

UNIVERSITI PUTRA MALAYSIA

QUALITATIVE AND QUANTITATIVE PCR METHODS FOR DETECTION OF FOODS CONTAINING GENETICALLY MODIFIED SOYBEAN AND CORN

TOSIAH ABDULLAH.

FSTM 2006 29

QUALITATIVE AND QUANTITATIVE PCR METHODS FOR DETECTION OF FOODS CONTAINING GENETICALLY MODIFIED SOYBEAN AND CORN

TOSIAH BT ABDULLAH

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2006

QUALITATIVE AND QUANTITATIVE PCR METHODS FOR DETECTION OF FOODS CONTAINING GENETICALLY MODIFIED SOYBEAN AND CORN

By

TOSIAH BT ABDULLAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2006

DEDICATION

I wish to dedicate this work to my beloved Husband Mr. Abd Razak Kadri, my beloved children's, Noor Aida Shazwani, Muhammad Hakimi, Mohammmad Sufi and Abdul Wafi, for their endless support to complete this study.

My beloved Son and My Father, Allahyarham Mohammad Iqbal and Allahyarham Hj. Abdullah b. Hj Bardan, ALFATIHAH, You are always in my heart,

My Mother Nairah Mukhsan, who always pray for me,

My brothers and my sisters,

My respected teachers and lecturers.

My dearest friends.

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

QUALITATIVE AND QUANTITATIVE PCR METHODS FOR DETECTION OF FOODS CONTAINING GENETICALLY MODIFIED SOYBEAN AND CORN

By

TOSIAH BT ABDULLAH

March 2006

Chairman: Professor Son Radu, PhD

Faculty: Food Science and Technology

Genetically modified organisms (GMOs) can be defined as organisms in which their genetic materials have been altered in the ways that does not occur naturally by mating or natural combination. Polymerase chain reaction (PCR) method is used to detect genetically modified events in foods. The specific objectives of this study are to establish a sensitive, robust and rapid method for the detection of genetically modified events by using PCR and to conduct a preliminary survey for distribution of foods derived from genetically modified events in Malaysia.

The two critical factors that were taken into account to achieve these objectives are the applicability of different DNA extraction methods for each kind of samples and PCR amplification conditions. Three different DNA extraction methods have been tested on soy, corn, potato and tofu (as a processed food).

The DNeasy method as in a widely used commercial kit, Wizard method (Hemmer, 1997) and Cetyl-trimethyl ammonium bromide (CTAB) method (Jankiewicz *et al.*, 1999) were evaluated in this study. The yield and purity of DNA were examined and compared. Quantification was accomplished by measuring UV absorbance at 260 nm and the suitability of DNA for PCR was tested. The results showed that there are significant differences between the methods used. CTAB, Wizard and DNeasy methods produced DNA with ratio of A_{260}/A_{280} range from 1.2 to 1.6, 1.9 to 2.2 and 1.7 to 1.9, respectively. However, the DNeasy method gave the optimum yield of DNA of high purity and was less time consuming. The primer pairs used for confirmation of the endogenous genes in the respective samples (*Lectin1 / Lectin6* for *lectin gene* in soya, *Zein n-3' / Zein n-5'* for *zein gene* in maize and *Pss01 n-5'/Pss01 n-3'* for *patatain gene* in potato) produced the expected size of 318, 157 and 216 base pair, respectively.

The results of this study showed that 18 out of 85 soy samples were contaminated by at least one of three introduced genetic elements consisting 35S promoter, Nopaline Synthase terminator and the structural gene of 5-enolpyruvylshikimate-3-phpsphate-synthase. Quantitative analysis of the 18 positive genetically modified soy samples showed that, seven samples contains 0.1 - 0.5% Roundup Ready Soy, four samples contains 0.5 - 1.0% Roundup Ready Soy and seven of them contains 1.0 - 2.0% Roundup Ready Soy.

In contrast, none of the 52 was positive with these assays. Therefore they were categorized as non-GM products.

These results revealed that PCR amplification method provides the key advantages of high sensitivity, robust and rapid operation whilst providing the requisites of careful experimental design that avoids both false-negative and/or false-positive results. Seven primer pairs (LEC1/LEC6; Zein n-3'/Zein n-5'; Pss01 n-5'/Pss01 n-3'; P35S 1-5'/P35S 2-3'; HA-NOS118-F/HA-NOS118-R, Cry1(A1)/Cry1(A2) and RRO1/RRO4) chosen in this study produced an expected size of 318, 157, 216, 101, 118, 107 and 356 base pair, respectively, fulfilling the product-size requirement and completed the whole detection procedure of GM events in food samples.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia dalam memenuhi keperluan untuk ijazah Master Sains

PENGESANAN KUALITATIF DAN KUANTITATIF MENGGUNAKAN KAEDAH TINDAKBALAS RANTAIAN POLIMER KEATAS MAKANAN BERASASKAN SOYA DAN JAGUNG YANG TERUBAHSUAI SECARA GENETIK

Oleh

TOSIAH BINTI ABDULLAH

Mac 2006

Pengerusi: Professor Son Radu, PhD

Fakulti: Sains dan Teknologi Makanan

Organisma terubahsuai genetik (GMO) boleh di definasikan sebagai organisma di mana pengubahsuaian kandungan genetiknya tidak berlaku secara kombinasi semulajadi. Kaedah tindakbalas rantaian polimerase (PCR) digunakan untuk mengecam GMOs dalam makanan. Objektif-objektif spesifik dalam kajian ini adalah untuk mengukuhkan kaedah operasi dalam pengecaman GMO dengan PCR yang sensitif, tegap and pantas serta mengendalikan pemeriksaan saringan terhadap pengagihan makanan terbitan dari GMOs di Malaysia.

Dua faktor kritikal yang diambilkira dalam mengecapi objektif-objektif tersebut adalah aplikasi kaedah ekstraksi DNA yang berlainan untuk setiap sampel dan keadaan amplifikasi PCR. Tiga kaedah ekstraksi DNA digunakan didalam kajian ini untuk melihat hasil dan kualiti daripada sampel soya,

jagung, kentang dan tauhu lembut iaitu kaedah Cetyl-trimethyl ammonium bromide (CTAB), Wizard dan DNeasy. Hasil and ketulenan DNA yang dihasilkan di analisa serta dibandingkan menggunakan pancaran Ultra violet pada jarak gelombang 260 nm dan menggunakan tindakbalas rantaian polymerase.

Keputusan dari analisis perbandingan memaparkan bahawa terdapat perbezaan ketara bagi ketiga-tiga kaedah ekstraksi yang digunakan. Nisbah A₂₆₀/A₂₈₀ bagi kaedah CTAB, Wizard dan DNeasy adalah antara 1.2 hingga 1.6, 1.9 hingga 2.2 dan 1.7 hingga 2.0, masing-masing. Walaubagaimanapun, kaedah DNeasy merupakan pilihan untuk kajian ini kerana kualiti DNAnya yang lebih baik dan masa analisa dapat dikurangkan. Tiga pasang primer khusus untuk pengesanan gen-gen kawalan bagi setiap sampel seperti gen lektin untuk soya, gen zein untuk jagung dan gen patatain untuk potato telah berjaya di amplifikasi dengan penghasilan amplikon bersaiz 318, 157 dan 216 pasangan bes masing-masing.

Keputusan tinjauan menunjukan bahawa 18 daripada 85 sampel soya mengandungi kandungan genetik terubahsuai terdiri daripada sekurangkurang satu daripada tiga unsur-unsur genetik iaitu '35S promoter', 'Nopaline Synthase terminator' dan struktur gen '5-enolpyruvylshikimate-3-phpsphatesynthase'. Pengesanan secara kuantitatif menunjukkan bahawa daripada 18 sampel soya tersebut, tujuh sampel mengandungi peratusan Roundup Ready

0.1-0.5%, empat sampel mengandungi peratusan *Roundup Ready* 0.5 -1.0% dan tujuh yang lain mengandungi peratusan *Roundup Ready* antara 1.0- 2.0%. Sebaliknya, tiada sampel jagung (52 sampel) adalah positif dengan analisis tersebut. Oleh yang demikian, sampel tersebut boleh dikategorikan sebagai produk bukan GM.

kajian menunjukkan bahawa kaedah amplifikasi PCR Keputusan membekalkan kunci kelebihan dari segi sensitiviti, ketegapan dan operasi yang pantas sejurus membekalkan keperluan dalam rekabentuk eksperimen yang teliti untuk mengelakkan keputusan negatif-tiruan dan positif-tiruan. Tujuh pasang primer, khasnya LEC1/LEC6; Zein n-3'/Zein n-5'; Pss01 n-P35S 1-5'/P35S 2-3'; HA-NOS118-F/HA-NOS118-R, 5'/Pss01 n-3'; Cry1(A1)/Cry1(A2) dan RRO1/RRO4 yang dipilih dalam kajian ini menghasilkan amplikons dengan pasangan bes sebanyak 318, 157, 216, 101, 118, 107 dan 356 masing-masing telah memenuhi syarat saiz-produk pengesanan genetik terubahsuai didalam sampel makanan.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Dr. Son Radu (Professor of Food Microbiology in Department of Food Science) for the endless effort provided for me to complete this work. Thanks for the initiation, great help, fruitful advises, continuous guidance and supervision.

I would like to thank Associate Professor Dr. Zaiton Hassan (Department of Food Service and Management), Mr. Jamal Khair Hashim (Food Safety and Quality Division, Ministry of Health Malaysia) for their advice and suggestions in the preparation of the thesis.

I will be always indebted to the Ministry of Health, Malaysia (National Public Health Laboratory and Public Service Department) for the scholarship and funding of my study.

Thanks a lot to all staff of the Faculty of Food Science and Technology, Universiti Putra Malaysia, who contributed one way or another towards the completion of my study.

Special thank for all members and colleagues at Faculty of Food Science and Technology, UPM especially: Zawiyah, Tuan Zainazur, Mariam, Rozila, Kqueen, Lesley, Marlina, Rani, Jurin, and others....., Thanks for any support provided during my study.

TABLE OF CONTENTS

xiii

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	x
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi
LIST OF SYMBOLS AND UNITS	xxiii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	5
	Genetically Modified Food	5
	Element of Gene Construct	6
	Types of Genetic Modifications	8
	The Novel food Regulations	8
	Sampling of GM Products for Testing	10
	Isolation and Purification of DNA, RNA or Protein	12
	Extraction Methods	12
	Pre-treatment	14
	Lysis	14
	Isolation and Purification Methods	15
	References Material of GMO testing	20
	Method for Detecting GMO in Food and	
	it's Derivatives	21
	Protein Based Testing Methods	22
	DNA Based Testing Method	22
	Polymerase Chain Reaction	23
	Principles of PCR Method in GMO Analysis	24
	Qualitative Detection	30
	Quantitative Detection	32
	Other Type of Methods	34
	Advantages of DNA-based Compared with	
	Protein-based for GMO analysis	36
	PCR Target Sequences: Categories and Specificity	39
	Category 1, Screening Methods	41
	Category 2, Gene-specific Methods	41
	Category 3, Construct-specific Methods	42

Category 4, Even-specific Methods	43
Polymerase Chain Reaction: Quality Assurance	
in GMO Analysis	44

III	COMPARATIVE EVALUATION OF THREE DIFFERENT DNA EXTRACTION METHOD		
	IN FOOD SAMPLES	4 6	
	Introduction	46	
	Materials and Methods	51	
	Food Samples	51	
	Sample Preparation	51	
	Method for DNA Extraction	51	
	DNeasy® Method	51	
	The Wizard Method	52	
	The CTAB Method	53	
	DNA Quantification	54	
	Primers	55	
	PCR Protocol	55	
	Agarose Gel Electrophoresis	57	
	Statistical Analysis	57	
	Results	58	
	Discussion	64	
	Evaluation on DNA Yields		
	(ng DNA/mg sample) Of Three Plant		
	DNA Extraction Methods on Four		
	Categories of Samples	64	
	Evaluation on DNA Purity $(A_{260}/A_{280}$ Ratio)		
	Of three plant DNA extraction methods		
	on four Categories of samples	66	
	Confirmatory Assay of DNA Quality Using	00	
	PCR Amplification	68	
	i en miplineation	00	
IV	QUALITATIVE DETECTION OF GENETICALLY		
	MODIFIED SOY IN PROCESSED FOOD BY	=0	
	POLYMERASE CHAIN REACTION	70	
	Introduction	70	
	Materials and methods	72	
	Samples Collection	72	
	Sampel Preparation	72	
	Certified Reference Material	73	
	DNA Extraction	84	
	Oligonucleotide primers	84	
	PCR (Polymerase Chain Reaction)	85	
	Agarose Gel Electrophoresis	85	
	Results	86	

Discussion

v

QUALITATIVE DETECTION OF GENETICALLY MODIFIED MAIZE IN PROCESSED FOOD BY	
POLYMERASE CHAIN REACTION	102
Introduction	102
Materials and methods	104
Samples Collection	104
Sample Preparation	104
Certified Reference Material	104
DNA Extraction	110
Primers	110
PCR (Polymerase Chain Reaction)	111
Agarose Gel Electrophoresis	114
Results	115
Discussion	120

VI QUANTITATIVE POLYMERASE CHAIN REACTION FOR THE DETECTION OF GENETICALLY

MODIFIED FOODS	124
Introduction	124
Materials and methods	128
Samples	128
Screening using Light Cycler	129
Quantitative PCR	133
LightCycler PCR for Quantification	134
Standard curves	134
Results	137
Discussion	144

VII	GENERAL DISCUSSION AND CONCLUSION	147
	Conclusions	147
	Recommendations	149
REFI	ERENCES	151
APP	ENDIX	164
BIODATA OF THE AUTHOR		165

97

LIST OF TABLES

Table		Page
2.1	Recommended size of laboratory sample in case of homogenous distribution of GM particles in the investigated lot (3500 particles) at 1% threshold for GMOs according to Swiss Food Manual	12
2.2	Procedures for DNA extraction and purification from food matrixes	19
2.3	Plant species and genetic elements included in the GeneScan™ GMO Chip	24
2.4	Detection of GMO derivatives grouped according to catogeries of specificity	40
3.1	Primers Used in this Study	55
3.2	Amplification condition for PCR assay of lectin genes	56
3.3	Amplification condition for PCR assay of zein genes	56
3.4	Amplification condition for PCR assay of patatain genes	57
3.5	The yield and purity of DNA extracted from three different extraction methods	59
3.6	Single analysis of DNA yield (ng DNA/mg sample) for each kind of samples on three extraction methods	60
3.7	Single analysis of DNA purity (A_{260}/A_{280}) for each kind of samples on three extraction methods	60
4.1	Description of the analyzed soybean samples in this study	74
4.2	Gene constructs in RR soybean	83
4.3	Detection of lectin gene, 35S promoter, nos terminator and specific gene (RRO) in food samples containing soy product.	87
5.1	Description of the analyzed maize samples in this study	105
5.2	Primers Used in this Study	111

373794	
XVII	

5.3	Amplification condition for PCR assay of zein genes	112
5.4	Amplification condition for PCR assay of 35S promoter	112
5.5	Amplification condition for PCR assay of nos terminator	113
5.6	Amplification condition for PCR assay of CP4EPSPS genes	113
5.7	Amplification condition for PCR assay of Cry genes	114
5.8	Detection of zein gene, 35S promoter, nos terminator, CP4EPSPS and Cry gene in food samples containing corn product.	116
6.1	Kit Contents of LightCycler® GMO Screening Kit (Cat. No. 3 267 199)	130
6.2	Master mix reaction for LightCycler® GMO Screening Kit	131
6.3	Cycling Program for the LightCycler® GMO Screening Kit	132
6.4	Primer and probes for lectin and RRSoybean	133
6.5	A master mix with the following reaction components was use for the amplification of each PCR for quantification	135
6.6	Quantity of DNA and dilutions of the standard curves	135
6.7	Cycling Program for the Soy Quantification	136
6.8	Representative standard curves (RRS and lectin specific) to calculate the ratio of GMO in the samples using Linght Cycler® Instruments.	142
6.9	Percentage of Roundup Ready Soy in Samples	143

·· ---

LIST OF FIGURES

Figures		Page
2.1	Sample preparation step in GMO analysis	13
2.2	Structure of genetic information	25
2.3	The steps in PCR and the exponential increase in the overall number of DNA copies synthesized.	28
2.4	Flow chart of PCR method for detection of GM events in foods	32
2.5	Classification of methods for GMO analysis	35
2.6	A schematic representation of a typical gene construct and four types of PCR-based assays showing increasing specificity (<i>from top to bottom</i>).	39
3.1	Representative genomic DNA from DNeasy extraction method	61
3.2	Representative genomic DNA from Wizard extraction method.	61
3.3	Representative genomic DNA from CTAB extraction method.	62
3.4	Representative of PCR product for <i>lectin gene</i> from soy sample	62
3.5	Representative of PCR product for zein gene from maize sample	63
3.6	Representative of PCR product for patatain gene from potato sample	63
3.7	Representative of PCR product for lectin gene from smooth tofu sample	64
4.1	Representative of PCR product for <i>lectin gene</i> obtained	89
4.2	from seeds or raw soybean samples in 2% agarose gel Representative of PCR product for <i>lectin gene</i> obtained from soy flour samples in 2% agarose gel.	89

4.3	Representative of PCR product for <i>lectin gene</i> obtained from tofu sample in 2% agarose gel.	90
4.4	Representative of PCR product for <i>lectin gene</i> obtained from fucuk sample in 2% agarose gel	90
4.5	Representative of PCR product for <i>lectin gene</i> obtained from tempe sample in 2% agarose gel	91
4.6	Representative of PCR product for <i>lectin gene</i> obtained from soy milk and soy sauce sample in 2% agarose gel	91
4.7	Agarose gel electrophoresis of PCR products for 35S promoter obtained from positive sample in 2% agarose gel	92
4.8	Agarose gel electrophoresis of PCR products for 35S promoter obtained from positive sample in 2% agarose gel	92
4.9	Agarose gel electrophoresis of PCR products for <i>nos</i> terminator obtained from positive sample in 2% agarose gel	93
4.10	Agarose gel electrophoresis of PCR products for <i>nos</i> terminator obtained from positive sample in 2% agarose gel.	93
4.11	Agarose gel electrophoresis of PCR products for <i>Roundup Ready specific-GMO (RRO)</i> obtained from positive sample in 2% agarose gel	94
4.12	Agarose gel electrophoresis of PCR products for <i>Roundup Ready specific-GMO (RRO)</i> obtained from positive sample in 2% agarose gel	94
4.13	Agarose gel electrophoresis of PCR products for <i>Roundup Ready specific-GMO (RRO)</i> obtained from positive sample in 2% agarose gel	95
4.14	Agarose gel electrophoresis of PCR products for <i>Roundup Ready specific-GMO (RRO)</i> obtained from positive sample in 2% agarose gel	95

4.15	Representative of PCR products for positive GM soy in 2% agarose gel	96
4.16	A schematic presentation a Roundup Ready soybean cassette: P- 35S-CTP	100
5.1	Representative agarose gel electrophoresis of PCR products zein gene obtained from maize-derived raw material and products for analysis of maize	118
5.2	Representative agarose gel electrophoresis of PCR products obtained from corn-derived raw material and products for analysis of corn positive P35S promoter and NOS terminator.	118
5.3	Representative agarose gel electrophoresis of PCR products of <i>EPSPS</i> obtained from maize-derived raw material and products for analysis of maize	119
5.4	Representative agarose gel electrophoresis of PCR products of <i>Cry</i> gene obtained from maize-derived raw material and products for analysis of maize	119
6.1	Competitive quantitative PCR	126
6.2	The automatic detection (and display) of PCR product of representative positive sample (<i>P35S</i> and <i>NOS</i> terminator) throughout the amplification process using LightCycler® GMO Screening kit	138
6.3	The automatic detection (and display) of PCR product of representative positive sample and standards using hybridization probes and primer in LightCycler® Instruments	139
6.4	The automatic detection (and display) of PCR product dilution of representative lectin standards throughout the amplification process.	140
6.5	The automatic detection (and display) of PCR product dilution of representative Roundup Ready Soy (RRS) standards throughout the amplification process.	141

LIST OF ABBREVIATIONS

AIA	Advanced Informed Approval		
CaMV	Cauliflower mosaic virus		
CRM	Certified References Material		
CP4-EPSPS	enolpyruvylshikimate-3-phosphate synthase from Agrobacterium sp.strainCP4)		
CRD	Completed Randomize Design		
Ct	Crossing Threshold		
СТАВ	Cetyl-trimethyl ammonium bromide		
DNA	Deoxyribonucleic acid		
dNTP	Deoxynucleoside triphosphate		
FRET	Flouresence Resonance energy Trasfer		
Ε	Eficiency		
EC	European Council		
EDTA	Ethylene-diamine-tetra acetic acid		
ELISA	LISA Enzyme Linked Immunosorbant Assay		
EPSPS	5-enolpyruvylshikimate-3-phosphate synthase		
EtBr	Br Ethidium bromide		
EU	European Union		
FAO	Food and Agriculture Organisation		
FDA	Food and Drug Association		
GIPSA	Grain Inspection, Parkers and Stockyards		
	Administration		
GM	Genetically modified		
GMAC	Genetically Modification Advisory Committee		
GMF	Genetically modified food		

GMO	Genetically modified organism
GMOs	Genetically modified organisms
HCL	Hydrogen Chloride
Mg	Magnesium
LFS	Lateral Flow Strip
MgCl ₂	Magnesium Chloride
ММ	Maximizer maize
NA	Nucleic Acid
NaCl	Natrium Chloride
NaOH	Natrium Hydroxide
NIRS	Near-infrared spectroscopy
NOS	Nopaline Synthase
P35S	35S promoter
PCR	Polymerase chain reaction
PEG	Polyethylene glocide
PVP	Polyvinylpyrolidone
QC-PCR	Qualitative Competitive PCR
RNA	Ribonucleic acid
RNase	Ribonuclease
ROSE	Rapid-One-Step-Extraction Solution
RRO	Roundup Ready Oligonucleotide
RRS	Roundup Ready soybean
SDS	Sodium dodecyl sulfate
TBE	Tris-Boric acid-EDTA buffer
UV	Ultraviolet
WHO	World Health Organization

.

LIST OF SYMBOLS AND UNITS

bp	Base pair
β	Beta
്	Degree Celsius
U	Enzyme unit
kb	Kilo-base pair
μg	Microgram
μL	Microliter
mg	Milligram
mL	Milliliter
mM	Millimolar
Μ	Molar
ng	Nanogram
OD	Optical density
%	Percent
pmol	Picomole
rpm	Revolutions per minute
vol	Volume
v/v	Volume per volume
w/v	Weight per volume

