

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF NANO-(Pr₆O₁₁,CeO₂) ADDITION AND Pr, Ce DOPING IN Bi-2223 SUPERCONDUCTOR

NUR AMALINA HAFIZA BINTI AHMAD NIZAR

FS 2013 79

EFFECTS OF NANO-(PR₆O₁₁,CEO₂) ADDITION AND PR, CE DOPING IN BI-2223 SUPERCONDUCTOR.

By

NUR AMALINA HAFIZA BINTI AHMAD NIZAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2013

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

To my husband, and my daughter for their love, understanding and support....

To my mother, my father and family for their concern and support..... Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF NANO-(PR₆O₁₁,CEO₂) ADDITION AND PR, CE DOPING IN BI-2223 SUPERCONDUCTOR.

By NUR AMALINA HAFIZA BINTI AHMAD NIZAR June 2013

Chairman: Professor Abdul Halim Shaari, PhD Faculty: Science

The effect of doping and addition of Pr and Ce in Bi-2223 system sintered at 850 °C for 48 hours were investigated by X-ray diffraction techniques (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and critical temperature measurement. Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Pr_xCu₃O_{δ} and Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Ce_xCu₃O_{δ} with x=0.00-0.10; (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano Pr₆O₁₁) and (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano CeO₂) with x=0.00 - 0.03 were prepared by solid state reaction method. The phase purity, lattice parameters, superconducting properties, surface morphology and grain size were found to be dependen on Pr and Ce concentration in the sample.

The XRD results patterns show that all Pr and Ce samples contain 2212 peaks which correspond to the low-superconducting phase. The intensity of these peaks increases towards higher value, as the Pr and Ce concentration increases. The volume of high 2223 phase decreases gradually as the Pr and Ce concentration increases. The lattice parameters calculated from XRD data show a slight decrease in the *c*-axis while *a*-axis increase with the increase of Pr and Ce concentration.

The scanning electron microscopy viewing shows platelets like-grain for all samples which is a signature of high 2223 and low 2212 phases. The elemental analysis by EDX measurement of sample reveals the existence of Pr and Ce that are homogeneously distributed in BSCCO matrix. The chemical formula of sample elements composition that has been estimated from EDX measurements is in good approximation to that Bi2223 system with noticeable excess in oxygen ratio which may be due to the existence of Pr and Ce in sample.

The study shows that Pr and Ce do not improve the T_c of BSCCO system. This is due to the existence of low 2212 phase which weakened the coupling of grains.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

KESAN-KESAN NANO-(PR₆O₁₁,CEO₂) PENAMBAHAN DAN PR,CE PENDOPAN DALAM Bi-2223 SUPERKONDUKTOR Oleh NUR AMALINA HAFIZA BINTI AHMAD NIZAR Jun 2013

Pengerusi: Profesor Abdul Halim Shaari, PhD Fakulti: Sains

Kesan pendopan dan penambahan Pr dan Ce di dalam system Bi-2223 yang disinter pada suhu 850 °C selama 48 jam dikaji dengan teknik XRD, miskroskopi electron imbasan, serakan tenaga sinar-X (EDX) dan pengukuran suhu genting T_c. Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Pr_xCu₃O_{δ} dan Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Ce_xCu₃O_{δ} dengan komposisi x=0.00 -0.10; (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano Pr₆O₁₁) dan (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano CeO₂) dengan komposisi x=0.0-0.03 disediakan dengan kaedah keadaan pepejal. Ketulenan fasa, parameter kekisi, sifat superkonduktor, morfologi permukaan dan saiz butiran dipercayai bergantung kepada kepekatan Pr dan Ce di dalam sampel.

Keputusan XRD menunjukkan kesemua sampel Pr dan Ce mengandungi puncak-puncak fasa 2212 dan ini menunjukkan kehadiran fasa rendah. Keamatan puncak-puncak ini bertambah apabila kepekatan Pr dan Ce bertambah. Isipadu fasa tinggi 2223 menurun berperingkat-peringkat mengikut peningkatan kepekatan Pr dan Ce. Pengiraan parameter kekisi dari data XRD menunjukkan sedikit pengurangan pada paksi-*c* manakala penambahan pada paksi-*a* mengikut penambahan kepekatan Pr dan Ce.

Mikroskopi electron imbasan menunjukkan kepingan seperti butiran untuk semua sampel yang menunjukkan kehadiran fasa tinggi 2223 dan fasa rendah 2212. Analisis unsure dengan pengukuran EDX menunjukkan kehadiran Pr dan Ce homogen di dalam matrix BSCCO. Formula kimia untuk komposisi elemen sampel yang telah dianggar dari pengukuran EDX menunjukkan system Bi2223 lebih peratusan oksigen yang ketara yang disebabkan kehadiran Pr dan Ce di dalam sampel.

Kajian ini menunjukkan bahawa kesan Pr dan Ce tidak meningkatkan suhu genting T_c bagi system BSCCO. Ini adalah disebabkan oleh pembentukan fasa rendah 2212 yang melemahkan gandingan butiran.

ACKNOWLEDGEMENTS

In the Name of ALLAH, the most Merciful and Beneficent

First and foremost, I bow my head before Allah Almighty Who Blessed me with good health and vital resources to complete this project. I am extremely thankful to Prof. Dr. Abdul Halim Shaari for his support, guidance and kindness that help me to complete this project. He is always very helpful and share his knowledge whenever I encounter project problems. I am grateful for all his advices and guidance.

Next, special thanks are extended to my lab mates and all my supervisory committee. As I began the project, they always help me to solve any problem and ensure this project complete successfully. Besides, they always show their concern and great understanding to me. I am really thankful for having such a kind and understanding lab mates as well as friends.

I would like to express my gratitude and sincere thanks to my loving husband; Mohd Asmawi and all my family members for their prayers, continuous moral support and encouragement.

May Allah Bless U All

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Halim Bin Shaari, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Chen Soo Kien, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

> BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or any other institutions.

TABLE OF CONTENTS

			Page
ABSTRAG	СТ		i
ABSTRA	K		iii
ACKNOW	VLEDGI	EMENTS	V
DECLAR	AL		viii
LIST OF	TABLES	5	ix
LIST OF	FIGURE	CS	xi
LIST OF I	PLATES SYMBO	LAND ABBREVIATIONS	xiv xvi
	011120		
CHAPTE	R		
1.	INT	RODUCTION	
.,	1.1	Historical review	1
	1.2	Bi-Sr-Ca-Cu-O Superconductors	3
	1.3	Application of Superconductors	5
		1.3.1 Small-scale applications	
	14	Problem Statements	7
	1.5	Objectives	7
2	TIT	EDATUDE DEVIEW	
2.	2.1	Effect of doning in BSCCO superconductors	8
	2.2	Effect of nanoparticle addition in BSCCO superconductors	17
	2.3	Effect of rare earth on Bi2223 superconductors	20
3.	тне	CORY	
	3.1	BCS Theory	23
	3.2	Meissner Effect	23
	3.3	Types of superconductor	25
4.	ME	THODOLOGY	
	4.1	Chemical preparation	27
		4.1.1 Pure sample preparation	27
		4.1.1.2 Sintering process	28 29
		4.1.2 Doping with Praseodymium and Cerium	29
		4.1.3 Addition with nanoparticles (Praseodymium and Cerium)	30
	4.2	Characterisation Techniques	30
		4.2.1 Resistance measurements 4.2.2 X-rays Diffraction Measurements	30 31
		4.2.3 Microstructure Analysis	32
		·	

RESULTS AND DISCUSSION

- 5.1 X-Ray Diffraction Measurements
- 5.

 \bigcirc

		5.1.1	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$	34
		5.1.2	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_\delta$	
		5.1.3	Effect of Pr ₆ O ₁₁ nanoparticle addition	
		5.1.4	Effect of CeO ₂ nanoparticle addition	
	5.2	Microst	tructural Analysis	
		5.2.1	Pure sample morphology	46
		5.2.2	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$	
		5.2.3	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$	
		5.2.4	Effect of Pr ₆ O ₁₁ nanoparticle addition	
		5.2.5	Effect of CeO ₂ nanoparticle addition	
	5.3	Resista	nce Measurements	
		5.3.1	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$	67
		5.3.2	$Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$	
		5.3.3	Effect of Pr_6O_{11} nanoparticle addition	
		5.3.4	Effect of CeO ₂ nanoparticle addition	
6.	CON	CLUSIC	ON AND RECOMMENDATIONS FOR FUTURE WORKS	
	5.1	Conclu	sion	84
	5.2	Sugges	tion for future work	87
REFERE	NCES			88
APPEND	ICES			93
BIODATA	A OF ST	UDENT		99

LIST OF TABLES

Tat	ble		Page
	1.1	Progress in Rising the Superconducting Transition Temperature T_c Since the Discovery of Cuprates in1986, (Source: Owens et al., 2002)	2
	1.2	The length of lattice parameters for single phases in BSCCO system.	4
	5.1	Summary of lattice parameters of both high 2223 phase and low 2212 phase of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ samples with x = 0.00 - 0.10.	35
	5.2	Summary of lattice parameters of both high 2223 phase and low 2212 phase of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2.x}Ce_xCu_3O_\delta$ samples with x = 0.00 - 0.10.	38
	5.3	Summary of lattice parameters of both high 2223 phase and low 2212 phase of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano Pr_6O_{11}) samples with x = 0.0-0.03.	41
:	5.4	Summary of lattice parameters of both high 2223 phase and low 2212 phase of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano CeO ₂) samples with x = 0.0-0.03.	44
	5.5	Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-onset})$ and width of transition temperatures (ΔT_c) of Bi _{1.6} Pb _{0.4} Sr ₂ Ca _{2-x} Pr _x Cu ₃ O _{δ} samples with x = 0.0-0.10.	68
:	5.6	The value of dR/dT peak against temperature and the peak width at half maximum of $Bi_{1,6}Pb_{0,4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ samples with x=0.03-0.1, sintered at at 850°C for 48 hours.	70
	5.7	Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-onset})$ and width of transition temperatures (ΔT_c) Bi _{1.6} Pb _{0.4} Sr ₂ Ca _{2-x} Ce _x Cu ₃ O _{δ} samples with x = 0.0-0.10.	72
	5.8	The value of dR/dT peak against temperature and the peak width at half maximum of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ samples with x=0.03-0.1, sintered at at 850°C for 48 hours.	74
	5.9	Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-onset})$ and width of transition temperatures (ΔT_c) $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano Pr_6O_{11}) samples with x = 0.0-0.10.	76
\bigcirc	6.0	The value of dR/dT peak against temperature and the peak width at half maximum of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) samples with x = 0.0-0.10, sintered at at 850°C for 48 hours.	77
	6.1	Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-onset})$ and width of transition temperatures (ΔT_c) $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano CeO ₂) samples with x = 0.0-0.10.	79

6.2 The value of dR/dT peak against temperature and the peak width at half maximum of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano CeO₂) samples with x = 0.0-0.10. sintered at at 850°C for 48 hours.

81

LIST OF FIGURES

Figure 1.1	Crystallographic structure of $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ superconductors system with n =1 ($Bi_2Sr_2CuO_6$, abbreviated as $Bi2201$), n = 2 ($Bi_2Sr_2CaCu_2O_8$ - $Bi2212$) and n = 3 ($Bi_2Sr_2CaCu_3O_{10}$ - $Bi2223$). Oxygen atoms are not drawn for simplicity. (Source: Kamimura et al., 2005)	Page 3
3.1	A typical normal to superconducting state transition graph at $T_{c (R = 0)}$ curve.	24
3.2	A typical H vs T phase diagram for a Type I, only one critical field and Type II superconductor displaying the existence of two critical fields.	25
4.1	Flow chart for preparation pure of $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta}$ superconductor.	28
4.2	Schematic diagram of the four point probe technique.	31
5.1	X-rays diffractions patterns of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ samples, sintered at 850°C for 48 hours, with x=0.03-0.1, H and L are detonation of high T _c phase (Bi2223) and low T _c phase (Bi2212).	35
5.2	Volume fraction of high 2223 and low 2212 phases against Pr_6O_{11} concentration.	36
5.3	X-rays diffractions patterns of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ samples, sintered at 850°C for 48 hours, with x=0.03-0.1, H, L and * are detonation of high T _c phase (Bi2223),low T _c phase (Bi2212) and Ca ₂ PbO ₄ .	38
5.4	Volume fraction of high 2223 and low 2212 phases against CeO_2 concentration	39
5.5	X-rays diffractions patterns of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) samples, sintered at 850°C for 48 hours, with x=0.0-0.03, H and L are detonation of high T _c phase (Bi2223) and low T _c phase (Bi2212).	41

5.6 Volume fraction of high 2223 and low 2212 phases against Pr_6O_{11} 42

nanoparticle concentration.

5.7	X-rays diffractions patterns of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ samples, sintered at 850°C for 48 hours, with x=0.03-0.1, H and L are detonation of high T _c phase (Bi2223) and low T _c phase (Bi2212).	44
5.8	Volume fraction of high 2223 and low 2212 phases against Pr_6O_{11} concentration.	45
5.9	Atomic ratio percentage of element composition of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ sample with $x = 0.03$	51
5.10	Atomic ratio percentage of element composition of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ sample with x = 0.03	56
5.11	Atomic ratio percentage of element composition of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) sample with x =0.005	61
5.12	Atomic ratio percentage of element composition of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano CeO ₂) sample with x =0.005	66
5.13	Normalized resistance ($R/R(T_c=300K)$) as a function of temperature for $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ sample with x=0.0-0.10 sintered at 850°C for 48 hours.	67
5.14	Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-onset})$ against Pr_6O_{11} concentration.	69
5.15	Derivative of resistace dR/dT against temperature graphs of $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta}$ sample, sintered at at 850°C for 48 hours.	69
5.16	Derivative of resistace dR/dT against temperature graphs of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ samples with x=0.03-0.1, sintered at at 850°C for 48 hours.	70

5.17 Normalized resistance ($R/R(T_c=300K)$) as a function of 72

temperature for $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ sample with x=0.00-0.10 sintered at 850°C for 48 hours.

- 5.18 Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_{c-}73)$ onset) against CeO₂ concentration.
- 5.19 Derivative of resistace dR/dT against temperature graphs of 73 $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ samples with x=0.03-0.1, sintered at at 850°C for 48 hours.
- 5.20 Normalized resistance (R/R($T_c=300K$) as a function of 75 temperature for (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano Pr₆O₁₁) sample with x=0.00-0.10 sintered at 850°C for 48 hours.
- 5.21 Zero transition temperatures ($T_{c(R=0)}$), transition temperatures (T_{c} . 76 _{onset}) against nano Pr_6O_{11} concentration.
- 5.22 Derivative of resistace dR/dT against temperature graphs of 72 $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) samples with x = 0.0-0.10 sintered at at 850°C for 48 hours.
- 5.23 Normalized resistance (R/R($T_c=300K$) as a function of 79 temperature for (Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{δ})_{1-x}(nano CeO₂) sample with x=0.00-0.10 sintered at 850°C for 48 hours.
- 5.24 Zero transition temperatures $(T_{c(R=0)})$, transition temperatures $(T_c. 80_{onset})$ against nano CeO₂ concentration.
- 5.25 Derivative of resistace dR/dT against temperature graphs of 80 $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano CeO₂) samples with x = 0.0-0.10 sintered at at 850°C for 48 hours.

LIST OF PLATES

Plate 5.1	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta}$ superconductors sintered at 850°C for 48 hours	Page 35
5.2	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ with x=0.03 superconductors sintered at 850°C for 48 hours.	35
5.3	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ with x=0.05 superconductors sintered at 850°C for 48 hours.	36
5.4	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ with x=0.07 superconductors sintered at 850°C for 48 hours.	36
5.5	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ with x=0.10 superconductors sintered at 850°C for 48 hours.	37
5.6	Areas of X-rays spectrum in the same micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Pr_xCu_3O_{\delta}$ sample with x =0.03	39
5.7	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ with x=0.03 superconductors sintered at 850°C for 48 hours.	42
5.8	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ with x=0.05 superconductors sintered at 850°C for 48 hours.	42
5.9	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ with x=0.07 superconductors sintered at 850°C for 48 hours.	43
5.11	SEM micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ with x=0.1 superconductors sintered at 850°C for 48 hours.	43
5.12	Areas of X-rays spectrum in the same micrograph of $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}Ce_xCu_3O_{\delta}$ sample with x =0.03	44
5.13	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) with x=0.005 superconductors sintered at 850°C for 48 hours.	47
5.14	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) with x=0.01 superconductors sintered at 850°C for 48 hours.	47

5.15	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano Pr_6O_{11}) with x=0.02 superconductors sintered at 850°C for 48 hours.	48
5.16	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) with x=0.03 superconductors sintered at 850°C for 48 hours.	48
5.17	Areas of X-rays spectrum in the same micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano Pr_6O_{11}) with x =0.005	49
5.18	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano CeO ₂) with x=0.005 superconductors sintered at 850°C for 48 hours.	52
5.19	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano CeO ₂) with x=0.01 superconductors sintered at 850°C for 48 hours.	52
5.20	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano CeO ₂) with x=0.02 superconductors sintered at 850°C for 48 hours.	53
5.21	SEM micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano CeO ₂) with x=0.03 superconductors sintered at 850°C for 48 hours.	53
5.22	Areas of X-rays spectrum in the same micrograph of $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_\delta)_{1-x}$ (nano CeO ₂) with x =0.005	54

LIST OF SYMBOLS AND ABBREVIATIONS

Т	Temperature
T _c	Critical Temperature
T _{c onset}	Onset critical temperature
T _{c(R=0)}	Zero Resistance Temperature
HTS	High Temperature Superconductor
LTS	Low Temperature Superconductor
BSCCO	Bi-Sr-Ca-Cu-O system
k	Kelvin
BCS	Bardeen, Copper and Schrieffer Theory
В	Magnetic Field
H _c ,H _{c10} ,H _{c20}	Critical Magnetic Field
a,b,c	Lattice Paremeter
R	Resistance
Bi2201	$Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ with $n = 1$
Bi2212	$Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ with $n = 2$
Bi2223	$Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ with $n = 3$
Pr ₆ O ₁₁	Praseodymium Oxide
CeO ₂	Cerium oxide
XRD	X-Rays Diffraction
SEM	Scanning Electron Microscope
ΔΤ	Superconducting Transition Width
AFM	Antiferromagnetic

 \bigcirc

CHAPTER 1 INTRODUCTION

1.1 Historical Review

Superconductivity was first observed in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes of Leiden University. In 1908, Onnes had become the first person to liquefy helium. He noticed that below 4.2 K, the electrical resistance of mercury dropped to a value below the resolution of his instruments while he was investigating the electrical properties of various substances.

The element lead (Pb) was found to be superconducting at 7.2 K in 1913 and after 17 years, the element niobium (Nb) was found to be superconducting at 9.2 K. In subsequent decades other superconducting metals, alloys and compounds were discovered. The A15 type compounds Nb₃Sn, Nb₃Ga and Nb₃Ge was given an attention because they exhibit T_c above 17 K. Nb₃Ge had the highest T_c of 23.2 K known up to 1987. Nb compound has been used to fabricate superconducting wires that was used to produce strong magnetic field and his many practical applications. However, the major problem is due to the high cost and maintenance of liquid helium and difficulty in its preparation. The developing materials with higher transition temperatures progress very slow before 1986. As seen from Table 1.1, that in only 10 years since 1986, the transition temperature was raised progressively from 23 K to 35, 52, 95, 110, 125 and 133: applying a pressure of 30 GPa raised the T_c of the mercury superconductor to 147K (Owens and Poole, 2002).

Material	$T_{c}(K)$	Year
Ba ₂ La _{5-x} Cu ₃ O ₉	30 - 35	1986
$(La_{0.9}Ba_{0.1})_2Cu_4O_{4-x}$ (at 1-GPa pressure) ^a	52	1986
YBa ₂ Cu ₃ O _{7-x}	95	1987
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	110	1988
$Ti_2Ba_2Ca_2Cu_3O_{10}$	125	1988
Ti ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀ (at 7-GPa pressure)	131	1993
HgBa ₂ Ca ₂ Cu ₃ O _{8+x}	133	1993
HgBa ₂ Ca ₂ Cu ₃ O ₁₀ (at 30-GPa pressure)	147	1994

Table 1.1: Progress in Rising the Superconducting Transition Temperature T_c Since the Discovery of Cuprates in1986, (Source: Owens and Poole, 2002)

^{*a*}A pressure of 1 GPa is about 10,000 atm.

1.2 Bi-Sr-Ca-Cu-O Superconductors

After the discovery of high- T_c superconductors in the Bi-Sr-Ca-Cu-O system by Maeda et al., (1988), Tallon et al., (1988) reported that Bi-compounds (BSCCO) posses three superconducting transitions at 110 K (2223 phase), 80 K (2212 phase) and 10 K (2201 phase), with triple, double and single Cu-O layer respectively. The high- T_c (2223) phase is extremely difficult to prepare in single phase (Subramaniam et al., 1988). Structure analysis indicated that the compounds have an orthorhombic or tetragonal distorted perovskite structure.

Figure 1.1: Crystallographic structure of $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4}$ superconductors system with n = 1 ($Bi_2Sr_2CuO_6$, abbreviated as Bi2201), n = 2 ($Bi_2Sr_2CaCu_2O_8$ - Bi2212) and n = 3 ($Bi_2Sr_2CaCu_3O_{10}$ - Bi2223). Oxygen atoms are not drawn for simplicity. (Source: Kamimura et al., 2005)

The crystallographic structures for 2201, 2212 and 2223 phases of the BSCCO system are shown in Figure 1.1. All the phases contain double sheets of corner sharing square plane CuO₂. When n = 0 in 2201 phase, there is only one CuO₂ plane and no Ca. In 2212 phase with one Ca sandwiches with two CuO₂ planes and 2223 phase, two layer of Ca interleaves three layers of CuO₂. The spacing from CuO₂ to Ca layer is 1.66 Å. There exist BiO double layers, which are not exactly stacked over each other. Thus, the lattice parameter *c* changes by a factor of about one-half the *c* parameter in corresponding members of the layered series. The lattice is pseudo-tetragonal (a = b γ c) with space group 14/mmm (Tarascon et al., 1989). The length of lattice parameters for single phases in BSCCO system is shown in Table 1.2 (Debsidkar, 1989 and Bourdillon, 1993).

Bi-Sr-Ca-Cu-O	Phase	a (Å)	b (Å)	C (Å)
Compound				
Bi ₂ Sr ₂ CuO ₆	2201	5.4	5.4	24.6
Bi ₂ Sr ₂ CaCu ₂ O ₈	2212	5.4	5.4	30.7
Bi ₂ Sr ₂ CaCu ₃ O ₁₀	2223	5.4	5.4	37.1

 Table 1.2: The length of lattice parameters for single phases in BSCCO system.

1.3 Application of Superconductors

Two important discoveries at that time led to two types of applications called small scale and large scale.

1.3.1 Small-scale applications

YBCO is widely used for the High Temperature Scale (HTS) small-scale devices because it has a high critical temperature and can accommodate high current densities. The best-known small-scale device is the Superconducting Quantum Interference Device (SQUID) magnetometer. A SQUID contains a ring of superconductor with one or more Josephson junction. When a current is introduced into the SQUID that is the larger than the critical current of the Josephson junction a voltage appears that is proportional to the magnetic flux through the SQUID ring. The SQUID is so exceedingly sensitive that it can detect magnetic field 100 billion times smaller than the Earth's field, it can also detect any other physical quantity that can be converted to magnetic flux.

1.3.2 Large-scale applications

Low-temperature superconductors, LTS, are already in quite common use for largescale applications, but still have stability problems due to the complex and expensive refrigeration required. Large-scale applications for HTS materials present a major challenge to the materials scientist. Compared with the small-scale applications, a large-scale application generally means that much larger currents and lengths of superconductors are required in a working environment where the magnetic field may be several Tesla. The most important applications under consideration are magnets, power transmission cables, current leads, fault current limiters, transformers, generators, motors, magnetic resonance imaging (MRI), levitated trains (MAGLEV Trains) and magnetic energy storage. HTS superconductors would simply replace conventional conductors, e.g. a copper winding in an electromagnet is replaced by a BSCCO tape winding.Fault current limiters for electrical utilities depending on the fact that superconductivity is lost and resistance appears above a critical current. Under normal conditions the fault current limiter is superconducting and offers no impedance to the ordinary current. During a power surge the large fault current exceeds the critical current and is limited by the consequent resistance as the superconductor goes normal. The superconductivity returns after the current spike (Hassenzahl, 2000).

1.4 Problems Statement

Electrons in superconductors are known to join together in pairs in order to gain immunity from scattering, but exactly how this occurs in many materials has yet to be established. It is very difficult to prepare single phase of Bi2223. The Bi2212 phase appears only after a few hours of sintering at approximately 860–870 °C, but the larger fraction of the Bi2223 phase is formed after a long reaction time of more than a week at approximately 870 °C. Although the substitution of Pb in the Bi–Sr–Ca–Cu–O compound has been found to promote the growth of the high T_c phase, a long sintering

 \bigcirc

time is still required. Doping and addition of rare earth oxide is expected to play an important role to improve the superconducting of BSCCO system. It has been rarely reported a doping and addition of BSCCO with rare earth.

1.5 Objectives

The main objectives is to study the effect of (Pr_6O_{11}, CeO_2) doping and addition on the superconducting properties of Bi2223 system. The break down of these objectives is explained as follows:

- 1. To prepare the $Bi_{1.6}Pb_{0.4}Sr_2Ca_{2-x}(Pr,Ce)Cu_3O_{\delta}$ and $(Bi_{1.6}Pb_{0.4}Sr_2Ca_2Cu_3O_{\delta})_{1-x}$ (nano M)_x where M=Pr₆O₁₁, CeO₂ samples using solid state method reaction and to identify the phases formation and determine its lattice parameters using X-ray diffraction techniques (XRD).
- 2. To investigate the surface morphology using scanning electron microscopy.
- 3. To investigate the electrical properties such as critical temperature $T_{c(R=0)}$, onset critical temperature $T_{c \text{ onset}}$, and superconducting transition width, ΔT .

REFERENCES

- Ali, Z., Maqsood, A., Maqsood, M., Ramay, S. M., Yousaf, M. and Anwar. 1996. High-T_c superconductivity in Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu_{2+x}O_y compounds. *Supercond. Sci. Technol.* **9**:127-200.
- Aloysius, R. P., Guruswamy, P. and Syamaprasad, U. 2005.^a Highly enhanced critical current density in Pr-added (Bi, Pb)-2212 Superconductor. *Supercond. Sci. Technol.* 18:L23-L28.
- Aloysius, R. P., Guruswamy, P. and Syamaprasad, U. 2005.^b Enhanced critical current density in (Bi, Pb)-2223 superconductor by Nd addition in low percentages. *Physica C.* **426**:556-562.
- Asikuzun, E., Ozturk, O., Cetinkara, H. A., Yildrim, G., Varilci, A., Yilmazlar, M. and Terziouglu, C. 2011. Vickers hardness measurements and some physical properities of Pr₂O₃ doped Bi-2212 superconductors. J. Mater. Sci. 23:1001-1010.
- Azhan, H. 1999. Effect of Sn doping and the heat treatment on Bi-Sr-Ca-Cu-O superconducting ceramics. Unpublished Ph.D thesis, Universiti Putra Malaysia,Serdang Selangor.
- Azhan, H., Halim, S. A., Mohamed, S. A., Azman, K., Yusainee, S. Y. S., Sidek, H. A. A., 2002, Studies of Sn Substitution on Ca and Cu Sites of Bi-Sr-Ca-Cu-O Superconducting System *Pertanika J. Sci. & Technol*, **10**(1):135-143.
- Bardeen, J., Cooper, L. N. and Schrieffer, J. R. 1957. Phys. Rev. 108:1175.
- Bernik, S., Hrovat, M., Rozman, M. and Kolar, D. 1994. The thermal stability of superconductors in the Bi(Pb)-Sr-Ca-Cu-O. J. Mat. Sci 19:920-925.
- Bourdillon, A., Bourdillon, N. *High Temperature Superconductors*; 1st ed; Academic Press: New York. 1993.
- Calestani, G., Rizzoli, C., Andreetti, G. D., Buluggiu, E., Giori, D. C., Valenti, A., Vera, A. and Amoretti, G. 1989. Composition effects on the formation and superconducting character of c≈31Å and c c≈37Å phases in the Bi-Sr-Ca-Cu-O and Bi-Pb-Sr-Ca-Cu-O systems. X-ray and ESR analysis. *Physica C.* **158**:217-224.
- Celebi, S., Malik, A. I, Halim, S. A. 2002. Study of Nd substitution in Bi-Pb-Sr-Ca-Cu-O high-T_c superconductors. *Journal of Alloys and Compounds*. **337**: 237-242.
- Debsikdar, 1989. Superconductivity and Applications (eds. P. T. Wu, H. C. Ku, W. H. Lee and R. S. Liu), Hsinco., Taiwan, pp275-293.
- Duygu, Y., Bekir, O., Serdar, A. and Eyyiphan Yakunci Y. 2011. Effect of Vanadium-Titanium Co-doping on the BPSCCO Superconductor. J. Supercond. Nov. Magn. 24:217-222.

- Fukushima, N., Niu, H. and Ando, K. 1988. Electrical and Magnetic properties in Bi₂Sr₂Ca_{1-x}Y_xCu₂O_{8+δ}. Electrical Properties Condensed Matter. Jpn. J. Appl. Phys. 27:L14321-L1434
- Garnier, V., Marinel, S. and Desgardin, G. 2002. Influence of the addition of SnO₂ nano-particles on Bi2223 phase formation. *J. Mat. Sc.* **37:**1785-1788.
- Ghattas, A., Annabi, M., Zouaoi, M., Ben Azzouz, F. and Ben Salem, M. 2008. Flux pinning by Al-based nano particles embedded in polycrystalline (Bi,Pb)-2223 superconductors. *Physica C* **468**: 31-38.
- Guilmeau, E., Andrzejewski, B., Noudem, J. G. 2003. The effect of MgO addition on the formation and the superconducting properties of the Bi2223 phase. *Physica* C 387: 382-390.
- Guo, Y. C., Tanaka, Y., Kuroda, T., Dou, S. X. and Yang, Z. Q. 1999. Addition of nanometer SiC in the silver-sheathed Bi2223 superconducting tapes. *Physica C* 311:65-74.
- Halim, S. A., halwaldeh, S. A., Ahan, H., Mohamed, S. B., halid. and uradi, .
 2000. Synthesis of Bi₁. Pb₀Sr2Ca2Cu O_y via sol-gel method using different acetate-derived precursors. *M er. Sci.* 04 -046.
- Halim, S. A., Mohamed, S. B., Azhan, H. Khawaldeh, S. A. and Sidek, H. A. A. 1998. Superconducting properties of Zn doped Bi-Sr-Ca-Cu-O ceramics. *Solid State Sci. Technol.* 6(1):1-9.
- Halim, S. A., Mohamed, S. B., Azhan, H., Khawaldeh, S. A. and Sidek, H. A. A. 1999. Effect of Barium doping in Bi-Pb-Sr-Ca-Cu-O ceramics superconductor. *Physica C* 312:78-84.
- Hassenzahl, W. V. 2000 Applications of superconductivity to electric power systems. *IEEE Power Engineering Review* 20(5):4-7.
- Kamimura, H., Ushio, H., Matsuno, S. and Hamada, T. 2005 *Theory of copper oxide superconductors*; 1st ed; Springer: Berlin.
- Khan, M. N. and Khizar, M. 1999. Effect of rare earth (Eu, Yb and Ag) substitutions on superconducting properties of the Bi_{1.7}Pb_{0.3}Sr₂Ca_{2-x}RE_xCu₃O_δ system. *J. Mat. Sc.* 34:5833-5838.
- Kishore, K. N, Satyavathi, Pena, O., Hari babu, V. 1996. Superconducting and normal state properties of the Bi_{1.7}Pb_{0.3}Sr₂Ca_{2-x}Y_xCu₃O_{8+δ}. *Mater. Sci. Eng. B* **38**:267-271.
- Kishore, K. N, Satyavathi, S., Muralidher, M., Pena, O., Hari babu, V. 1994. Superconducting and normal state properties of the Bi_{1.7}Pb_{0.3}Sr₂Ca_{2-x}Gd_xCu₃O_{8+δ}. *Mater. Sci. Eng. B* **37**:158-161.

- Kishore, K. N, Satyavathi, S., Muralidher, M., Pena, O., Hari babu, V. 1995. Thermoelectric power studies on the Sm substituted BPSCCO (2223) superconductor. *Physica C*. **252**: 49-53.
- Koyama, K., Kanno, S. and Noguchi, S. 1989. Electrical, Magnetic and Superconducting properties of High-Tc Superconductor $Bi_2Sr_2Ca_{1-x}RE_xCu_2O_{8+\delta}$ (Rare earth, RE = Nd and Pr). *Jpn. J. Appl. Phys.* **28**:L1354-L1357
- Kumar, R., Indu, Verma, Nidhi, Verma and Ganesan, V. 2012 Effect of Mn on the Surface Morphological Properties of (Bi, Pb)₂Sr₂Ca₂Cu_{3-x}Mn_xO_{10+δ}(Bi-2223) Superconductor. J. Supercond. Nov. Magn. 25:1215-1221.
- Liechtenstein, A. I. and Mazin, I. I., 1995. Quantitave model for the superconductivity suppression in R_{1-x}Pr_xBa₂Cu₃O₇ with different rare earths. *Phys. Rev. Lett.* **74**:1000.
- Maeda, H., Tanaka, Y., Fukotomi, M. and Asano, T. 1998. A new high-T_c 2223 phase without rare earth element. *Jpn. J. Appl. Phys.* **27**:L209-L201.
- Miura, S., Yoshitae, T., Manao, T. Miyasaa, Y., Shohata, . and Satoh, T. 199. ow -temperature annealing effect of as-grown Bi-Sr-Ca-Cu-O thin films on superconducting property and the *c*-axis lattice constant. *ppl. h* . *e* . 160.
- Moroishi, K., Ogawa, Y. and Ikushima, A. J. 1988. Properties of Bi₁Sr_{1-x}Ca_{1-x}Mg_{2x}Cu₂O_y superconductors: Electrical Properties of Condensed Matter. *Jpn. J. Appl. Phys.* **27**:L2330-L2332.
- Nkum, R. K. and Datars, W. R. 1995. Superconducting and Semiconducting properties of Bi₂Sr₂Ca_{1-x}Ga_xCu₃O_y. *Phys. Rev. B.* **46**:9.
- Onnes, H. K. 1914. Communs. Phys. Lab. Univ. Leiden, 139b.
- Owens, J. F. and Poole, P. C. *The New Superconductors*; 1st ed; Kluwer Academic: New York. 2002.
- Ozturk, R., Aksan, M. A., Altin, S., Yakinci, M. E. and Balci, Y. 2011. Effect of Ce substitution on superconducting properties of Bi₂Sr₂Ca₂Cu₃O_{10+δ} system fabricated by glass-ceramic technique. *J Supercond Nov Magn* **24**: 1105–1110.
- Prabhakaran, D., Tamizhavel, A. and Subramaniam, C. 1997. Morphology and characterization studies of Y doped Bi-2212 single crystals. *Physica C* **288**: 249-254.
- Prabhu. P. S., Ramachandra, R. M. S., Varadaraju, U. V., Rao, G. V. S. 1994. T_c suppression and conduction mechanisms in Bi_{2.1}Sr_{1.93}Ca_{0.97-x}R_xCu₂O_{8+y} (R=Pr, Gd, and Er) systems. *Phys. Rev. B.* **50**: 6929.

- Satyavathi, S., Nandakishore, M., Haribabu, V. and Pena, O. 1995. Superconducting properties of Bi_{1.7}Pb_{0.3}Sr₂Ca_{1-x}Sm_xCu₂O_y compounds. *Supercond. Sci. Technol.* **8**:44-50
- Satyavathi, S., Nandakishore, M., Haribabu, V. and Pena, O. 1996. Systematic of the physical properties of Bi_{1.7}Pb_{0.3}Sr₂Ca_{1-x}Nd_xCu₂O_y compounds. *Supercond. Sci. Technol.* **9**:93-98
- Sedky, A. 2009. The impact of Y substitution on the 110 K high T_c phase in a Bi(Pb):2223 superconductor. *Journal of Physics and Chemistry of Solids* **70**:483-488.
- Singh. R., Gupta, A., Agarwal, S. K., Singh, D. P. and Narlikar, A. V. 1998. Superconductivity in Pr-doped Bi₂Sr₂Ca₂Cu₃O_{y.} Supercond. Sci. Technol. 11: 311-314.
- Subramaniam, M. A., Torardi, C. C., Calabrase, J. C., Gopalakrishnan, J., Morissey, K. J., Askew, T. R., Flippen, R. B., Chowdry, U. and Sleight, A. W. 1988. New oxide superconductors. *Physica B* 153-155:608-612.
- Takano, M., Takada, J., Ota, K., Kitaguchi, H., Miura, Y., Ikeda, .Y, Tomii, Y., and Mazaki, H. 1988. High-T_c phase promoted and stabilized in the Bi,Pb-Sr-Ca-Cu-0 system. Jpn. J. Appl. Phys. 27:L1041-1043.
- Takeuchi, K., Kawasaki, M., Yoshimoto, Y., Saito, Y. and Koinuma, H. 1990. Oxygen control in Bi₂Sr₂Ca₁Cu₂O_x superconducting thin films by activated oxygens. *Jpn. J. Appl. Phys.* **29**:L70.
- Tallon, J. L., Buckley, R, G., Gilberd, P. W., Presland, M. R., Brown, I. W. M., Bowden, M. E., Christian, L. A. and Goguel, R. 1988. High-T_c superconducting phases in the series Bi_{2.1}(Ca, Sr)_{n+1}Cu_nO_{2n+4}. *Nature* 333:153-156.
- Tampieri, A., Calestani, G., Celotti, G., Masini, R. and Lesca, S., 1998, Multi-step process to prepare bulk BSCCO(2223) superconductor with improved transport properties. *Physica C*, **306**: 21-33.
- Tarascon, J. M., Barboux, P., Greene, L. H., Bagley, B. G., Miceli, P. and Hull, G. W. 1989. Superconductivity and Application (eds. P. T. Wu, H. C. Ku, W. H. Lee and R. S. Liu), Hsinco., Taiwan, pp199-211.
- Terziouglu, C., Aydin, H., Ozturk, O., Bekiroglu, E., Belenli, I. 2008. The influence of Gd addition on microstructure and transport properties of Bi-2223. *Physica B* **403**: 3354-3359.
- Wei, Kong and Abd Shukor, R. 2007. Superconducting and Transport Properties of Bi,Pb-Sr-Ca-Cu-O with nano Cr₂O₃ additions. *Journal of Electronic Materials* **36**:1648-1652.
- Yahya, S. Y., Jumali, M. H., Lee, C. H. and Abd Shukor, R. 2004. Effects of γ–Fe₂O₃ on the transport critical current density of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀ superconductors. *J. Mat. Sc.***39**:7125-7128.

- Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., Tendeloo, G. and Amelinckx, S. 1989. Structure and properties of (Bi, Pb)₂Sr₂(Ca, Y)Cu₂O_{8+δ}. *Physica C* **156**:325.
- Zhiqiang, M., Xinglin, Z., Li, Y., Yu. W., Shunxi, W., Leizhao. C., Chenggao, F. and Yuheng, Z. 1991. The crystal structure and low magnetic field properties of the Pb and Ba doped Bi-Sr-Ca-Cu-O system. J. Phys. Conden. Matter 3:9481-9488.

