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The recalcitrant nature and toxicity of organic pollutants in wastewater to mankind 
have led to extensive research on the usage of semiconductor based heterogeneous 
photocatalysis, in particular zinc oxide (ZnO). In this study, zinc oxide/reduced 
graphene oxide (ZnO/rGO) hybrid photocatalysts with varying graphene oxide (GO) to 
zinc salt volume ratio (0:100, 5:100, 10:100 and 20:100) were synthesized by 
precipitation method using zinc acetate dihydrate, ammonium hydroxide and graphene 
oxide (1 mg/mL) as precursors followed by thermal reduction. The product was 
denominated as ZnO, ZnO/rGO5, ZnO/rGO10 and ZnO/rGO20.

The samples were characterized using X-ray powder diffraction (XRD), transmission 
electron microscopy (TEM), field emission scanning electron microscopy (FESEM), 
raman spectroscopy and particle size analysis (PSA). Surface area and porosity analysis 
and the band gap energy of the photocatalysts were determined by the Brunauer-
Emmett-Teller method (BET) and UV-visible spectroscopic analysis. The introduction 
of graphene into ZnO was found to alter the physicochemical properties of the ZnO 
particles by lowering its band gap energy, reducing both particle and pore sizes and 
increasing its specific surface area and pore volume. 

The corresponding photocatalytic performance of the samples was then investigated by 
degrading methyl orange (MO) under UV light. The hybrid photocatalysts with ZnO 
particles decorated on the graphene sheet were found to achieve significant increased 
photocatalytic activity compared to ZnO with ZnO/rGO10 hybrid photocatalyst 
achieved fourfold enhancement in rate constant that of ZnO and about 40 %
enhancement in the photocatalytic activity for the removal of 10 ppm MO within 3
hours. This was attributed to the presence of graphene that promotes efficient 
photoinduced charge separation by inhibiting the recombination of electron-hole pairs 
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and enhanced dye adsorptivity on the catalyst’s surface via π-π interaction between MO 
and graphene sheet with delocalised conjugated π structure. Changes in textural 
properties and band gap energy of ZnO particles in the hybrid increased the light 
absorption and stronger adsorption of MO on the surface of the catalyst, thereby 
increasing its photocatalytic effciency. Increasing the GO content (ZnO/rGO20) 
however led to a decrement in photocatalytic activity by shielding the active sites on 
the surface of the catalyst, reducing light absorption.

The MO degradation was at its optimum with 96.78% of 10 ppm MO removed within 3 
hours using 0.5 g of ZnO/rGO10 hybrid photocatalyst, obeying the pseudo-first-order 
kinetics according to the Langmuir-Hinshelwood model. The reusability of the 
ZnO/rGO10 hybrid photocatalyst was confirmed by retaining 83% of activity after four 
consecutive cycles. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN PENCIRIAN HIBRID ZnO/rGO FOTOMANGKIN UNTUK
DEGRADASI METIL JINGGA

Oleh

MARILYN YUEN SOK WEN

Disember 2017

Pengerusi: Professor Madya Abdul Halim bin Abdullah, PhD
Fakulti: Sains

Sifat rekalsitran dan ketoksikanbahan pencemar organik yang terkandung dalam air 
sisa telah menyumbang kepada penyelidikan yang menyeluruh terhadap penggunaan
foto pemangkinan heterogenous berasaskan semikonduktor, khususnya zink oksida 
(ZnO). Dalam kajian ini, foto pemangkin hibrid zink oksida/graphene oksida terturun
(ZnO / rGO) dengan nisbah isipadu graphene oksida (GO) dan garam zink (0:100, 
5:100, 10:100 dan 20:100) yang berbeza telah disediakan melalui kaedah pemendakan
dengan menggunakan zink asetat dihidrat, amonium hidroksida dan graphene oksida
(1 mg/mL) sebagai bahan pemula diikuti dengan proses reduksi haba. Produk-produk
ini dinamakan sebagai ZnO, ZnO/rGO5, ZnO/rGO10 dan ZnO/rGO20.

Sampel-sampel tersebut telah dicirikan dengan menggunakan pembelauan sinar-X
(XRD), mikroskopi pengimbasan elektron (FESEM), mikroskopi transmisi elekron 
(TEM) dan spektroskopi Raman. Luas permukaan dan tenaga jurang jalur fotomangkin 
telah ditentukan menggunakan kaedah Brunauer-Emmett-Teller (BET) dan analisis 
spektroskopi UV-sinar nampak. Kemasukan graphene dalam ZnO didapati mengubah 
ciri-ciri fizikokimia ZnO dengan menurunkan tenaga jurang jalur, mengurangkan saiz 
zarah dan saiz liang dan meningkatkan luas permukaan spesifik serta isipadu liang.

Prestasi sampel fotopemangkinan kemudiannya disiasat dengan fotodegradasi metil 
jingga (MO) di bawah sinaran cahaya UV. Pemangkin hibrid ZnO yang diletakkan atas
lembaran graphene didapati mencapai aktiviti fotopemangkinan yang ketara 
berbanding dengan ZnO dengan fotopemangkin hibrid ZnO/rGO10 mencapai pemalar 
kadar empat kali ganda lebih tinggi daripada ZnO dan peningkatan 40% aktiviti 
fotopemangkinan dalam degradasi 10 ppm metil jingga dalam masa 3 jam. Ini
disebabkan oleh pengenalan graphene yang mempromosikan kecekapan dalam 
pemisahan fotogenerasi caj dengan menghalang penggabungan semula pasangan 
elektron-lubang dan mengukuhkan penjerapan bahan pewarna pada permukaan
pemangkin melalui interaksi π-π antara MO dan lembaran graphene yang berstruktur 
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dilokalisasi π. Perubahan tekstur dan tenaga jurang jalur ZnO dalam hibrid 
meningkatkan penyerapan cahaya dan penjerapan MO yang lebih kuat pada permukaan 
pemangkin, seterusnya meningkatkan kecekapan fotopemangkinan. Namun, 
peningkatan dalam kandungan GO (ZnO/rGO20) menyebabkan pengurangan aktiviti 
fotopemangkinan dengan menghalang tapak aktif pada permukaan pemangkin, 
mengurangkan penyerapan cahaya.

Degradasi optimum MO telah dicapai dengan 96.78% daripada 10 ppm MO digradasi
dalam masa 3 jam dengan menggunakan 0.5 g fotopemangkin hibrid ZnO/rGO10. 
Fotopemangkinan ini mematuhi kinetik pseudo-tertib-pertama model Langmuir-
Hinshelwood. Kadar kitar semula bagi fotopemangkin hibrid ZnO/rGO10 telah 
disahkan dengan pengekalan 83% aktiviti fotopemangkinan selepas empat kitaran.
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CHAPTER 1

INTRODUCTION

1.1 Background

Water is a fundamental requirement for life. However, industrialization, urbanization 
and rapid growth of world population generate large amount of wastewater, causing 
environmental impact, particularly water pollution. It was reported that most of the 
natural resources of drinking water are found to be contaminated with diverse toxic 
materials and pathogenic microorganisms. According to a World Health Organization 
(WHO) report, water borne diseases kill nearly 12 million people every year (Baruah et
al., 2012). Statistic also shows that 700 million people across the globe face water 
scarcity, and it is estimated that this problem will touch 1.8 billion people by 2025. 
Hence, it is of utmost importance to maintain the sustainability of water resources.

Effluents discharged from textile industries and other dyeing industries such as 
cosmetic, leather, pulp and paper and plastic are among the key pollutants of the fresh 
water system as strong demand of dye in these industries contributes to enormous 
release of synthetic dyes into wastewater system. Senthilkumar and co-workers 
reported that a rough estimation of 7 × 105 tons of synthetic dyes and pigments is
produced in a year globally (Senthilkumar et al., 2014) but approximately 10-15% of 
the used dyes is lost during colouration process and is disposed into streams and rivers 
through waste (Haldorai & Shim, 2014). The World Bank also estimates that almost 
10-15% of global industrial water pollution comes from the treatment and dyeing of 
textiles as the incomplete fixation of dye on textile during dyeing process results in 
coloured wastewater (Lee et al., 2015b).

The first known use of dye by humans can be traced back to 4000 years ago in the 
wrappings of mummies in Egyptian tombs (Gordon & Gregory, 2012) where most of 
the dye was obtained naturally from sources like plants, insects and mollusks. In 1856, 
the first synthetic dye, mauveine was discovered by Henry Perkin (Venkataraman, 
2012). Since then, synthetic dyes have been extensively used in various industries,
including pulp and paper, paint, food processing, textile and pharmaceutical. Dyes can 
be categorized according to their solubility, where acid, mordant, metal complex, direct, 
basic and reactive dyes are examples of soluble dye while azoic, sulphur, vat and 
disperse dye are insoluble dyes. However, dyes are commonly classified into azo, 
anthraquinone, sulphur, indigoid, triphenylmethyl and phthalocyanine, emphasizing on 
the first two based on the presence of azo linkage and anthraquinone unit in the 
chemical structure. Azo dyes are normally strong and less expensive whereas 
anthraquinone dyes are relatively weak and costly (Gupta, 2009). According to 
Zangeneh and co-workers, more than half of all dyes used in various industries are azo 
dyes (Zangeneh et al., 2015).
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Most of the industrial used synthetic dyes are stable against light, temperature, 
chemicals  and microbial attack (Li et al., 2012). Its toxicity and carcinogenicity make
it objectionable to both humans and aquatic lives. It was reported that dyes and 
pigments found in wastewater can cause skin ulceration, mucous membrane, dermatitis, 
perforation of nasal septum, severe respiratory tract irritation, haemorrhage and sharp 
diarrhea to human (Lavanya et al., 2014). The colour pigments discharged into water 
may also upsets the natural growth cycle and biological metabolism process of aquatic 
organisms by interfering light penetration and reducing the solubility of gases (Lin et 
al., 2012; Omar et al., 2014). This would then cause serious impact to the aquatic 
ecosystem. Further, dyes can sequester metal, causing microtoxicity to fishes (Adegoke 
& Bello, 2015). As such it is important to treat wastewater containing dyes before it is 
introduced into water stream. 

Over the years, several techniques have been employed on the remediation of coloured 
effluents. This includes chemical (i.e. electrochemical oxidation (Redha et al., 2017;
Singh et al., 2016), ozonation (Manivel et al., 2015), chlorination (de Oliveira et al.,
2012)), physical membrane filtration (Abdullah et al., 2009), adsorption (El Haddad et 
al., 2013), coagulation (Chafi et al., 2011), flocculation, reverse osmosis, ion exchange
(Kaith et al., 2015)) and biological processes (Bera et al., 2016). However, these are 
non-destructive techniques which can cause incompleteness of purification, thus, 
creating secondary pollution. As a result, expensive operations such as regeneration of 
adsorbent materials and post treatment of secondary waste are needed (Zangeneh et al.,
2015). Other major limitations include high operating cost, low removal efficiency and
labour intensive operation (Ferreira et al., 2014; Karthikeyan et al., 2016). The 
drawbacks of some conventional treatment methods were listed in Table 1.1.
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Table 1.1: A review on the drawbacks of conventional treatment methods for removing dyes.

Treatment Method Drawbacks of treatment method References

Filtration (microfiltration, ultrafiltration, 
nanofiltration, reverse osmosis)

Short membrane lifespan, costly membrane, residue (concentrated 
sludge) need to be further collected.

(Holkar et al., 2016;
Yagub et al., 2014)

Coagulating/ flocculating agent 
(Al , Fe , Ca ions) Large volume of concentrated sludge produced as final product, high 

chemical cost, pH dependent.
(Gupta, 2009; Singh
et al., 2015)

Oxidation
(chlorine, hydrogen peroxide, 
Fenton reagent, ozonation)

Usage of chlorine gas produced organochlorine compounds, increasing 
the halogen content in wastewater. Fenton reagent required long 
reaction time and tight pH working range (pH 2-4). Generally formed 
sludge.

(Gupta, 2009;
Hamoud et al., 2017)

Electrochemical Expensive energy cost, involve indirect oxidation with chlorinated 
organic and heavy metals that can cause pollution, sludge generation.

(Gupta, 2009;
Saratale et al., 2011)

Biological Treatment Most dye have low biodegradability, requires long reaction time, 
production of toxic aromatic amines from the reduction of azo linkage 
of dye. 

(Gupta, 2009;
Zangeneh et al.,
2015)

Adsorption (activated carbon) Failed to tolerate suspended solids in the influent stream as clogging 
occurs. Activated carbon need to be regenerated, adding cost to the 
process 

(Zangeneh et al.,
2015)
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Advanced oxidation processes (AOP), particularly semiconductor mediated 
photocatalysis served as a better alternative to the above conventional methods in
removing non-biodegradable organic pollutants in water. Generally, photocatalysis 
involves the formation of strong oxidizing hydroxyl radicals responsible to attack the 
organic component without selectivity. The organic compound can then be mineralized 
into carbon dioxide, water and other non-toxic compound, without causing secondary 
pollution (Atchudan et al., 2016; Moussa et al., 2016). It is also an inexpensive process 
involving only stable photocatalytic materials and a natural or artificial light source
(Gayathri et al., 2014). Other advantages of photocatalysis are environmental and 
economical friendly (without using hazardous oxidants; e.g. ozone and chlorination),
easy to handle and can perform at ambient temperature and pressure (Zangeneh et al.,
2015).

The photocatalytic process use in remediation of dye effluents is a heterogeneous 
process, involving the utilization of solid semiconductors such as titanium dioxide 
(TiO2), zinc oxide (ZnO), cadmium sulphide (CdS), iron (III) oxide (Fe2O3) and tin 
dioxide (SnO2) as they have excellent light absorption properties and charge transport 
characteristics. Among various semiconductors, zinc oxide has been a good candidate 
for photocatalytic application owing to its extraordinary properties including excellent 
optical and electrical properties, non-toxic, low production cost, ease of synthesis, high 
abundance, chemically stable, high photosensitivity, and most importantly, having a 
wide band gap (~ 3.37 eV) (Bera et al., 2016; Moussa et al., 2016). Generally, 
semiconductor photocatalyst with a band gap of approximately 1 to 4 eV is required for 
effective degradation of pollutants (Ameen et al., 2012).

1.2 Problem Statement

Although ZnO has been reported as a good photocatalyst, its fast recombination of 
electron-hole pairs reduces its photocatalytic efficiency. To circumvent this limitation, 
ZnO can be modified by loading noble metals, doping with transition, alkaline and rare 
earth metal atoms and incorporation of electron accepting materials such as carbon 
nanotube and graphene based carbon.

Herein, ZnO is hybridised with reduced graphene oxide. Graphene is a two-
dimensional (2D) carbon sheet with a single layer of sp² network of carbon atom. It has 
excellent conductivity, good chemical stability, mechanical flexibility, high mobility of 
charge carriers and high specific surface area (Wang et al., 2012). The electron-
acceptor and electron-transport properties of the above carbon based nanostructures
help in promoting the migration of photogenerated electrons. This would then prolong 
the life times of electron-hole pairs thereby improving the photocatalytic efficiency of 
ZnO.

Methyl orange (MO), a common dyestuff widely used in the fabric industries is used as 
a model pollutant in this study due to its harmful effect to both human and aquatic life.
Its strong absorption range at a wavelength of 380 nm to 750 nm with the maximum 
absorption at 464.3 nm is suitable to be investigated by photocatalysis under UV 
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irradiation. Methyl orange is an azo compound which bear the functional group R-
N=N-R’ (Figure 1.1). It forms orange crystals and is commonly used as an acid-base 
indicator, due to the fact that its anion form is yellow (above pH 4.4) and its acid form 
is red (below pH 3.1). It has high molecular weight, with stable aromatic and cyclic 
structure which made it difficult to be removed. 

Figure 1.1: Chemical structure of methyl orange.

1.3 Scope of Work

In this study, both ZnO and zinc oxide/reduced graphene oxide (ZnO/rGO) hybrid 
photocatalysts with varied graphene oxide (GO) to Zn salt volume ratio were prepared 
using zinc acetate dihydrate and ammonia solution as precursors via precipitation 
method. The effect of doping reduced graphene oxide (rGO) on the physicochemical 
properties of ZnO was studied through characterization on the samples. Second, the 
corresponding photocatalytic efficiency of both ZnO and ZnO/rGO hybrid 
photocatalysts were compared by degrading MO under UV light. ZnO/rGO hybrid 
photocatalysts that achieved the best photocatalytic performance was then optimized by 
different operational parameters, including changing of photocatalyst dosage and 
changing of initial methyl orange concentration. Lastly, the recyclability and real 
wastewater removal efficiency of the photocatalyst were determined separately under 
optimum conditions.

1.4 Objectives

The aim of this study is to improve the photocatalytic efficiency of ZnO photocatalyst 
in degrading organic pollutant by changing the physicochemical properties of ZnO 
particles through hybridization with rGO.
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The specific objectives of the study are outlined as below:

1. To prepare via precipitation method and characterize ZnO and ZnO/rGO
hybrid photocatalysts.

2. To determine the efficiency of the photocatalysts prepared in degrading 
methyl orange (MO) under UV light. 

3. To optimize the photocatalytic activity of the photocatalysts using different 
parameters.

4. To test the effectiveness of the photocatalysts in real wastewater.
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