1.15) 

 order 4: 
31 1

' ,
6 24

i i
b c   (1.16) 

  
1

' ,
24

i ij j
b a c   (1.17) 

 order 5: 
41 1

' ,
24 120

i i
b c   (1.18) 

  
1 1

' ,
4 120

i i ij j
b c a c   (1.19) 

  
21 1

' ,
2 120

i ij j
b a c   (1.20) 

 order 6: 
51 1

' ,
120 720

i i
b c   (1.21) 

  
21 1

' ,
20 720

i i ij j
b c a c   (1.22) 

  
21 1

' ,
10 720

i i ij i
b c a c   (1.23) 

  
31 1

' ,
6 720

i ij i
b a c   (1.24) 

  
1

' .
720

i ij jk k
b a a c   (1.25) 
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The Nyström row sum conditions that need to be satisfied are 

 
2

1

1

2

s

i ij

i

c a


 ( 1,..., ).i s  (1.26) 

The simplifying assumption given by Butcher (2003) which is used in order to reduce 

the number of equations 

 ' (1 ) ( 1,..., ).
i i i

b b c i s    (1.27) 

The First Same as Last (FSAL) property where the last stage is evaluated at the same 

point as the first stage of the next step is used to reduce function evaluation. For 

method to be FSAL, it must satisfy 

 1 0, 1sc c  and , 1,..., 1sj ja b j s    (1.28) 

1.4 Local Truncation Error 

 

Dormand (1996) proposed that having achieved a particular order of accuracy, the best 

strategy for practical purposes would be minimizing the error norms. The quantities of 

the norms of (LTE) coefficients are 

1

( 1) ( 1) 2

2
( )

pn

p p

j

j

 


 



  for ny  and 
1

( 1) ( 1) 2

2
1

' ( ' )
pn

p p

j

j

 


 



   for ' .
n

y  (1.29) 
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The error coefficients up to order six for RKN processes are as follows: 

 

for y :   

 order 2: 
(2)

1

1
,

2
i

b    (1.30) 

 order 3: 
(3)

1

1
,

6
i i

b c    (1.31) 

 order 4 : 
(4) 2

1

1 1
,

2 24
i i

b c    (1.32) 

 order 5: 
(5) 3

1

1 1
,

6 120
i i

b c    (1.33) 

  
(5)

2

1
,

120
i ij j

b a c    (1.34) 

 order 6: 
(6) 4

1

1 1
,

24 720
i i

b c    (1.35) 

  
(6)

2

1 1
,

4 720
i i ij j

b c a c    (1.36) 

  
(6) 2

3

1 1

2 720
i ij j

b a c    (1.37) 

and for 'y : 

 order 1: 
(1)

1

1
' ' ,

2
i

b    (1.38) 

 order 2: 
(2) 2

1

1
' ' ,

2
i i

b c    (1.39) 

 order 3: 
(3) 2

1

1 1
' ' ,

2 6
i i

b c    (1.40) 
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 order 4: 
(4) 3

1

1 1
' ' ,

6 24
i i

b c    (1.41) 

  
(4)

2

1
' ' ,

24
i ij j

b a c    (1.42) 

 order 5: 
(5) 4

1

1 1
' ' ,

24 120
i i

b c    (1.43) 

  
(5)

2

1 1
' ' ,

4 120
i i ij j

b c a c    (1.44) 

  
(5) 2

3

1 1
' ' ,

2 120
i ij j

b a c    (1.45) 

 order 6: 
(6) 5

1

1 1
' ' ,

120 720
i i

b c    (1.46) 

  
(6) 2

2

1 1
' ' ,

20 720
i i ij j

b c a c    (1.47) 

  
(6) 2

3

1 1
' ' ,

10 720
i i ij i

b c a c    (1.48) 

   
(6) 3

4

1 1
' ' ,

6 720
i ij i

b a c    (1.49) 

  
(6)

5

1
' '

720
i ij jk k

b a a c    (1.50) 
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1.5 Analysis of Absolute Stability 

 

The phase-lag analysis of the method (1.3) is investigated using the homogeneous test 

equation 

2" ( ) ( ), .y i y t       (1.51) 

The general method (1.3) are applied to the test equation (1.51) and we obtain the 

following recursive relation  

2 2
0

2 2
0

( ) ( )
, ,

' '( ) '( )

n n

n

y y A v B v
D D v h

hy hy A v B v


    
      

        (1.52) 

where , ',A A B  and 'B  are polynomials in 
2.v D is the stability matrix and its 

characteristic equation can be written as 

2 2 2 2 2

0 1 2( , ) ( ) ( ) ( )v P v P v P v        (1.53) 

which is called the stability equation of RKN method. For explicit RKN method, 

2

0 ( ) 1P v  is set and (1.53) is in form of  

2 2 2 2

1 2( , ) ( ) ( )v P v P v       (1.54) 

or 

 
2 2 2( ) ( ) 0R v S v    . (1.55) 

Denote 

2 2 2( ) ( ) ( ) '( ),R v trace D A v B v    
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2 2 2 2 2( ) det( ) ( ) '( ) '( ) ( ),S v D A v B v A v B v v h    .  (1.56) 

The exact solution of equation (1.51) is given by 

1 2( ) [exp( )] [exp( )] ,n n

ny x i i        (1.57) 

where 0
1,2 0

( )1
( )

2

iy
y




  or  exp i  where      

2 2

1,2 1,2Re Im    is the 

length of the vector 1,2 . Substituting 1,2 into (1.57), we have  

 2 cos( ).ny nz    (1.58) 

Next, we assume that the eigenvalues of D are 1 2,  and the corresponding 

eigenvectors are    1 21, , 1, , , 1, 2
T T

i

i

A
v v v i

B


 


. The numerical solution of (1.52) 

is 

1 21 2 ,n n

ny c c       (1.59) 

where 

2 0 0
1

1 2

,
v y hy

c
v v


 


 1 0 0

2

1 2

.
v y hy

c
v v


 


   (1.60) 

If 1  and 2 are complex conjugates, then 1,2 exp( )c c i  and  1,2 exp i     

where c and  is the length of the vector 1,2c and 1,2 , respectively. By substituting

1,2c and 1,2  into (1.59), we have 

2 cos( ).
n

ny c n       (1.61) 

 

From equation(1.3), Van der Houwen and Sommeijer (1987) introduced the following 

definitions. 
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Definition 1.1 

An interval ( ,0)aH is called the interval of absolute stability of the method if, for all

( ,0),aH H 
1,2 1  , where 1,2  are the roots of polynomial (1.55). 

 

Van der Houwen and Sommeijer (1987) introduced the following absolute stability 

definition from characteristic polynomial (1.55). 

 

Definition 1.2 

The interval ( ,0), 0,a aH H  where for all ( ,0)aH H  such that the conditions  

2 2( ) ( ) 1R v S v  and
2( ) 1S v   

are satisfied, is called the interval of absolute stability for RKN method. 

 

1.6 Analysis of Dispersion (Phase-lag) and Dissipation (Amplification error) 

 

The analysis of dispersion and dissipation was first introduced by Brusa and Nigro 

(1980). Then, Thomas (1984) applied for linear multistep methods and followed by 

Van der Houwen and Sommeijer (1987) for explicit Runge-Kutta-Nyström methods. 

The equation (1.58) and (1.61) led us to the following definition as shown by Van der 

Houwen and Sommeijer (1987). 
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Definition 1.3 

For the RKN method corresponding to the characteristic equation (1.55), the quantities 

( ) ,z z    ( ) 1z       (1.62) 

are the dispersion (phase-lag) and dissipation (amplification error) respectively. If 

1( ) ( ),tv O v   then the method is said to have dispersion order t and if 1( ) ( )uv O v   

then the method is said to have dissipation order u. 

From Definition 1.3, it follows that 

 
2

1

2

( )
( ) cos ,

2 ( )

R v
v v

S v
 

 
  
 
 

 (1.63) 

 2( ) 1 ( ).v S v    (1.64) 

where 

2 2 4 6 2

1 2 3( ) 2 ... ,i

iR v v v v v         0i 
 
for i s , (1.65) 

2 2 4 6 2

1 2 3( ) 1 ... ,i

iS v v v v v         0i 
 
for i s . (1.66) 

If at a point v , ( ) 0,v  then the method is said to have zero dissipative and otherwise 

it is called dissipative. The error ( )v and ( )v are accumulated in numerical process 

which causes inaccuracy and it leads the need to perform many integration step. Thus, 

we will focus on high order of dispersion and dissipation. 
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The dispersion relations which are derived by Van der Houwen and Sommeijer (1987) 

for algebraic order three, four and five explicit RKN method with dispersion up to 

order twelve are as shown in Table 1.1 and the dispersion constant  are as shown in 

Table 1.2. Note that p is algebraic order of the method and q is dispersion order. 

 

Table 1.1: Dispersion relation in term of i and j . 

Order q 

 

 

p=2,3 2 
1 11, 0    

 4 
2 2 1/12    

 6 
2 3 2 32 2 2 4 / 45        

 8 2

2 3 4 2 3 43 6 12 4 12 12 4 /105            

 10 
2 3 4 5 2 3 4 545 45 90 4 30 90 90 4 / 315               

 12 2

3 6 5 2 4 2 3315 1260 630 630 4 56          
 

4 5 6420 1260 1260 8 /1485       

p=4,5 4 
1 2 1 21, 1/12, 0        

 6 
3 3 1/ 360    

 8 
3 4 3 42 2 2 29 /10080        

 10 
3 4 5 3 4 55 60 120 40 120 120 16 / 945            

 12 
3

2

6 5 4 3 4630 2520 1260 105 112 840         
 

5 62520 2520 16 /1485     
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Table 1.2: Dispersion constant, c in equation 
1 3( ) ( ).t tv cv O v     

q  c 

2 2

1 2 1 24 4 4 4 / 3 / 8          

4  1 2 3 1 2 36 12 4 12 12 8 /15 / 24            

6 2

2 1 3 4 1 2 3 4[45 90 180 8 60 180 180 4 / 7] / 360               

8 
2 3 1 4 5 1 2 3 4 5[45 45 90 2 / 7 4 30 90 90 4 / 315] /180                   

10 2

3 6 1 5 2 4 1 2 3

4 5 6

[315 1260 630 630 8 / 45 4 56

420 1260 1260 8 /1485] / 2520

        

  

     

   
 

 

By expanding equation (1.65) and (1.66) as Taylor series, we can determine the 

dissipation order and dissipation constant of a method. 

 

1.7 Analysis of phase-fitted and amplification-fitted 

 

The analysis of phase-fitted (dispersion of order infinity) and amplification-fitted 

(dissipation of order infinity) are based on dispersion and dissipation quantities that 

have been discussed in Definition 1.3. Simos (2001) derived a modified phase-fitted 

RK method for Schrodinger equation and Papadopoulos (2009) and (2010) have 

derived a phase-fitted RKN method for solving oscillatory problems and a modified 

phase-fitted and amplification-fitted RKN method for radial Schrodinger equation. 
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The equation (1.63) and (1.64) led us to the following definition as shown by 

Papadopoulos (2010). 

Definition 1.4 

A method is said to have phase-fitted and amplification-fitted, if ( ) 0v  and ( ) 0v   

hold.  

Theorem 1.1 

We have phase-fitted ( ) 0v  and amplification-fitted ( ) 0v  . Then 

2( ) 2cos( ) 0R v v  and 
2( ) 1 0S v   . 

Proof 

From equation (1.53), we have 

2
1

2

( )
( ) cos 0

2 ( )

R v
v v

S v
 

 
   
 
 

 

 

2 2

2 2

( ) ( )
cos( ) 2cos( )

2 ( ) ( )

R v R v
v v

S v S v
    (1.67) 

For amplification-fitted, 

2( ) 1 ( ) 0v S v   
 

2( ) 1 0S v    

2( ) 1S v  .     (1.68) 
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Substitute (1.68) in (1.67), we have phase-fitted as follow: 

 
2( ) 2cos( ) 0R v v  . (1.69) 

1.8 Objectives of the Thesis 

 

In this study, we develop new and more efficient methods based on explicit RKN 

method for solving homogeneous and inhomogeneous problems.  The new methods 

are tested for both constant and variable step size. The main objectives are  

 

i. to construct explicit RKN methods with high order of dispersion and 

dissipation  for solving oscillatory problems using constant step size. 

ii. to investigate the effect of symplectic properties on explicit RKN with high 

order of dispersion. 

iii.  to construct embedded explicit RKN methods with high order of dispersion 

and dissipation for solving oscillatory problems using variable step size codes. 

iv. to derive phase-fitted and amplification-fitted explicit RKN methods for the 

fourth and fifth order.  
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1.9 Outline of Thesis 

 

In Chapter 1, a brief introduction on the development of numerical solution, basic 

theory on algebraic order of RKN method, dispersion order, dissipation order and 

local truncation error are discussed. 

 

In Chapter 2 and 4, we discuss fifth order explicit RKN methods with high order of 

dispersion and dissipation for constant and variable step size. The stability region of 

the methods has been determined. The strategies for getting the new methods also 

been discussed. The result of the methods has been compared with methods that have 

been developed by Bettis (1979), Dormand et al.(1987) and Senu et al.(2009a) for 

solving oscillatory problem. In Chapter 4, we discuss about embedded pair of explicit 

RKN methods for variable step size where the higher order of the methods are based 

on Chapter 2. The new methods are compared with methods that have been developed 

by Bettis (1979), Dormand et al.(1987) and Senu et al.(2009a) which are also an 

embedded pair of explicit RKN methods. 

 

We discuss symplectic explicit RKN method in Chapter 3. We derive third order 

symplectic RKN methods with three- and four-stage. We also consider high order of 

dispersion to get a more accurate result when dealing with periodic solutions. The 

numerical result has been obtained and compared with Van der Houwen and 
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Sommeijer (1987), Garcia (2002) and Senu et al.(2009c). Method derived by Garcia 

(2002) do not relate to dispersion properties. Van der Houwen and Sommeijer (1987) 

and Senu et al.(2009c) developed method with high order of dispersion and 

dissipation. Since symplectic properties already satisfied zero dissipative, thus we do 

not need to consider for dissipation order. 

 

In Chapter 5, we derived phase-fitted and amplification-fitted explicit RKN methods 

with algebraic condition for order four and five. In fifth order method, we divide the 

chapter into two parts. In first part, we derived phase-fitted RKN methods, and in the 

second part we derived phase-fitted and amplification-fitted RKN methods. We 

compared our method with methods derived by Calvo and Sanz Serna (1993), 

Papakostas et al.(1999), Papadopoulos et al.(2009) and Senu et al.(2009b) for fourth 

order method. While for the fifth order methods, we compared with methods derived 

by Bettis (1979), Dormand (1996) and Senu et al.(2009a). 

 

Finally in Chapter 6, we summarize and conclude our studies. Future studies are also 

suggested in this chapter. 
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1.10 Scope of Study 

 

The main purpose of this research is to solve the second order ordinary differential 

equations (1.1) in which the solutions exhibit a pronounced oscillatory character. In 

this study we are focusing on solving problem (1.1) by using explicit Runge-Kutta-

Nyström methods for oscillating problems with high order dispersion and dissipation. 

The research also covered the phase-fitted and amplification-fitted RKN methods with 

constant and variable step size mode. 
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