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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

PARAMETRIC AND NONPARAMETRIC INFERENCE FOR
PARTLY INTERVAL-CENSORED FAILURE TIME DATA

By

AZZAH MOHAMMAD ALHARPY

September 2013

Chair: Noor Akma Ibrahim, PhD

Faculty: Faculty of Science

Survival analysis is used in many fields for analysis of data, particularly in medical

and biological science. In this context the event of interest is often death, the

onset of disease or the disappearance of disease’s symptoms. The time to event is

called failure time, and this failure time may be observed exactly and recorded or

may occurred between two inspection times. Data that include both exact failure

data and interval-censored data is called partly interval-censored data. This phe-

nomenon often happens in clinical trials and health studies that are followed by

periodic follow-ups. Comparison of survival functions is one of the main objectives

in survival studies. Thus, this thesis focuses on the aspect of inferential comparison

problem for survival functions in the existence of partly interval-censored failure

time data. The research is divided into two parts, parametric and nonparametric

inferences.

The parametric maximum likelihood estimator, and a score test and likelihood

ii



© C
OPYRIG

HT U
PM

ratio test for this kind of failure time data are constructed under Weibull distribu-

tions by using direct approach (without imputation) and indirect approach (with

multiple imputation technique).

The nonparametric maximum likelihood estimator and the development of non-

parametric test approach for comparison of survival function of two samples or

more in the existence of partly interval-censored failure time data are constructed

where the Turnbull self-consistency equation is modified and then subsequently

used in the multiple imputation technique.

The behavior of parametric and nonparametric maximum likelihood estimators,

and the development of parametric and nonparametric tests approach for compar-

ison of survival function of two samples in the existence of this type of censored

data are also studied under the non-proportional hazard by using Piecewise expo-

nential distribution.

Simulation studies are carried out to assess the performance of the method and

approach that have been developed. The simulation results indicate that the

developed tests statistics work well and the good points of a certain method depend

on a specific situation. A modified secondary data set from breast cancer study

has been used to illustrate the proposed tests.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENTAKBIRAN BERPARAMETER DAN TAK BERPARAMETER
BAGI DATA MASA KEGAGALAN TERTAPIS-SELANG

SEBAHAGIAN

Oleh

AZZAH MOHAMMAD ALHARPY

September 2013

Pengerusi: Noor Akma Ibrahim, PhD

Fakulti: Fakulti Sains

Analisis mandirian digunakan dalam pelbagai bidang untuk menganalisis data

terutamanya dalam bidang sains perubatan dan biologi. Dalam konteks ini peri-

stiwa yang sering menjadi tumpuan adalah kematian, permulaan penyakit atau

kehilangan gejala penyakit. Masa sehingga peristiwa ini berlaku dikenali sebagai

masa kegagalan dan masa kegagalan ini boleh dicerap dengan tepat dan direkodkan

atau mungkin boleh berlaku diantara dua pemeriksaan. Data yang merangkumi

kedua-dua jenis data kegagalan yang tepat dan juga tertapis selang dipanggil

data tertapis-selang sebahagian. Fenomena ini sering berlaku dalam ujian klinikal

dan kajian kesihatan yang disusuli dengan susulan berkala. Perbandingan di-

antara fungsi mandirian merupakan objektif utama dalam kajian mandirian. Yang

demikian tumpuan tesis ini adalah untuk melihat dari aspek pentakbiran terhadap

masalah perbandingan fungsi mandirian dengan kehadiran data masa kegagalan

tertapis-selang sebahagian. Penyelidikan ini terbahagi kepada dua bahagian iaitu

pentakbiran berparameter dan tak berparameter.
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Penganggar kebolehjadian maksimum berparameter, ujian skor dan ujian nisbah

kebolehjadian bagi data masa kegagalan jenis ini dibina berdasarkan taburan

Weibull dengan menggunakan pendekatan secara langsung (tanpa imputasi) dan

pendekatan secara tak langsung (teknik imputasi berganda).

Penganggar kebolehjadian maksimum tak berparameter dan pengembangan pen-

dekatan ujian tak berparameter untuk perbandingan fungsi mandirian dua sam-

pel atau lebih dengan kehadiran data masa kegagalan tertapis-selang sebahagian

dibina dengan mengubahsuai persamaan kosistenan-kendiri Turnbull, seterusnya

digunakan dalam teknik imputasi berganda.

Tingkah laku penganggar kebolehjadian maksimum berparameter dan tak berpa-

rameter dan perkembangan pendekatan ujian berparameter dan tak berparameter

bagi membandingkan fungsi mandirian dua sampel dengan kehadiran data tertapis

jenis ini dikaji juga dibawah model bahaya tak berkadaran menggunakan taburan

eksponen cebis demi cebis.

Kajian simulasi telah dijalankan untuk menilai keupayaan kaedah dan pendekatan

yang telah dibangunkan. Keputusan simulasi menunjukkan yang ujian statistik

yang dibangunkan berfungsi dengan baik dan kelebihan sesuatu kaedah bergantung

kepada situasi yang tertentu. Satu set data sekunder kanser payudara diubahsuai

dan digunakan untuk mengilustrasi ujian yang telah dibangunkan.
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CHAPTER 1

INTRODUCTION

Survival analysis is a statistical method important in the analysis of life time,

particularly in medical and biological sciences. The outcome variable of interest

is time recorded for an event’s occurence. In the context of medical and biological

studies, the event of interest is often death, the onset of a disease or the disap-

pearance of a disease’s symptoms. The time to event of interest is called either

survival time or failure time and the probability that the subject survives beyond

a specified time is calculated by a basic formula called “survival function”.

One of the complications which arises in survival analysis is the presence of cen-

sored data. Censoring occurs when the information about the failure time of

some subjects is incomplete. Different circumstances can produce many types of

censored data, including right-censored, left-censored and interval-censored data.

Interval-censored data arises when the event of interest can not be immediately

observed and it is only known to have appeared through a random interval of time.

Survival analysis with interval-censored data has been developed over the past

three decades and written research is extensive. For example, Peto and Peto (1972)

discussed partly interval-censored data whereby they treated their exact data as an

interval-censored data, separating exact observation times by very short intervals.

In an article by Peto (1973), the procedure was only to estimate the distribution

function when data are interval-censored.

Turnbull (1976) described a scheme of censored failure time data and derived the

self-consistency equation for computing the maximum likelihood estimator of sur-

vival function. Huang and Wellner (1995) proved the asymptotic normality of a
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class of linear functions of the nonparametric maximum likelihood estimator of a

distribution function with case I interval-censored data.

Interval-censored data are divided into many subcategories, including case I interval-

censored data, case II interval-censored data, doubly interval-censored, mixed

interval-censored and partly interval-censored. Partly interval-censored data is an

important subcategory of interval-censored data. It arises in medical and health

studies, which entail periodic follow-ups. Partly interval-censored data originates

from an event of interest that is observed directly for some subjects, but for re-

maining subjects, the exact time of the event is unknown, except that it falls

within a specific time interval.

1.1 Basic Formulation in Survival Analysis

The basic quantity employed to describe failure time phenomena is the survival

function, the probability of an individual’s survival beyond time t. It is defined as

S(t) = P (T > t) (1.1)

where T is a non-negative random variable denoting the failure time.

If T is a continuous random variable, the survival function is the complement of a

cumulative distribution function, that is,

S(t) = 1− F (t) (1.2)

where F (t) = P (T ≤ t). Furthermore, the survival function is the integral of the

probability density function, that is,

S(t) = P (T > t) =

∫ ∞
t

f(u)du (1.3)

2
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thus

f(t) = −d S(t)

dt
. (1.4)

When T is a discrete random variable a different technique is required. Discrete

random variables in survival analysis created due to rounding off measurements,

collection of failure times into intervals, or when lifetime refers to an integral

number of units. Let T be the discrete random variable taking values, where

0 = t0 < t1 < t2 < · · · , with probability mass function p(tj) = P (T = tj)

j = 1, 2, · · · , . Therefore, the survival function of T is

S(t) = P (T > t) =
∑
tj>t

p(tj) . (1.5)

Additionally, the hazard function and the cumulative hazard function of T are also

fundamental in survival analysis. Hazard function is also known as the conditional

failure rate in reliability and can be defined by

h(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t| T ≥ t) . (1.6)

If T is a continuous random variable, then

h(t) =
f(t)

S(t)
= −d ln[S(t)]

dt
. (1.7)

A related function is the cumulative hazard function H(t), defined by

H(t) =

∫ t

o
h(u) du = − ln[S(t)] . (1.8)

It is easy to see that

S(t) = exp[−H(t)] = exp[−
∫ t

0
h(u) du] . (1.9)

3
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When T is a discrete random variable, the hazard function is given by

h(tj) = P (T = tj | T ≥ tj) =
p(tj)

S(tj−1)
j = 1, 2, . . . . (1.10)

And the cumulative hazard function H(t) is defined as

H(t) =
∑
tj≤t

h(tj) . (1.11)

Note that, S(t), h(t) or H(t) uniquely determines the distribution of T .

1.2 Types of Interval-Censored Data

Interval-censored data is one of the obstacles which arises in survival analysis.

There are several different types of interval-censored data. They are as follows:

1. Case I interval-censored data, also called current status data, arises when

each individual is subjected to observation only at a single follow-up time,

and thus, the event of interest (failure) is only observed either to have or

have not occurred before the observation time. That is, the failure time

of interest is either left- or right-censored data respectively (Keiding, 1991;

Groeneboom and Wellner, 1992; Koul and Yi, 2006).

Case I interval-censored data usually occur in tumorigenicity tests. In these

tests, the tumor start time of animals is commonly of prime interest but

not observable. Instead, tumor status is commonly known at death (either

natural death or euthanization for scientific study). Thus, the tumor start

time is expected only to be less or greater than the death time. There are

many authors who discussed the current status data arising from survival

studies such as Huang and Wellner (1995); Huang (1996), Rossini and Tsi-

4
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atis (1996), Lin et al. (1998), Shen (2000), Ghosh (2001), Martinussen and

Scheike (2002), Xue et al. (2004) and Sun (2006).

2. Case II interval-censored data, also called general interval-censored data, is

defined as data which refers to a situation when the event of interest can-

not be immediately observed and is only known to have appeared through

a random interval of time. Left (right) censoring is a special case of interval

censoring in which the left (right) end point is 0(∞).

Case II interval-censored data arises in several of medical and health studies.

For example, in a study which compares time to cosmetic deterioration of

breasts for breast cancer patients treated with radiotherapy and radiotherapy

plus chemotherapy, patients were examined at each clinical visit for breast

retraction. The breast retraction is only known to take place between two

clinical visits or right censored at the end of the study. The objective of

the study is to compare the patients who received adjuvant chemotherapy

to those who did not and to decide whether chemotherapy affects the rate

of deterioration of the cosmetic state (Finkelstein, 1986; Pan, 2000; Lim and

Sun, 2003; Huang et al., 2008).

3. Doubly interval-censored data refers to the survival time of interest, which

is the elapsed time between two related events called the initial and the

end events, and the observations on the occurrences of both events could be

interval-censoring (Gruttola and Lagakos, 1989; Sun, 1997, 2001, 2004).

If X is the time to the initial event in which X ∈ (LX , RX ] and Y is the time

to the end event in which Y ∈ (LY , RY ], then the random variable T = Y −X

corresponds to the survival time of interest. Doubly interval-censored data

is reduced to right-censored or interval-censored data if the occurence of the

initial event was observed exactly (Deng et al., 2009). This kind of data
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often arise in many fields such as biometry studies and reliability research.

The articles that addressed the doubly interval-censored data arising from

survival studies include Kim et al. (1993), Gomez and Lagakos (1994), Li

and Yu (1997), Gomez and Call (1999), Fang and Sun (2001), Sun et al.

(2004), Sun (2006) and Zhang et al. (2009).

4. Mixed interval-censored data refers to the survival time of interest, which is

observed either to belong to an interval, or to be in right-censoring (Zhao

and Sun, 2004).

5. Partly interval-censored data arise when the exact failure times are observed

of some subjects, but for the remaining subjects, the failure time of interest is

not observable, but is only known to be bracketed between two examination

times (Huang, 1999). An example of this type of partly interval-censored

data is presented by the Framingham Heart Disease study. In this study,

times of the first occurrence of the subcategory angina pectoris in coronary

heart disease patients are of interest. For some patients, the event time

is recorded precisely, but for the remaining patients, time is recorded only

between two clinical examinations (see Feinleib et al., 1975; Odell et al.,

1992). More details about this kind of data is presented in Chapter 3.

1.3 Independent Interval Censoring

Independent interval censoring is a factual assumption in survival analysis. Inde-

pendent interval censoring is the condition whereby the method that generates the

censoring is independent of the subject’s failure time distribution. For instance,

T is failure time of interest and L and R are the two observed values such that

T ∈ (L,R]. Then the independent censoring process for interval-censored data can

6
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be expressed by

P (L < T ≤ R|L = l, R = r) = P (l < T ≤ r) .

. This means the joint survival function of the two observed values L and R

is free from any parameters contributory in the survival function of T . More

importantly, it should be noted that the independent interval censoring is non-

informative interval censoring while the opposite is not always true (Betensky,

2000; Oller et al., 2004; Sun, 2006).

1.4 Proportional and Non-proportional Hazards Model

Proportional hazards model is a common semi-parametric regression model used

for analyzing survival data, proposed by Cox (1972) to examine the effect of pre-

dictor variable on survival time. Proportional hazards model has extensively been

used in medical testing analysis and reliability engineering.

Proportional hazards model is usually written in terms of the hazard model, (see

Kleinbaum, 1996).

h(t,X) = h0(t) e
∑p
i=1 βiXi (1.12)

where h0(t) is called baseline hazard and e
∑p
i=1 βiXi is called the exponential. If

the baseline hazard is specified, the model is called parametric model, but if the

baseline hazard is unspecified, the model is called nonparametric model.

The proportional hazards model (Cox and Oakes, 1984) is expressed by

h1(t,X) = ψ(X) h0(t) (1.13)
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in which the explanatory vector X is constant over time for any subject and h0(t)

is the hazard for the subject under the standard conditions, X = 0 and we require

ψ(0) = 1. Then, the survival function under the proportional hazards model is

given by

S1(t,X) = [S0(t)]ψ(X) . (1.14)

Here S0(t) is a survival function corresponding to the hazard function h0(t). If

ψ(X) = 1, there is no difference between the two survival curves, and if ψ(X) > 1,

then the subject with survival function 1 has a lower survival rate. Correspond-

ingly, if ψ(X) < 1, then the subject with survival function 1 has a higher survival

rate.

Comparatively, in Cox’s non-proportional hazards model, the hazard ratio is rep-

resented as a step function of time. The hazard is given by

h(t, x) = h0(t) exp (

p∑
i=1

(βi + γji)xi) (1.15)

where j = (1, · · · , r), γ1i = 0. In non-proportional hazards model, the hazard

ratio will be constant within each of the r pre-specified time intervals but change

between the intervals. That means, the hazard ratio equals to exp (βi) in the first

interval and exp(βi+γji) in the subsequent intervals for j = 2, · · · , r (Basar, 2006).

In this thesis we assume the parametric model is without covariate. This means

the failure time satisfies a specific distribution . In the case of proportional hazards

model we presume that the failure times follow Weibull distribution and the hazard

ratio between two distributions is

h2(t)

h1(t)
= exp(β), for all t ≥ 0.
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This kind of model is applied in Chapter 3.

In the case of non-proportional hazards model we suppose that the failure times

follow a piecewise exponential distribution and the hazard ratio between two dis-

tributions with two intervals is

h2(t)

h1(t)
= exp (β1) I(t≤t0) + exp (β2) I(t>t0).

Where t0 represents the cut point. If β1 = 0 and β2 6= 0, then we have late hazard

difference, and if β1 6= 0 and β2 = 0, then we have early hazard difference. If

β2 = −β1, then we have cross hazard. This kind of model is applied in Chapter 5.

1.5 Weibull Distribution

The Weibull distribution is a commonly used distribution for studying lifetime

models, biological and medical sciences and reliability. Let T be a random variable

following the Weibull distribution with shape parameter a and scale parameter b.

The Weibull distribution density function (Raymond, 1977) is given by

f(t) =
a

b
(
t

b
)a−1 exp [−(

t

b
)a] t > 0, a > 0, b > 0 (1.16)

Figure 1.1 shows the density functions for different Weibull distribution. The

cumulative Weibull distribution function and survival function are given by

F (t) = 1− exp [−(
t

b
)a] t > 0, a > 0, b > 0 (1.17)

and

S(t) = exp [−(
t

b
)a] t > 0, a > 0, b > 0 (1.18)

respectively.
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The hazard function of Weibull distribution is given by

h(t) =
a

b
(
t

b
)a−1 t > 0, a > 0, b > 0 (1.19)

Figure 1.2 shows the hazard functions for different Weibull distribution. It is easy

to see that the Weibull distribution reduces to the exponential distribution and

has constant hazard over time if the shape parameter a = 1. The hazard function

increases over time if a > 1. The hazard function decreases over time if a < 1.

Figure 1.1: Density Functions for Different Weibull Distribution.
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Figure 1.2: Hazard Functions for Different Weibull Distribution.

1.6 Multiple Imputation

Imputation method is one of common tools to solve missing values. Missing values

arise in many fields of study. For example, in medical and health studies, it is

required for the participants to undergo periodic follow-ups for the examination

of characteristic related to condition of interest. The missing values permanently

occur for several reasons. For handling the missing values there are various impu-

tation methods such as single imputation, multiple imputation and others.

Single imputation is often applied because it is intuitively attractive. In single

imputation, we fill in each missing value by predicted value. The obvious short-

coming in single imputation is that we replace the missing values by a single values

and then treat it as if it were a true values. As a result, single imputation ignores

uncertainty and always underestimates the variance. Multiple imputation rectifies
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this shortcoming, by taking into account both within imputation uncertainty and

between imputation uncertainty. In this thesis the focus will be on multiple im-

putation.

Multiple imputation technique was developed by Rubin (1987) as a general tech-

nique for handling data sets with missing values. Application of the technique

requires three steps: imputation, analysis and pooling.

Imputation step: Impute (fill in) the missing value several times, creating many

augmented data sets.

Analysis step: Analyze each augmented data set separately.

Pooling step: Integrate the analysis results into a final result.

More formally, suppose that we are interested in estimating an unknown param-

eter vector θ. Let θ̂ be an estimator of θ when the data set is complete and Σ̂

is a covariance estimator associated with θ̂. Now, we use multiple imputation to

obtain multiple sets (Y sets) of complete data from the given incomplete data set.

Then, we will obtain Y estimates,
(
θ̂y, Σ̂y

)
, y = 1, · · · , Y.

Rubin’s multiple imputation estimators are given by

θ̂∗ =
Y∑
y=1

θ̂y
Y

,

where θ̂∗ is the estimate of θ based on the Y imputation, and

Σ̂∗ =
1

Y

Y∑
y=1

Σ̂y +

(
1 +

1

Y

) Y∑
y=1

(
θ̂y − θ̂∗

)(
θ̂y − θ̂∗

)T
Y − 1

is the estimate of the covariance, where the first term is the average within the
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imputation covariance associated with the estimate, and the second term is the

between imputation covariance of the estimate multiplying by
(

1 + 1
Y

)
, where the

factor
(

1 + 1
Y

)
is an adjustment for using a finite number of imputations.

The multiple imputation method has been discussed in research analyzing interval-

censored failure time data. This method is used to reduce the interval-censored

data to right-censored data, which can be handled by using specified methods for

right-censored data (for an example see Pan, 2000; Chen and Sun, 2010). This

method is also used to reduce the interval-censored data to exact data, which can

be handled by using specified methods for exact data (for an example see Huang

et al., 2008). There are many authors who employed the imputation methods for

interval-censored data such as Dorey et al. (1993), Satten et al. (1998), Betensky

and Finkelstein (1999), Bebchuk and Betensky (2000) and Pan (2001).

1.7 Problem Statement

Many statistical approaches have been developed to solve the problems that arise

in the survival analysis. One of these problems is comparison of survival dis-

tribution for two samples or more when data are incomplete. In most previously

published research the comparison problem of survival distribution for two samples

or more has been solved for cases with right-censored data and interval-censored

data. Multiple imputation technique is one method that has been used to solve

the comparison problem when the data are right-censored or interval-censored.

In contrast, not many research has been considered for partly interval-censored

data and it is still ongoing but so far limited. For example, Kim (2003) used the

proportional hazard model for regression analysis of partly interval-censored data.

Elfaki et al. (2012) studied the parametric Cox’s proportional hazard model for

partly interval-censored data. Both the articles discuss a parametric comparison
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of survival function by fitting proportional hazard model regression. Zhao et al.

(2008) discussed nonparametric test for partly interval-censored data and evalu-

ated their proposed test under proportional hazard model using simulation studies.

It should be noted that the previous published researches were focused on para-

metric and nonparametric tests for proportional hazard model only and to our

knowledge, there is no any application of multiple imputation to partly interval-

censored data so far. This thesis is motivated by the idea that existing comparison

problem for survival distribution of two samples or more in the presence of partly

interval-censored data is needed to examine the impact of imputation on the re-

sults.

In this thesis, the focus will be on the problem of comparing survival distribu-

tions of two samples or more in the presence of partly interval-censored failure

time data by using the multiple imputation technique under proportional and

non-proportional hazards model. This research will be divided into two parts, the

first part will be devoted to the parametric test for partly interval-censored data

via multiple imputation. We will construct a parametric maximum likelihood es-

timator using Weibull distribution with partly interval-censored data in order to

carry out the test under the proportional hazards model. Also, we will construct

a parametric maximum likelihood estimator for piecewise exponential distribution

with partly interval-censored data in order to implement the test under the non-

proportional hazards model.

The second part of the research will be devoted to the nonparametric test for partly

interval-censored data via multiple imputation. We will modify the self-consistency

algorithm in terms of partly interval-censored data and we will construct the non-
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parametric test in the presence of partly interval-censored data and analyze the

generalized log-rank test via multiple imputation. We will then study the proposed

test under proportional and non-proportional hazards model.

1.8 Objectives

The aim of this research is to establish parametric and nonparametric tests for

comparing survival functions of two samples or more in the presence of partly

interval-censored data via multiple imputation technique.

The main objectives of this study are as follows:

1. To establish the parametric and the nonparametric estimators of survival

function in the presence of partly interval-censored data.

2. To develop a parametric and a nonparametric tests in the presence of partly

interval-censored data via multiple imputation technique to address the com-

parison problem for two samples or more under proportional hazards model

using Weibull distribution.

3. To develop a parametric and a nonparametric tests in the presence of partly

interval-censored data via multiple imputation technique to address the com-

parison problem for a two-sample under non-proportional hazards model us-

ing piecewise exponential distribution.

4. To conduct a simulation study to assess the properties of the survival function

estimates and to investigate the performance of the proposed tests under the

proportional hazards model and non-proportional hazards model.

5. Application of the developed models to a modified real data set.
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1.9 Outline of Thesis

This thesis is organized into six chapters. Chapter 2 provides a review of current

related literature such as the research conducted on parametric and nonparamet-

ric tests which compare two samples or more in the presence of interval-censored

failure time data.

Chapter 3 starts with the description for partly interval-censored data. Then, the

parametric maximum likelihood estimator (PMLE) for survival function is con-

structed under Weibull distribution. Following that, parametric tests such as the

score test and the likelihood ratio test are performed in the presence of the partly

interval-censored data using two approaches, direct (without imputation) and in-

direct (with imputation). Conclusions are then recorded based on the simulation

data and a modified secondary data set from breast cancer.

Chapter 4 studies a nonparametric test with partly interval-censored data via

multiple imputation. Turnbull’s self-consistency algorithm is modified in terms of

partly interval-censored data to construct the nonparametric maximum likelihood

estimator (NPMLE) for survival function. Then, the generalized log-rank test is

carried out in the presence of partly interval-censored data using multiple impu-

tation technique. Following that, a comparison is made between a generalized

log-rank test and Huang’s test under partly interval-censored data. Finally based

on the simulation data and a modified secondary data set from breast cancer the

conclusions are drawn.

Chapter 5 concentrates on the parametric and nonparametric tests under the non-

proportional hazards model with partly interval-censored failure time data via mul-

tiple imputation technique. The PMLE for survival function is constructed under
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piecewise exponential distribution in the presence of the partly interval-censored

data. Then, the parametric tests such as the score test and the likelihood ratio

test are implemented in the presence of partly interval-censored data using multi-

ple imputation technique. Following that, a generalized log-rank test with partly

interval-censored data is applied under non-proportional hazards model. Addi-

tionally, the simulation data and a modified secondary data set from breast cancer

are used. Conclusions from this chapter are drawn.

Finally, Chapter 6 summarizes the study and suggests some recommendations for

further research.

It should be mentioned that all simulation studies were implemented by using the

R programming language.
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