UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF EXTRUDED PUFFED CORN-FISH SNACK FROM SILVER CARP (Hypophthalmicthys molitrix)

HAMIDREZA SHAHMOHAMMADI

FSTM 2013 21
DEVELOPMENT OF EXTRUDED PUFFED CORN-FISH SNACK FROM SILVER CARP
(Hypophthalmicthys molitrix)

HAMIDREZA SHAHMOHAMMADI

DOCTOR OF PHILOSOPHY

UNIVERSITI PUTRA MALAYSIA,
2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use maybe made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEVELOPMENT OF EXTRUDED PUFFED CORN-FISH SNACK
FROM SILVER CARP (Hypophthalmicthys molitrix)

By

HAMIDREZA SHAHMOHAMMADI

Thesis Submitted to the School of Graduated Studies, Universiti Putra
Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of
Philosophy

June 2013
DEDICATION

To my loving family whose never ending support and encouragement helped me to believe in myself and discover that I can accomplish anything with such self-belief.
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF EXTRUDED PUFFED CORN-FISH SNACK FROM SILVER CARP (Hypophthalmicthys molitrix)

By

HAMIDREZA SHAHMOHAMMADI

June 2013

Chairman: Professor Jamilah Bt. Bakar, PhD

Faculty: Food Science and Technology

Corn-based snacks are generally well accepted but low in protein content due to the limited protein–based ingredient incorporated in the formulations. This is because the common extrusion technology used to produce the snack is basically developed for starch-based dough formulation. Incorporating fish protein in the formulation could result in several problems relating to extrusion condition, textural properties and the stability of the snack itself. Therefore, in order to overcome these constraints, the present study was aimed at developing a nutritious puffed corn-fish snack by (i) enhancing the nutrition value and texture of the snack (ii) optimizing the extrusion conditions for enhanced textural properties (iii) and evaluating the storage stability of the developed snack. Extruded puffed corn-fish snack was produced from corn grits containing 0 to 30% of Silver carp (Hypophthalmicthys molitrix). This was followed by
optimizing the composition of the snack using Response Surface Methodology. The optimum formulation was obtained at 85% corn and 15% fish. Improvement of textural characteristics of the puffed corn-fish snack was studied by nucleating materials (calcium carbonate, magnesium silicate, sodium bicarbonate and bran) which were incorporated at 1 to 2% for the first three nucleating agents and at 5 and 10% for bran. The results showed that all nucleating agents significantly enhanced the texture of the puffed snack except for bran. Among the four studied nucleating agents, magnesium silicate at 0.5% was the best texture modifier. Microstructure of the puffed corn-fish snack, which was examined by Scanning Electron Microscope showed that the air cell diameter in the snack which containing 0.5% of magnesium silicate was reduced 7.32 times while the number of cells per unit area was increased 4.76 times compared to the control. In order to optimize the extrusion conditions, RSM experimental design was performed. The optimum extrusion condition was determined to be at 116°C, 1107 g/min feed rate and 148 rpm screw speed. Storage stability of the developed snack both unseasoned and seasoned packed in Biaxillary Poly Propylene films were studied over a storage period of 30 weeks. Microbial conditions were evaluated at 0, 15 and 30 weeks of storage while chemical and sensory parameters were carried out at six weeks intervals for 30 weeks. It is concluded that the shelf-stable, nutritious crispy puffed corn-fish snack containing 15% fish, 84.5% corn and 0.5% magnesium silicate (w/w)
can be produced, packed under air atmosphere conditions with metalized BOPP and well accepted for a storage period of 28 weeks.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBENTUKKAN SNEK JAGUNG-IKAN DARIPADA IKAN KAP PERAK (HYPOPHTHALMICHTHYS MOLITRIX) DENGAN MENGGUNAKAN TEKNIK PENYEMPITAN.

Oleh

HAMIDREZA SHAHMOHAMMADI

Jun 2013

Pengerusi: Professor Jamilah Bt. Bakar, PhD

Fakulti: Sains dan Teknologi Makanan

Snek berasaskan jagung secara umumnya diterima baik tetapi kandungannya yang rendah protein disebabkan oleh bahan-bahan terhad yang berasaskan protein telah ditambah dalam formulanya. Ini semua adalah kerana teknologi penonjolan yang biasa digunakan untuk menghasilkan snek adalah secara asasnya dibangunkan untuk formula doh yang berasaskan kanji. Mencampurkan protein ikan dalam formula tersebut menyebabkan beberapa masalah yang berkaitan dengan keadaan penonjolan, sifat tekstual dan kestabilan snek itu sendiri. Oleh yang sedemikian, dalam usaha mengatasi kekangan ini, kajian ini bertujuan untuk membangunkan snek jagung –ikan yang berkhasiat dengan (i) meningkatkan nilai nutrisi dan tekstur snek (ii) mengoptimumkan proses
penonjolan untuk memperbaiki sifat tekstur (iii) dan menilai kestabilan bagi penyimpanan snek yang telah dibangunkan tersebut. Snek jagung-ikan yang penuh khasiat telah dihasilkan daripada tepung jagung mengandungi 0 hingga 30% isi ikan kap perak (Hypophthalmicthys molitrix). Ini diikuti pula dengan mengoptimumkan komposis snek menggunakan Metodologi Respon Permukaan. Formula optimum telah diperoleh pada 85% jagung dan 15% ikan. Penambahbaikan bagi karekteristik tekstur bagi snek penuh jagung-ikan telah dikaji dengan penukleusan bahan (kalsium karbonat, magnesium silikat, sodium bikarbonat dan bran) yang mana telah dicampurkan pada 1 hingga 2% untuk 3 agen penukleusan yang pertama dan pada 5 dan 10% bagi bran. Dapatan ini menunjukkan yang kesemua agen penukleusan secara signifikannya memperbaiki tekstur bagi snek yang penuh kecuali kepada bran. Di kalangan emapat agen penukleusan yang dikaji, magnesium silikat pada 0.5% adalah pengubah tekstur yang terbaik. Struktur mikro bagi snek jagung-ikan yang penuh yang telah dikaji dengan Mikroskop Elektron Scanning menunjukkan yang diameter udara sel yang mengandungi 0.5% magnesium silikat telah dikerangkan sebanyak 7.32 kali ganda manakala bilangan sel per unit telah bertambah 4.76 kali ganda berbanding dengan pengawalan. Dalam usaha untuk mengoptimumkan keadaan penonjolan, rekabentuk eksperimen RSM telah dijalankan. Keadaan penonjolan yang optimum telah ditetapkan pada 116ºC, 1107 g/min kadar suapan dan 148 rpm kelajuan skru. Kestabilan penyimpanan
bagi snek yang dibangunkan bagi kedua-dua tidak berperisan dan berperisan dibungkus dalam filem berbesikan Biaxillary Poly Propylene telah dikaji bagi tempoh penyimpanan selama 30 minggu. Keadaan bermikrob telah dinilai pada minggu 0, 15 dan 30 bagi penyimpanan manakala parameter berkimia dan bersensor telah dijalankan pada interval enam minggu bagi 30 minggu. Ianya dapat disimpulkan yang snek jagung-ikan penuh khasiat rangup tahan simpan mengandungi 15% ikan, 84.5% jagung dan 0.5% magnesium silikat (w/w) boleh dihasilkan dipedakan dibawah keadaan atmosfera yang berbesikan BOPP dan diterima baik bagi tempoh penyimpanan bagi 28 minggu.
ACKNOWLEDGEMENTS

First of all I would like to thank the Almighty ALLAH for his perpetual assistance. I also pray that God Subahanahu wa Ta’ala bless this work and make it useful for humanity.

I would like to express my gratitude to Professor Dr. Jamilah Bt Bakar, the chairman of my supervisory committee for her valuable advices, guidance, patience and encouragement. My appreciation is also extended to my co-supervisors Professor Dr. Russly B Abdul Rahman and Dr. Noranizan Mohd adzhan for their advices and supports. My best thanks also to Dr. Hamed Mirhosseini for his appreciated supports in the statistical analyses of the study.

I also acknowledge sincerely, my gratitude to the Iranian Fisheries Research Organization (IFRO) for their financial support and also the National Fish Processing Research Center (NFPRC-Iran) for providing the laboratory for chemical, microbial and sensory analyses.

I would like to acknowledge the snack manufacturing company “Golfam Talaei Alborz” for providing all materials and machinery required for conducting the study. My sincere thanks are also due to its investment in commercializing the finding of the study under the brand name of “Puffish”.

Finally, I would like to express my appreciations to all those who have contributed towards the success of this research in so many ways, big and small.
APPROVAL
DECLARATION

I declare that the thesis is my original work except for quotations and citation, which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at Universiti Putra Malaysia or any other institutions.

HAMIDREZA SHAHMOHAMMADI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background of the study 1
1.2 Problems statement 3
1.3 Hypothesis 4
1.4 Objectives 5
1.5 Overall research flow diagram 6

2 LITERATURE REVIEW
2.1 Extrusion processing 7
2.1.1 Definition and advantages 7
2.1.2 Food extruders 11
2.2 Snack foods 14
2.2.1 Definition and general discussion 14
2.3 Extruded snack foods 15
2.3.1 Direct-expanded or second-generation snacks 15
2.3.2 Pellets or third-generation snacks 16
2.3.3 Co-extruded snack 16
2.4 Ingredients for extruded products 17
2.4.1 Structure-forming materials 17
2.4.2 Dispersed-phase filling materials 18
2.4.3 Plasticizers and lubricants 19
2.4.4 Nucleating agents 20
2.4.5 Seasoning substances 21
2.4.6 Soluble materials 21
2.4.7 Silver carp (Hypophthalmicthys molitrix) 22
2.4.8 Corn 23
2.4.9 Starch 24
2.5 Snack food quality, packaging and shelf-life 25
 2.5.1 Sensory assessment 25
 2.5.2 Extruded snack foods quality attributes 27
 2.5.3 Chemical and biochemical deterioration of extruded sack 28
 2.5.4 Total volatile base nitrogen (TVB-N) 28
 2.5.5 Rancidity Test 30
 2.5.6 Microbial 33
 2.5.7 Extruded snack foods packaging 34
 2.5.8 Shelf-life experiment design 37
2.6 Starch-Protein interactions in extrusion processing 40
2.7 Protein-enriched extruded snacks 46
2.8 Summary 49

3 FORMULATION OF EXTRUDED PUFFED CORN FISH SNACK FROM SILVER CARP (HYPOPHTHALMICHTYS MOLITRIX) 53
 3.1 Introduction 53
 3.2 Materials and methods 55
 3.2.1 Materials 55
 3.2.2 Sample preparation and process description 56
 3.2.3 Extrusion 58
 3.2.4 Proximate Composition 58
 3.2.5 Expansion Ratio 59
 3.2.6 Texture Analyses 59
 3.2.7 Sensory Analyses 60
 3.2.8 Experimental design 61
 3.2.9 Statistical analysis 63
 3.2.10 Optimization of the ingredients 63
 3.2.11 Validation of the model 64
 3.3 Results and discussion 64
 3.3.1 Proximate composition 64
 3.3.2 Protein, sensory and texture analyses 67
 3.3.3 Expansion ratio and texture 72
 3.3.4 Optimization using Response Surface Methodology 76
 3.3.5 Validation 78
 3.4 Economic feasibility analyses 80

4 TEXTURE MODIFICATION OF PUFFED CORN-FISH SNACK BY NUCLEATING AGENT 83
 4.1 Introduction 83
4.2 Materials and methods 86
 4.2.1 Materials 86
 4.2.2 Sample preparation 87
 4.2.3 Extrusion 87
 4.2.4 Expansion Ratio 88
 4.2.5 Bulk density 88
 4.2.6 Texture 89
 4.2.7 Scanning electron microscopy 89
 4.2.8 Photography 90
 4.2.9 Sensory Analyses 90
 4.2.10 Experimental design 91
 4.2.11 Statistical analysis 93
4.3 Results and discussion 94
 4.3.1 Sensory analyses 94
 4.3.2 Physical properties 97
 4.3.3 Microstructure of the corn fish snack 101

5 OPTIMIZATION OF PUFFED CORN-FISH SNACK EXTRUSION CONDITIONS USING RESPONSE SURFACE METHODOLOGY 106
5.1 Introduction 106
5.2 Materials and methods 108
 5.2.1 Materials 108
 5.2.2 Sample preparation 109
 5.2.3 Extrusion 109
 5.2.4 Sensory Analyses 110
 5.2.5 Expansion Ratio 110
 5.2.6 Bulk density 110
 5.2.7 Texture analysis 110
 5.2.8 Experimental Design 111
 5.2.9 Statistical analysis 114
 5.2.10 Optimization of the extrusion conditions 114
 5.2.11 Validation of the model 115
5.3 Results and discussion 115
 5.3.1 Expansion Ratio 122
 5.3.2 Bulk Density 124
 5.3.3 Optimization 129
 5.3.4 Validation 133

6 STORAGE STABILITY AND QUALITY CHARACTERISTICS OF THE DEVELOPED PUFFED CORN-FISH SNACK 136

xiii
6.1 Introduction 136
6.2 Materials and methods 138
 6.2.1 Sample preparation 138
 6.2.2 Extrusion 138
 6.2.3 Experimental design 139
 6.2.4 Packaging and storage 141
 6.2.5 Sensory analysis 142
 6.2.6 Moisture gain 143
 6.2.7 Free fatty acid (FFA) 143
 6.2.8 Peroxide value 143
 6.2.9 Thiobarbituric acid 143
 6.2.10 Total volatile basic nitrogen 144
 6.2.11 Microbial Analysis 144
 6.2.12 Storage stability determination 145
 6.2.13 Statistical analysis 147
6.3 Results and discussion 147
 6.3.1 Chemical and biochemical assessment 147
 6.3.2 Peroxide value 149
 6.3.3 Thiobarbituric Acid 153
 6.3.4 Total volatile basic nitrogen (TVB-N) 157
 6.3.5 Free fatty acid 160
 6.3.6 Moisture gain 162
 6.3.7 Sensory evaluation 165
 6.3.8 Microbial changes 171

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES 173

REFERENCES 177
APPENDICES 194
BIODATA OF STUDENT 219
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1.</td>
<td>Variable combination in experimental runs generated by RSM central composition design</td>
<td>62</td>
</tr>
<tr>
<td>3-2.</td>
<td>Proximate composition (wet based) of silver carp muscle.</td>
<td>66</td>
</tr>
<tr>
<td>3-3.</td>
<td>Overall and proportional yields of converting whole silver carp to minced fish</td>
<td>66</td>
</tr>
<tr>
<td>3-4.</td>
<td>Experimental data for protein%, expansion ratio (ER), Overall acceptability (OA), fish odour (FO) and linear distance (LD) from the RSM experiments on extrusion of corn-fish blends</td>
<td>69</td>
</tr>
<tr>
<td>3-5.</td>
<td>Regression equations coefficients and p-value (p) of the predicted reduced models(^a) for response variables including protein, expansion ratio, overall acceptability and fish odour</td>
<td>70</td>
</tr>
<tr>
<td>3-6.</td>
<td>Comparison between experimental (Exp.) and predicted (Pre.) values based on the final reduced models</td>
<td>79</td>
</tr>
<tr>
<td>3-7.</td>
<td>Comparison between practical and predicted values based on the final reduced models at the optimum point (fish= 1.48 kg and corn=8.15kg) for responses</td>
<td>80</td>
</tr>
<tr>
<td>4-1.</td>
<td>The corn-fish snack ingredients content, incorporated with different nucleating agent in kg</td>
<td>92</td>
</tr>
<tr>
<td>4-2.</td>
<td>The corn-fish snack ingredients, containing different amount of magnesium silicate (MS) (0.4-0.7%)</td>
<td>93</td>
</tr>
<tr>
<td>4-3.</td>
<td>Means of sensory attributes and overall acceptability of corn-fish snacks incorporated with different nucleating agents based on 7-point hedonic scale (1-7)</td>
<td>96</td>
</tr>
</tbody>
</table>
4-4. Physical properties of corn-fish snacks incorporated with different nucleating agents

4-5. Physical properties of corn-fish snack incorporated with (0.4-0.7%) magnesium silicate

4-6. Extrudates air cell data for corn-fish snack containing 0.5% Magnesium silicate (S1) and no Magnesium silicate (S3)

5-1. Response surface methodology experimental design on extrusion of corn-fish snack

5-2. Experimental data for expansion ratio (ER), bulk density (BD), sensory texture (ST), overall acceptability (OA), linear distance (LD) and peaks count (PC) from the RSM experiments on extrusion of corn-fish blends

5-3. The regression equations coefficients and significances probability (p) for the predicted reduced models for response variables

5-4. Comparison between experimental and predicted values based on the final reduced models

5-5. Experimental data for expansion ratio (ER) and bulk density (BD) at optimum point [Temperature =116°C , Feed rate= 22 Hz (1107 g/min), Screw speed = 28 Hz (148 rpm)].

6-1. Characteristics of Metalized Biaxillary-oriented poly propylene film

6-2. F- ratios and p-values obtained from ANOVA table (General linear model) for peroxide value (PV), total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), free fatty acid (FFA) and moisture.

6-3. Peroxide value (PV) of the seasoned and unseasoned snacks (Meq/kg) during the storage time

6-4. Regression equations of PV (Peroxide value) (Meq/kg) versus storage time (weeks) for seasoned and unseasoned treatments
6-5. TBA (Thiobarbituric Acid) of the corn-fish snack samples\(^1\) (mg MAD/kg) during storage time 155

6-6. Regression equations of TBA (Thiobarbituric Acid) (mg MDA/kg) versus storage time (weeks) for seasoned and unseasoned treatments 156

6-7. Regression equations of TVB-N (Total volatile basic nitrogen) vs storage time and storage stability estimation 160

6-8. Regression equations of FFA (Free fatty acid) vs storage time 162

6-9. Moisture gain regression equations of treatments versus time period (t) in week 164

6-10. Overall acceptability scores\(^1\) of samples during storage time 166

6-11. F-ratio and p-value obtained from analyses of variance (ANOVA)-general linear model for sensory attributes 167

6-12. Linear regression equations of Overall Acceptability (OA) vs storage time and storage stability estimation 168

6-13. Colour scores\(^1\) of samples during commercial storage time 169

6-14. Sensory crispness scores\(^1\) of samples during commercial storage time 171
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Schematic diagram of extrusion process and raw materials used</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>Screw configuration for co-rotating twin screw extruder</td>
<td>10</td>
</tr>
<tr>
<td>2-3</td>
<td>Screw design for the twin-screw extruder</td>
<td>12</td>
</tr>
<tr>
<td>2-4</td>
<td>Farmed Silver carp (Hypophthalmicthys molitrix), cultured in southern coastal area of Caspian Sea</td>
<td>22</td>
</tr>
<tr>
<td>2-5</td>
<td>Effect of a_w on oxidation- enzymatic and free radical.</td>
<td>32</td>
</tr>
<tr>
<td>2-6</td>
<td>Cross-section of a generic packaging material (Lusas & Rooney, 2002)</td>
<td>35</td>
</tr>
<tr>
<td>2-7</td>
<td>Partially staggered design of storage stability experiments</td>
<td>37</td>
</tr>
<tr>
<td>2-8</td>
<td>Drawn sample design of storage stability experiments</td>
<td>38</td>
</tr>
<tr>
<td>2-9</td>
<td>Stored sample design of storage stability experiments</td>
<td>39</td>
</tr>
<tr>
<td>2-10</td>
<td>Schematic of a network of wheat starch granules and gluten</td>
<td>43</td>
</tr>
<tr>
<td>3-1</td>
<td>Schematic flow diagram for processing of puffed corn-fish snack</td>
<td>57</td>
</tr>
<tr>
<td>3-2</td>
<td>Photograph of extrudates from RSM runs containing different amounts of fish</td>
<td>68</td>
</tr>
<tr>
<td>3-3</td>
<td>Surface plot of A) expansion ratio and B) protein% C) Overall acceptability and D) Fish odour versus ingredients (kg)</td>
<td>73</td>
</tr>
<tr>
<td>3-4</td>
<td>The optimal working conditions illustrated in bright region of overlaid contour plot of protein%, ER (Expansion Ratio), OA (Overall acceptability) and FO (Fish odour) vs ingredients (kg) from RSM runs.</td>
<td>75</td>
</tr>
<tr>
<td>3-5</td>
<td>Predicted optimum point by RSM multiple response optimizer</td>
<td>77</td>
</tr>
</tbody>
</table>
4-1. Sample micrograph of extrudates A) Corn fish snack containing 0.5% Magnesium silicate, B) Corn-fish snack containing no Magnesium silicate

4-2. Sample pictures of extrudates A) Surface and cross section appearance B) close-up longitudinal cross section appearance

5-1. Fitted line plot of fr (Feed rate) (g/min) vs FR (Feed rate) in (Hz)

5-2. Effect of Feed rate on A) Expansion ratio (quadratic model), B) Bulk density (cubic model) of extrudates

5-3. Effect of temperature in the second zone (°C) and Feed rate (Hz) on (a) Expansion ratio and (b) Bulk density illustrated by counter plot

5-4. Effect of barrel temperature (T) in the 2nd zone (°C), feed rate (FR) (Hz) and screw speed (SS) (Hz) on expansion ratio (ER)

5-5. Effect of barrel temperature (T) in the second zone (°C), feed rate (FR) (Hz) and screw speed (SS) (Hz) on bulk density (BD) of extrudates

5-6. Photograph of corn-fish extrudates from RSM runs

5-7. Overlaid counter plot of expansion ratio (ER) and bulk density (BD) versus a) Feed rate (FR) and screw speed (SS), b) Temperature (T) and SS, c) T and FR

5-8. Response optimizer of expansion ratio and density versus barrel temperature, feed rate and screw speed.

5-9. Regression fitted line plot of expansion ratio (ER) and Bulk density (BD) of the extrudates

6-1. Full factorial (2x2x6) experimental design of the storage stability of the snacks

6-2. The mathematical model for storage stability determination when the fitted line plot of a critical attribute (y) is linearly decreasing vs time
6-3. The mathematical model for storage stability determination when a fitted line plot of a critical attribute (y) is quadratically changing with variable (time)

6-4. Main Effects Plot (data means) for peroxide value from ANOVA-General linear model

6-5. Interaction plot (data means) for peroxide value from ANOVA-General linear model

6-6. Main Effects Plot (data means) for Thiobarbituric Acid (TBA) from ANOVA-General linear model

6-7. Main Effects Plot (data means) for total volatile basic nitrogen (TVB-N) from ANOVA-General linear model

6-8. Interaction plot (data means) for Total volatile basic nitrogen (TVB-N) from ANOVA-General linear model

6-9. Main Effects Plot (data means) for total free fatty acid (FFA) from ANOVA-General linear model

6-10. Interaction plot (data means) for moisture content from ANOVA-General linear model

6-11. Main Effects Plot (data means) for overall acceptability from ANOVA-General linear model

6-12. Interaction plot (data means) for overall acceptability from ANOVA-General linear model
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Ave.</td>
<td>Average</td>
</tr>
<tr>
<td>a_w</td>
<td>Water activity</td>
</tr>
<tr>
<td>BD</td>
<td>Bulk Density</td>
</tr>
<tr>
<td>BOPP</td>
<td>Biaxillary-Oriented Poly Propylene</td>
</tr>
<tr>
<td>CC</td>
<td>Calcium carbonate (CaCO_3)</td>
</tr>
<tr>
<td>cc</td>
<td>Cubic centimeter</td>
</tr>
<tr>
<td>CCD</td>
<td>central composite cubic design</td>
</tr>
<tr>
<td>cfu/g</td>
<td>colony forming units per gram</td>
</tr>
<tr>
<td>CON</td>
<td>Control</td>
</tr>
<tr>
<td>$^\circ\text{C}$</td>
<td>Degrees centigrade</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>ER</td>
<td>Expansion ratio</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FFA</td>
<td>Free Fatty Acid</td>
</tr>
<tr>
<td>FO</td>
<td>Fish Odour</td>
</tr>
<tr>
<td>FR</td>
<td>Feed rate</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IFRO</td>
<td>Iranian Fisheries Research Organization</td>
</tr>
</tbody>
</table>
ISIRI Institute of Standards and Industrial Research of Iran

kg Kilo gram
L Length
LD Linear distance
M Molar
MAP Modified atmosphere packaging
MDA Malondialdehyde
Meq Milliequivalent
MF Maximum Force
mg Milligram
min Minutes
mL Milliliter
mm Millimeter
MS Magnesium Silicate (MgSio$_3$)
N Normality
N$_2$ Nitrogen
NB Sodium bicarbonate or sodium hydrogen carbonate (NaHCO$_3$)
NFPRC National Fish Processing Research Center
No. Number
OA Overall acceptability
OPP No-metalized Biaxillary-Oriented Poly Propylene
OTR Oxygen transmission rate
p Probability
PC Peaks count
PV Peroxide value
R^2 Coefficient of determination
RH Relative humidity
rpm Revolution per minute
RSM Response surface methodology
SC Sensory crispness
SD Standard deviation
SS Screw speed
ST Sensory texture
TBA Thiobarbituric acid
T Temperature
TVB-N Total volatile basic nitrogen
UPM University Putra Malaysia
W Weight
WB Wheat bran
µm Micrometer
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Extrusion cooking has been shown to be the most efficient technology, in which we can break down raw food ingredients to a well cooked and pre-digested form. This process can increase storage stability from a few weeks to 9-12 months and the product can be consumed in a convenient, ready-to-eat form by the final consumer (Kazemzadeh, 2011). Classic extruded foods and snacks composed of cereals, starches, sugars and oils are believed to be low nutrient-dense food with wide range of consumers, particularly children and young people. They are known as "junk food" due to their high fat and carbohydrate and low protein content (Nurtama & Sulistyani, 1997). However, the global snack food market has developed remarkably in recent years and is expected to reach US$334.7 billion by 2015. Nowadays the market demand for more nutritious snacks is rising considerably. Therefore, there is an increasing trend for some animal proteins to be mixed with grains to produce a complex matrix, using extrusion technology that would meet the needs of the new market demand (Jose, 2012).
Fish species are known to provide high content of important constituents for the human diet such as nutritional and readily-digestible proteins, lipid-soluble vitamins, microelements and polyunsaturated fatty acids (Friedman, 1996). However, it is not a major part of the diet for most Middle-Eastern people. Besides, in the seafood industry, 30-80% of the fish catch, depending on species, is not utilized for human consumption. Extrusion technology can provide a method to utilize fish muscle recovered from underutilized fish (Choudhury & Gogoi, 1996). Restructuring the fish proteins together with a carbohydrate matrix using extrusion technology, can result in a valuable ready-to-eat food that adds value to an underutilized fish species such as silver carp. Extrusion is the best method to eliminate anti nutritional factors. Furthermore this treatment is the most effective method to improve protein and starch digestibility (Alonso, Aguirre, & Marzo, 2000).

Its beneficiaries would be consumers, producers as well as suppliers. The combination of carbohydrates and fish proteins is excellent from the nutritional point of view (SR18, 2005). By combining complementary proteins, the overall quality of the protein as well as its digestibility will be increased. However, to bring this idea to fruition following problems need to be considered.
1.2 Problems statement

I. Cereal extruded snacks are high-calorie and low-protein food.

II. Silver carp (*Hypophthalmicthys molitrix*) is cultured in abundance but it is under-utilized. In spite of having white flesh muscle advantage and the potential of providing a good source of nutritious foodstuff, its abundance of tiny bones makes it unpopular for filleting and direct consumption particularly when the fish are small (less than 1kg).

III. Since extrusion processes are normally designed for starch-based snacks, incorporation of fish muscle in extrusion feed could be problematic from different points of view e.g. technical, consumer acceptability and quality attributes.

IV. The incorporation of minced fish as an ingredient of extruded puffed snack may affect the storage stability of the product.

Therefore, the present research was aimed at developing an extruded puffed corn-fish product with the following hypothesis and objectives.
1.3 Hypothesis

I. Extrusion technology can be used to produce a nutritious extruded puffed corn-fish snack with an acceptable combination of corn and minced fish (silver carp).

II. Nucleating agents such as inorganic salts are able to enhance the texture of the puffed corn-fish snack by compensating the negative effect of high moisture content of minced fish.

III. Formulated snacks should have an acceptable storage stability due to its low a_w and low moisture.

Therefore the objectives of the study are as below:
1.4 Objectives

I. To develop an acceptable formulation for extrusion process and optimizing the fish content of the puffed corn-fish snack.

II. To determine the effects of nucleating substances on the texture of the extruded corn-fish puffed snack, in order to enhance the texture, as well as determine a suitable additive and its proper level.

III. To study the effects of process conditions on textural properties and to optimize feed rate, screw speed and barrel temperature of the developed puffed corn-fish snack.

IV. To investigate quality changes during storage, determining storage stability and evaluating the effects of fish incorporation and packaging conditions on storage stability.
1.5 Overall research flow diagram

Formulation and optimization of the fish content in the extrusion feed
(Chapter 3)

Texture improvement of the formulated snack by nucleating agents
(Chapter 4)

Determination of the proper level of incorporation of the selected nucleating agent to enhance the texture
(Chapter 4)

Identification of the effects of the extrusion feed rate, barrel temperature and screw speed on the physical properties of the developed snack and determining the best extrusion conditions
(Chapter 5)

Evaluation of the storage stability of the developed snack using chemical, biochemical and sensory analyses
(Chapter 6)
REFERENCES

182

188

Mix Texturized by Extrusion Cooking. LWT - Food Science and Technology, 29(5-6), 526-535.

