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THEORETICAL STUDY OF STRUCTURAL, ELECTRONIC, AND 

          MAGNETIC PROPERTIES OF GRAPHENE WITH ADSORBED   
PALLADIUM AND VANADIUM BASED ON DENSITY  

FUNCTIONAL THEORY 
 
 By 

YUSUF ZUNTU ABDULAHI 
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Chairman:   Md Mahmudur Rahman, PhD 

Faculty:        Science 
 
Graphene possesses interesting properties projected for various potential applications. 
The accurate understanding of how these properties are affected by the introducing 
foreign nanostructures into the sheet particularly transition metals (TM) has received 
the most attention. It is necessary to use theoretical method based on quantum 
mechanics to study the properties of graphene system with adsorbed metallic 
nanostructures. This thesis employs first principles calculations based on density 
functional theory implemented in the QUANTUM ESPRESSO simulation package to 
investigate the stable geometries and electronic and magnetic properties of graphene 
with adsorbed transition metals (palladium Pd and vanadium V).  
 
The calculations are performed using ultrasoft pseudopotential and Perdew-Burke-
Enzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation 
functionals. For Brillouin zone (BZ) integrations, 8×8×1 set of k-points is sampled 
using Mankhorst-Pack scheme. In modeling a graphene sheet, 4×4×1 supercell 
containing 32 carbon atoms is constructed in a 3-dimensional periodic boundary 
conditions with 2.46 Å in plane lattice constant. Plain-wave basis with the kinetic 
energy cut-off of 500 eV is used to expand the wave functions. The structural 
optimizations of various configurations considered are performed to allow the 
structures to relax based on force and energy minimization. For the adsorption of Pd 
adatom and dimer, the results show significant covalent bonding with the graphene 
sheet. The density of states reveals that the system is semiconducting and metallic at 
low coverage adsorption of Pd adatom and dimer respectively. Moreover, it is found 
that Pd-Pd bond length is much weakened compared to an isolated Pd dimer with 
nearly symmetric height above the adsorption sites indicating that linear coverage can 
be achieved.  
 
For adsorption of vanadium atoms, the findings show that the system is metallic and 
magnetic. The stable vanadium dimer configuration which has not been reported in the 
previous works has shown little enhancement of magnetic moment per unit cell 
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compared to isolated dimer whereas single V adatom adsorption has magnetic moment 
value per unit cell far more than that of an isolated V atomic value of 3µB. The orbital 
proportion in bonding between vanadium and carbon (C) is examined based on 
calculated projected density of states (PDOS). It is found that pz of C is dominated by 
the spins states even at the vicinity of Fermi level and partial contribution from d 
orbital of V was also observed. This trend of orbital contributions appears to be 
uniform even for Pd atoms adsorption on graphene 
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Grafin mempunyai ciri-ciri menarik yang berpotensi diguna dalam pelbagai aplikasi. 
Kefahaman tepat tentang bagaimana ciri-ciri ini dipengaruhi oleh nanostruktur asing 
yang dimasukkan ke dalam lapisan grafin, khususnya logam peralihan, telah mendapat 
perhatian ramai.  Adalah perlu untuk menggunakan kaedah teori berdasarkan mekanik 
kuantum bagi mengkaji ciri-ciri sistem grafin yang bernanostruktur logam terjerap. 
Tesis ini menggunakan pengiraan prinsip pertama berasaskan teori fungsian 
ketumpatan untuk diimplementasi dalam pakej simulasi QUANTUM ESPRESSO bagi 
mengkaji geometri stabil dan ciri elektronik dan magnet grafin dengan logam peralihan 
terjerap (paladium Pd dan vanadium V).  
 
Pengiraan dilakukan mengguna pseudokeupayaan dan fungsian korelasi-pertukaran 
penghampiran cerun teritlak (GGA) Perdew-Burke-Enzerhof (PBE). Bagi kamiran zon 
Brillouin (BZ), set 8 8 1 bagi titik-k disampel menggunakan skema Mankhorst-Pack. 
Dalam memodelkan lapisan grafit, supersel 4 4 1 mengandungi 32 atom karbon 
dibangunkan dengan syarat sempadan berkala 3-dimensi dengan pemalar kekisi satah 
2.46 Å. Asas gelombang satah dengan tenaga kinetik terpenggal 500 eV diguna untuk 
mengembangkan fungsi gelombang. Pengoptimuman berstruktur bagi pelbagai 
konfigurasi yang dipertimbangkan dilakukan untuk membenar struktur-struktur ini 
santai berdasarkan meminimumkan daya dan tenaga. Bagi jerapan adatom dan dimer 
Pd, keputusan menunjukkan ikatan kovalen yang signifikan dengan lapisan grafin. 
Ketumpatan keadaan menunjukkan bahawa sistem adalah bersifat semikonduktor dan 
logam masing-masing pada jerapan litupan rendah adatom dan dimer Pd. Tambahan 
itu, didapati juga panjang ikatan Pd-Pd sangat lemah berbanding dengan dimer Pd 
terasing dengan ketinggian hampir bersimetri di atas tapak jerapan, yang menunjukkan 
bahawa litupan linear dapat dicapai. 
 
Bagi jerapan atom vanadium, dapatan menunjukkan sistem adalah bersifat logam dan 
bermagnet. Konfigurasi dimer vanadium yang stabil, tidak pernah dilaporkan dalam 
penyelidikan sebelum ini, menunjukkan hanya sedikit peninggian nilai momen magnet 
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per sel unit berbanding dengan dimer terpencil manakala jerapan adatom V tunggal 
mempunyai nilai momen magnet per sel unit jauh lebih tinggi daripada nilai atom V 
terpencil 3 B. Kadar orbital dalam ikatan anatara vanadium dan karbon (C) diteliti 
berdasarkan pengiraan ketumpatan keadaan terunjur (PDOS). Didapati bahawa pz bagi 
C didominasi oleh keadaan spin walaupun di  sekitar paras Fermi dan sumpangan 
separa dari orbital d juga diperolehi. Tren sumbangan orbital kelihatan lebih sekata 
walaupun untuk jerapan atom Pd ke atas grafin. 
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CHAPTER 1 

INTRODUCTION

1.1  Motivation and Background of Study 

Today, computational modeling at the atomistic level description serves as an 
alternative approach to experiments for understanding physical properties associated 
with nanoscale materials, for example carbon nanostructures and their derivatives. In 
various fields of research such as condensed matter physics, exploring these 
fundamental physical properties associated with a material has become an 
indispensable research interest for designing and predicting an excellent nanosystem 
to be used in many fields of applications such as modern nanotechnology. These 
rapid improvements in accurately predicting associated physical properties of 
nanosystems have stimulated advances which in return have given rise to the 
isolation of viable carbon materials. Nowadays, the leading nanoscale carbon 
material that has received intense attention in the wake of the silicon based industry 
is called graphene, a single layer of graphite in a hexagonal honey comb lattice made 
of carbon atoms (Novoselov et al., 2004). 
  
The fascinating physics of graphene has been one of the central interests that fuelled 
this study (Zhang et al., 2005) since its isolation (Novoselov et al., 2004). Due to its 
peculiar two dimensional nature, it exhibits, unique properties such as magneto 
transport (Zhang et al., 2005), tunable band gap (Han et al., 2007), extremely high 
carrier mobility (Geim, 2009), electron confinement effects (Stander et al., 2009) and 
Klein tunneling nature (Phark et al., 2011). It has been demonstrated theoretically 
that these unusual physical properties of graphene are as a result of the strange linear 
band dispersion at the momentum or Fourier space known as Dirac points (Zhou, 
2006). At these points, Dirac fermions (electrons) drift at high speeds that are 
independent of their energy and directions. Close to the Dirac points and at a room 
temperature, the mobility of charge carriers is approximately 15000 cm2V-1s-1 which 
are more than the well-known established semi-conductors, for example silicon of 
nearly 1400 cm2V-1s-1 (Novoselov et al., 2004). This massless behavior of electrons 
in graphene is responsible for the unique properties mentioned above. 
  
While various groups have succeeded in getting isolated graphene sheets with 
different techniques (Berger et al., 2006; Sidorov et al., 2007), there have also been 
continuing efforts simultaneously to explore the effects of various adsorbed guest 
atoms (Krasheninnikov et al., 2009; Paulo et al., 2010) or molecules (Sanyal et al., 
2009; Alzahrani, 2010) on graphene because potential applications and electronic 
transports properties experiments with graphene require contact with metal electrodes 
(Peres, 2010) and this may influence the target electronic properties of graphene. In 
this regard, graphene has been used experimentally as a substrate for growth of 
nanometer-sized crystal structures (Hupalo et al., 2011) which indicates the 
possibility of controlling the structure to produce viable future nanodevices. 
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Among the widely theoretically studied single atoms (Chan et al., 2008), dimers 
(Alzahrani, 2012) and molecules (Zhou et al., 2010) adsorption on graphene, 
research interest, particularly in transition metals (TM) adsorptions on graphene 
continues to grow fast and expand the ranges of applications from catalysis, 
spintronics to nanomagnetic devices. This is because additions of metallic 
nanostructures on graphene have the tendency to enhance the surface reactivity of 
graphene and hence the physical and chemical behaviors needed for desired 
applications will probably be more readily achieved as compared to pristine 
graphene. This further provides a promising feature for the development of graphene 
based nanodevices depending on the nature of interactions between graphene with 
the adsorbed nanostructures. 
  
Theoretical works of TM atoms adsorption on graphene have provided a better 
understanding of the physical and chemical behavior associated to the changes in the 
electronic structure of graphene (Chan et al., 2008). Some of the TM, vanadium and 
palladium (V, Pd) adsorbents on carbon nanostructures and related structures that 
recently have received the attention of the scientists community are those that satisfy 
stoner criterion of magnetism, because their size and reduced dimensionality in 
coordination number are well known to influence their physical properties and hence 
may serve as good candidates for modern nanotechnology applications. 
  
In their electron-beam evaporation and transmission electron microscopy (TEM) 
study, Zhang et al., (2000) experimentally observed that linear coatings in the form 
of nanowire of palladium (Pd) on the outside wall of the suspended single-walled 
carbon nanotubes can be achieved. Their results also shed light on electrical coupling 
between nanotubes and metal contacts, an issue important to both fundamental 
electrical properties of nanotubes and their applications as high performance devices. 
  
On the other hand, Hu et al., (2010) have theoretically investigated the geometry, 
electronic and magnetic properties of fifteen transition metals single atoms adsorbed 
on graphene. Their results indicated that the graphene properties can be effectively 
tuned by TM adsorption and further give an account based on strong covalent 
bonding such that palladium among others can be used as a functional material to 
coat uniformly graphene and carbon nanotubes. In another recent study, Thapa et al., 
(2011) have been able to show appearance of magnetic moments for Palladium dimer 
adsorbed in perpendicular direction, although no magnetic moments have been 
confirmed for Pd single atom and parallel Pd dimer which is in perfect agreement 
with the previous works (Chan et al., 2008; Hu et al., 2010). 
  
Osuch et al., 2005 have reported that appearance of magnetism in dimer 
perpendicular configurations is as a result of pattern hybridization of 4d orbital of Pd 
and 2p orbital of C. However, electronic properties of dimer in parallel 
configurations are importantly missing from the report. Understanding the effects of 
the parallel configuration on the properties of graphene is essential, since uniform 
coating of Pd has been predicted as an attractive property of Pd different from other 
metals which is useful in making contact between electrode and graphene for various 
applications (Hu et al., 2010). 
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Moreover, it has been also observed experimentally by ultraviolet photoelectron 
spectra that Pd among others deposited on graphite nucleated into a cluster, large 
enough to exhibit bulk properties even at low concentrations. In contrast, there are 
isolated adatom on amorphous carbon at low concentrations (Egelhoff and Tibbetts, 
1979). In furtherance of the quest for possible formation of palladium planar surface 
on graphene, Sundaram et al., (2008) coated graphene experimentally by electro 
deposition with palladium and the metal nucleated at edges and defects of the 
graphene sheets. 
  
The peculiar properties exhibited by carbon nanostructures with adsorbed vanadium 
has triggered more interest to study the effects of V atoms on graphene due to its 
significance in discussing fundamental nanophysics of magnetic materials. The 
theoretical investigation of vanadium atom adsorption on graphene surface started 
long ago, before graphene was discovered, with the team of Duffy and Blackman 
(1998) whose investigations were on bonding site, adsorption energy and magnetic 
property of transition metal adatoms and dimers on graphite.  
 
Their results have indicated that the adatoms in the lower part of the series preferred 
to position themselves above carbon (C) sites and their magnetic moments are higher 
than their free atom values. The atoms in the dimers were located either above the 
neighboring rings or above a line passing through the centers of C-C bonds at 
opposite sides of a ring. The magnetic moment of most of the dimers is similar to 
their free diatomic molecules because surface relaxation was not accounted for 
during the calculations.  

Additionally, Hu et al., (2010) by means of spin-polarised first principle 
pseudopotential method have confirmed the chemisorption of vanadium on graphene, 
tunable electronic property and enhanced magnetic moments of the system. Liu et al., 
(2011) have suggested new mechanism of charge transfer from metal atoms to 
graphene with values more than the previous works.  
 
In spite of increasing number of metal-graphene studies, however, there is no prior 
theoretical study on graphene sheet with adsorbed small clusters of 3d vanadium 
metal. In contrast, an investigation on carbon nanotube (CNT) and related 
nanostructures with adsorbed V have been performed (Durgun and Ciraci, 2006; Xie 
et al., 2011; Ma et al., 2012). It has been shown that vanadium on boron nitride (BN) 
sheet has 100% spin polarization at the Fermi level which has potential in spin 
filtering material applications (Li et al., 2012), despite numerous disagreement with 
previous theoretical (Reddy et al., 1997; Ramanathan et al., 2009) and experimental 
(Huttel et al., 2003; Ben ok et al., 2006; Sheng et al., 2012) studies on various 
surfaces. This is expected, because different surfaces may have different charge 
exchange and thus the population of s and 3d orbitals may be changed depending on 
the type of surface employed.  
 
As predicted by the studies mentioned above, vanadium atom adsorption on various 
structures may have an attractive property different from other metals which is 
significance in making graphene related devices. Therefore, deeper understanding of 
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the effects on the properties of graphene by adsorbed vanadium atoms is essential 
particularly that graphene layer shares similar behavior in terms of interactions with 
metals the way BN and CNT do, especially CNT which has graphitic structure.  
 
Thus, this research aims to contribute to the understanding of the geometrical 
stability and electronic and magnetic properties of the graphene system with low 
coverage adsorbed palladium and vanadium atoms and dimers based on structural 
changes, charge density distributions, magnetic moment per unit cell and electronic 
structure changes using first principles plane wave density functional theory 
calculations. The significance of understanding these changes will help both 
fundamental and applied physics to understand how properties of graphene are 
affected by deliberately introducing low coverage foreign atoms to the surface of 
pristine graphene. 
  
In view of this the study will be performed in stages. Three known adsorption sites H 
(hollow site of the hexagon), B (bridge site) and T (atom top site) for both Pd and V 
adatoms on graphene configurations will be studied. Parallel and perpendicular 
configurations for both Pd and V dimer on these high symmetric adsorption sites (H, 
B and T) will be considered. In the first part, convergences and structural 
optimization for the equilibrium atomic positions on various configurations will first 
be examined as a necessary step to justify the chosen configurations as well as to 
have a bench mark of accuracy. Secondly, the stable structural properties of the 
various configurations will be determined. Finally, electronic and magnetic behaviors 
will be analyzed based on the most stable geometries of the graphene system with 
adsorbed TM atoms and dimers. 
 
1.2 Problem Statement 

Graphene, a single sheet of graphite has triggered a great research interest. Its unique 
physical properties such as ultrahigh electron mobility, low dimensionality and 
promising electronic properties make it an interesting as well as viable candidate in 
nanoscale industry. However, these fascinating properties can be modified, 
controlled and enhanced when combined with different guest materials depending on 
the technological end use. So far, adsorption of atoms, molecules or functional group 
on its sheet is one of the leading vectors toward realization of the quests. But despite 
numerous studies for understanding the effects of transition metals (TM) such as 
(palladium (Pd) and vanadium (V)) atomic adsorptions on graphene for both 
fundamental and applied research, there are many possibilities yet to be explored 
such as understanding the effects low coverage adsorptions of Pd and V adatoms and 
dimers on the graphene sheet. Therefore, this research proposes to give an account of 
the structural stabilities, electronic and magnetic properties of graphene system with 
adsorbed Pd and V atoms and dimers. 
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1.3 Aims and Objectives 

The main aim of the thesis is to investigate and establish the geometric stabilities and 
electronic and magnetic properties of a graphene system with adsorbed transition 
metal (Pd, V) adatoms and dimers using first principle calculations. The objectives 
are: 

i. To determine the structural stabilities of the graphene system with 
adsorbed Pd and V single atoms and dimers based on adsorption energy 
and bond length, charge density distributions and adsorption height. 

 

ii. To analyze the electronic properties of the graphene system with adsorbed 
Pd and V single atoms and dimers based on total and projected density of 
states. 

 
iii. To examine the magnetic properties of the graphene system with adsorbed 

Pd and V single atoms and dimers based on magnetic moment per unit 
cell. 

1.4 Scope of Study 

In this study, first principle calculations are performed to elucidate the structural 
stabilities of the graphene system with adsorbed palladium (Pd) and vanadium (V) 
single atoms and dimers in terms geometric stability parameter and the effects of 
these adsorbed atoms on the electronic, magnetic properties of graphene in terms of 
density of states, projected density of states and magnetic moment per unit cell 
respectively. Although, there are prior theoretical works on graphene with adsorbed 
Pd cluster, but none have studied the electronic structure changes of parallel Pd 
dimer adsorption on pure graphene. This is important because recent theoretical 
study (Hu et al., 2010) have predicted that uniform coating is an attractive property 
of Pd different from other metals which is the requirement needed in making contact 
between electrode and graphene. 
  
For vanadium atom adsorption, none have reported the dimer model adsorption on 
graphene. This is also important as many interesting physical properties have been 
reported for the adsorption of vanadium adatom (Yagi et al., 2004) dimer and metal 
chain (Durgun and Ciraci, 2006) on CNTs. Consequently, this research intends to 
reveal these effects of TM (V, Pd) on this system. All models and computational 
procedures will be tested for convergences to justify the accuracy of the calculations 
and experimental data will be compared where necessary. The preliminary results 
obtained serve as a basis for the subsequent calculations. Finally, results will be 
analyzed and discussed based on the available literatures.   
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1.5 Thesis Organization 

Chapter 1: a brief overview of the research interest based on prior works and the 
existing challenges is presented. It highlights the research aims and objectives, scope 
and organization of thesis.
 
Chapter 2: presents a brief review of the carbon nanostructures and in particular 
electronic and structural properties of graphene are discussed. Moreover, the chapter 
summarizes previous theoretical works related to this research. 
 
Chapter 3: the basic concept and methods of the electronic structure calculations are 
summarized. The elements of density functional theory are reviewed. The 
Hohenberg-Kohn theory (Hohenberg and Kohn, 1964) and Kohn-Sham ansatz (Kohn 
and Sham, 1965) are described. The functional forms of the exchange and correlation 
in the local density approximation (Perdew and Zunger, 1981) and the generalized 
gradient approximation (Perdew et al., 1996) are enumerated. Finally, the plane wave 
basis set in QUANTUM ESPRESSO code (Giannozzi et al., 2009) and the 
computational method and models used in the research are discussed. 
  
Chapter 4: presents the results and discussion on the major findings of the research 
for various models of the graphene with adsorbed transition metal adatoms and 
dimers. 

Chapter 5: Summary of the results obtained is presented. It also highlights possible 
implications for future works. 
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