

UNIVERSITI PUTRA MALAYSIA

FLAVOUR CHARACYERISATION AND STABILISATION OF FRESH, SPRAY-DRIED AND ENCAPSULATED DURIAN EXTRACT

CHIN SUNG TONG.

FSTM 2006 15

FLAVOUR CHARACTERISATION AND STABILISATION OF FRESH, SPRAY-DRIED, FREEZE-DRIED AND ENCAPSULATED DURIAN EXTRACT

By

CHIN SUNG TONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

May 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FLAVOUR CHARACTERISATION AND STABILISATION OF FRESH, SPRAY-DRIED, FREEZE-DRIED AND ENCAPSULATED DURIAN EXTRACT

By

CHIN SUNG TONG

May 2006

Chairman: Nazimah Sheikh Abdul Hamid, PhD

Faculty: Food Science and Technology

This study concerned the characterisation and stability of flavour volatiles from fresh, spray-dried, freeze-dried and encapsulated durian powder. In the first part of this study, headspace solid phase microextraction (SPME) coupled to fast gas chromatographymass spectrometry (GC-MS) was applied to analyze the volatile compounds of durian varieties D2, D24, and D101 from Malaysia. Sampling sensitivity was improved by evaluation of sample matrix, sampling size, headspace volume, salt addition and sampling duration. A total of 39 volatile compounds were identified in fresh durian pulp comprising 22 esters, 9 sulfur-containing alkanes, 3 thioacetals, 2 thioesters, 2 thiolanes, and 1 alcohol. The relative amount of volatiles estimated using 1ppm internal standard, revealed differences in the volatile composition among varieties. Further classification and characterisation of each durian variety was successfully conducted using Principal Component Analysis (PCA) whereby PC1, which explained 35.36% of variance, distinguished variety *D2* from *D24* while PC2 with 22.10% variance explained, separated the cluster of variety *D101* from *D24*.

Consequently, quantification of the major flavour volatiles in durian (*Durio zibethinus*) that included propanethiol, ethyl propanoate, propyl propanoate, ethyl 2methylbutanoate (E2MB) and diethyl disulfide, from fresh, freeze-dried and spray-dried durian pulp as well as effect of drying on the volatiles composition of durian pulp was evaluated using SPME coupled to fast chromatography-time-of-flight-mass spectrometry (fast GC-TOFMS). The correlation coefficients for target volatiles were improved (over 0.97) when surrogate internal standard was used with precision that ranged between 2 and 14%. Overall, spray-drying process, which employed high temperature, induced the formation of several volatiles that included aldehyde, ketone, furan and pyrrole. The loss of flavour volatiles in freeze-dried and spray-dried pulp ranged from 71 to 97% and 97 to 99% respectively.

Finally, changes in durian volatile composition and stability of the major volatile compounds (propanethiol, ethyl propanoate, E2MB and diethyl disulfide) in the spray dry microencapsulated durian powder using 3 types of coating matrices (maltodextrin, gum arabic and lipophilic starch) were evaluated. The flavour release characteristic from the microcapsules stored under different relative humidity, RH (44%, 75% and 92%) at 50°C was further studied. Stability of the microcapsule produced was maintained throughout 20 days of storage without liberation of any volatile acid. Formation of volatiles that included 2- and 3-methylbutanal, 1-ethyl-1-H-pyrrole compounds were induced during the process. Microcapsules prepared from a blend of maltodextrin and gum arabic at ratio 3:1 showed higher volatiles retention. Low volatiles retention in N-Lok microcapsule was observed which probably caused by the

cracking on the surface of its microcapsule. Furthermore, volatiles were released from MG microcapsule at the rate according to Avrami's equation which increased with higher relative humidity in the storage atmosphere.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENCIRIAN DAN PENSTABILAN PERISA EKSTRAK DURIAN YANG SEGAR, DIPROSES SECARA PENGERINGAN SEMBUR, PENGERINGAN SEJUKBEKU SERTA PENGKAPSULAN

Oleh

CHIN SUNG TONG

Mei 2006

Pengerusi: Nazimah Sheikh Abdul Hamid, PhD

Fakulti: Sains dan Teknologi Makanan

Kajian ini adalah mengenai pencirian dan kestabilan perisa durian yang segar, diproses secara pengeringan sembur, pengeringan sejukbeku serta pengkapsulan. Dalam bahagian pertama kajian ini, pengesktrakan mikro fasa pepejal pada ruangan tutupan (headspace SPME) bergabung dengan kromotografi gas laju-spectrometri jisim (fast GC-MS) telah digunakan untuk menganalisiskan sebatian meruap dari durian Malaysia jenis *D2*, *D24* dan *D101*. Kepekaan persampelan telah ditingkatkan melalui penilaian bentuk sampel, saiz persampelan, isipadu ruangan tutupan, penambahan garam serta masa persampelan. Sejumlah 39 sebatian meruap telah dikenalpastikan, yang mana terdiri daripada 22 ester, 9 alkana bersulfur, 3 thioacetal, 3 thioester, 2 thilane dan 1 alkohol. Jumlah bandingan bagi bahan ruapan yang ditaksirkan melalui 1 ppm sebatian piawai dalaman, mendedahkan perbezaan komposisi bahan ruapan antara jenis-jenis durian. Pengelasan and pencirian selanjutnya bagi setiap jenis durian telah berjaya dilakukan dangan analisis komponen terutama (PCA) di mana PC 1, yang menjelaskan

35.36% sisihan, membezakan jenis D2 daripada D24 manakala PC2 dengan 22.10% sisihan penjelasan memisahkan golongan bagi jenis D101 daripada D24.

Selanjutnya, penaksiran bagi bahan ruapan perisa yang penting dalam durian termasuk propanethiol, etil propanoik, propil propanoik, etil 2-metilbutanaoik (E2MB) dan dietil disulfur dari isi durian yang segar, disembur-keringkan dan disejukbeku-keringkan serta kesan pengeringan ke atas komposis bahan ruapan dari isi durian telah dinilai melalui pengesktrakan fasa pepejal secara mikro (SPME) bersambung dengan kromotografi gas laju-spectrometri jisim masa penerbangan (fast GC-TOFMS). Pekali hubung kait bagi bahan analisis sasaran telah ditingkatkan (melebihi 0.97) apabila sebatian piawai dalaman timbalan digunakan yang mana ketepatan antara sisihan piawai bandingan (RSD) 2% ke 14%. Secara keseluruhan, proses pengeringan sembur, yang menggunakan suhu tinggi, telah merangsangkan penghasilan beberapa bahan ruapan termasuk aldehyde, ketone, furan dan pyrrole. Kehilangan bahan ruapan perisa dalam isi durian yang disembur-keringkan dan disejukbeku-keringkan adalah antara 71 hingga 97% serta 97 ke 99% masing-masing.

Akhirnya, perubahan dalam komposis bahan meruap perisa durian dan kestabilan bahan meruap pentingnya (propanethiol, etil propanoate, E2MB dan dietil disulfide) terhadap prngkapsulan secara mikro melalui pengeringan sembur dengan 3 jenis bahan lapisan pelindung telah dikajikan. Cirir-ciri pembebasan perisa daripada kapsul mikro yang disimpan di bawah kelembapan relatif berlainan, RH (43%, 74% dan 85%) pada 50°C telah dikaji selanjutnya. Kestabilan kapsul mikro terkekal sepanjang 20 hari tersimpan

tanpa kelepasan asid meruap. Pembentukan bahan ruapan termasuk 2- dan 3methylbutanal, 1-ethyl-1H-pyrrole telah dirangsangkan dalam prosess ini. Kapsul micro yang disediakan daripada campuran maltodextrin dan gum arabic pada nisbah 3:1 (MG) menunjukkan penahanan bahan ruapan yang lebih baik. Bahan ruapan perisa termasuk propanethiol dan E2MB ditahan lebih baik oleh campuran bahan lapisan lindung arabik gum (GA) dan maltodekstrin DE15 (MD) dengan nisbah 1:3. Kecekapan pengkapsulan N-Lok yang rendah telah diperhati yang mana dijangka terpunca daripada keretakan atas permukaan kapsul mikronya. Tambahan pula, nahan meruap terbebas daripada kapsul micro MG pada kadar mengikuti persamaan Avrami yang mana ianya meningkat bersama dengan penambahan kelembapan relatif dalam atmosfera penyimpanannya.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my eternal gratitude to my loving family for their infinite support, love, care and understanding. My deepest appreciation goes to my supervisor, Dr. Nazimah Sheikh Abdul Hamid for being an excellent advisor. She allowed me to take the project in my own direction. She was never angry when things didn't work right. Instead, she was always willing to give me invaluable advice and guidance without enforcing it.

I am also grateful to all my committee members, Prof Dr. Yaacob Che Man and Prof Dr. Russly Abdul Rahman for their insightful comments and suggestions in my study. Heartfelt appreciation goes to Dr. Quek Siew Young and Encik Dzulklifi Mat Hashim, for their encouragements and helps throughout the course of my research study.

No words are enough to thanks Chooi Peng, who has been with me through the hard times with lots of her love and tireless support. Special thanks to Bee Tein, Chun Kiat, Yit Yang, Tuck Keong, Fadzil, Soek Meng, Gan (Horng Een), Wang (Keng Fui), Chiang Lim, Hwee Nee, Wai Cheng and Howe Lin, Nazim, Nini for their friendship and sincere concerns; with all the wonderful memories that I will cherish forever.

I am indebted to the staffs in Faculty of Food Science and Technology: En.Azman, Kak Jamilah, En. Halim and Cik Norlinawati from Biochem Lab; En. Soib and En.Manoah from Engineering Lab, who directly or indirectly help, support and cooperate with me over these years. I would like to acknowledge the financial support provided by IRPA grant (03-02-04-0159-EA001) awarded to Dr. Nazimah Sheikh Abdul Hamid for this study.

TABLE OF CONTENTS

ABSTRACT	2
ABSTRAK	5
ACKNOWLEDGEMENTS	8
APPROVAL	10
DECLARATION	12
LIST OF TABLES	16
LIST OF FIGURES	18
LIST OF ABBREVIATIONS	20

CHAPTER

Ι	GENERAL INTRODUCTION	22
II	LITERATURE REVIEW	25
	Durian (Durio zibethinus)	25
	Durian varieties D24, D2 and D101	25
	Flavour volatile constituents of durian	26
	Commercial value of durian	35
	Processing of durian powder	36
	Analysis in Flavour Volatile Compounds	38
	Solid phase microextraction in food analysis	40
	Comparison of SPME with other common extraction techniques	49
	Principle of SPME	51
	Headspace SPME for quantitative analysis and some considerations	52
	Limitation of headspace SPME	55
	High Speed Gas chromatography	58
	Spray Drying Process	61
	Dehydration of spray droplet	68
	Spray dry Microencapsulation of Flavour Volatiles	69
	Selective diffusion theory	71
	Factors affecting volatiles retention in spray dry encapsulation	73
III	ANALYSIS OF VOLATILE COMPOUNDS FROM	90
	MALAYSIAN DURIAN USING HEADSPACE SPME	
	COUPLED TO FAST GCMS	
	Introduction	90
	Materials and Methods	92
	Materials	92
	Effect of SPME variable on extraction sensitivity	93

	Isolation of headspace volatiles by SPME	94
	GCMS conditions	94
	Statistical analysis	95
	Results and Discussion	96
	Effect of SPME variables	96
	Volatile compounds of Malaysian durian	103
	Multivariate study of durian volatiles profile	115
	Conclusion	116
IV	ANALYSIS OF VOLATILES FROM FRESH AND PROCESSED DURIAN PULP USING HEADSPACE SPME COUPLED TO FAST GC-TOFMS	118
	Introduction	118
	Materials and Methods	120
	Durian samples	120
	Reagents and chemicals	121
	Drying procedure	121
	Moisture determination	122
	SPME sampling	123
	GCMS conditions	124
	Data analysis	124
	Results and Discussion	125
	Fast GC-TOFMS variables	125
	SPME variables	130
	Quantification of target volatiles	132
	Volatiles composition of durian pulp	135
	Effect of drying on volatiles retention	140
	Conclusion	143
V	RETENTION OF DURIAN FLAVOUR VOLATILES DURING SPRAY DRY MICROENCAPSULATION AND ACCELERATED STORAGE	144
	Introduction	144
	Materials and Methods	146
	Materials	146
	Sample preparation	140
	Moisture content determination	148
	Determination of volatiles retention during drying	149
	Accelerated storage condition	150
	GC-FID and GCMS analysis	150
	Scanning electron microscopy	150
	Statistical analysis	151
	Results and Discussion	152
	Production of durian flavour microcapsules	152
	Changes of volatiles composition in durian products	152
	Volatiles retention in spray-dried microcapsules	155
	VIALING INCHTION IN SULAVATION INCLUDING	1

	Microstructure of spray-dried microcapsules Influence of relative humidity on volatiles content in spray-dried microcapsules	159 165
	Conclusion	170
VI	GENERAL CONCLUSION AND RECOMMENDATION	171
REFERENCES BIODATA OF THE AUTHOR		175 201

LIST OF TABLES

Table		Page
2.1	Volatile flavouring constituents of durian	27
2.2	Analysis of food volatiles by SPME	41
2.3	Comparison of various volatiles extraction methods with SPME technique	50
2.4	Limitation in quantitative analysis of flavour volatiles using headspace SPME and recommended solutions	57
2.5	Considerations in the application of high speed GC	61
2.6	Food powder produced by spray drying technique	62
2.7	Factors affecting the volatiles retention in spray dry encapsulation	74
3.1	Identification of durian volatile compound using headspace SPME-GC-MS sampling	106
3.2	Mass fragmentation patterns of sulfur volatiles found in Malaysian durian	109
3.3	Relative amount and odour description of volatile compounds from Malaysian durian	111
4.1	Details of target analytes for quantitative analysis in durian pulp	126
4.2	Effect of internal standard implementation on the linearity of the standard addition regression lines by HS-SPME analysis of durian matrix	134
4.3	Identification and relative amount of volatile compounds from fresh and dried durian pulp using HS-SPME-Fast GC-TOFMS	136
4.4	Concentration of target analytes from fresh, freeze-dried and spray- dried durian pulp in μ g per g dry solid (n=4) determined by HS- SPME coupled to fast GC-TOFMS	141
5.1	Powder recovery of spray-dried encapsulated durian flavour under various drying condition	156

5.2	Volatiles composition of durian slurry, spray-dried microcapsule,	157
	and durian slurry after 1-day storage at 25°C	

- 5.3 Volatiles retention (in percentage) of spray-dried durian flavour 169 encapsulated with various coating materials and drying conditions
- 5.4 Values of release constant, k, and reaction order, n, of propanethiol 166 and E2MB compound

LIST OF FIGURES

	Page
Features of the spray drying process stage	67
Maceration effect on SPME sensitivity	98
Sampling size effect on SPME sensitivity	99
Headspace volume effect on SPME sensitivity	100
Salting-out effect on SPME sensitivity	101
Absorption duration on SPME sensitivity	102
Representative chromatograms obtained by headspace SPME for durian variety <i>D101</i>	104
Representative chromatograms obtained by headspace SPME for durian variety $D24$	104
Representative chromatograms obtained by headspace SPME for durian variety $D2$	105
PCA case scores of durian samples based on first and second principal components	117
PCA variable loadings of durian volatile compounds based on first and second principal components	117
Total ion Chromatogram of durian volatile compounds obtained from standard solution using HS-SPME coupled to fast GC- TOFMS under splitless mode	127
Total ion Chromatogram of durian volatile compounds obtained from standard solution using HS-SPME coupled to fast GC- TOFMS under split injection mode at ratio 10:1	127
Extracted ion chromatogram for diethyl disulfide processed with 1 second peak width setting	128
Extracted ion chromatogram for diethyl disulfide processed with 3 second peak width setting	128
Effect of carrier gas flowrate on sensitivity of fast GC-TOFMS	130
	 Maceration effect on SPME sensitivity Sampling size effect on SPME sensitivity Headspace volume effect on SPME sensitivity Salting-out effect on SPME sensitivity Absorption duration on SPME sensitivity Representative chromatograms obtained by headspace SPME for durian variety <i>D101</i> Representative chromatograms obtained by headspace SPME for durian variety <i>D24</i> Representative chromatograms obtained by headspace SPME for durian variety <i>D2</i> PCA case scores of durian samples based on first and second principal components PCA variable loadings of durian volatile compounds based on first and second principal components Total ion Chromatogram of durian volatile compounds obtained from standard solution using HS-SPME coupled to fast GC-TOFMS under split injection mode at ratio 10:1 Extracted ion chromatogram for diethyl disulfide processed with 1 second peak width setting

4.4	Effect of absorption time on SPME sensitivity	138
4.5	Extracted ion chromatogram for methanethiol (m/z 47), acetaldehyde (m/z 43), ethanethiol (m/z 62) and carbon disulfide (m/z 76)	161
5.1a	Spray dried microcapsules produced at Ti 170°C with MD	162
5.1b	Spray dried microcapsules produced at Ti 130°C with MD	163
5.1c	Spray dried microcapsules produced at Ti 130°C with MG	164
5.1d	Spray dried microcapsules produced at Ti 130°C with N-Lok	166
5.2a	Release time course of propanethiol in spray dried powder prepared from MG at Ti 130 ^o C	167
5.2b	Release time course of ethyl propanoate in spray dried powder prepared from MG at Ti 130 ^o C	167
5.2c	Release time course of E2MB in spray dried powder prepared from MG at Ti 130°C	167
5.2d	Release time course of diethyl disulfide in spray dried powder prepared from MG at Ti 130°C	168

LIST OF ABBREVIATIONS

%	percent
°C	degree centigrade
°F	degree Fahrenheit
μ1	microliter
μm	micrometer
ANOVA	analysis of variance
С	carbon chain
cm	centimeter
DVB/CAR/PDMS	divinylbenzene/carboxen/polydimethylsiloxane
EI	electron ionization
eV	electron voltage
GA	gum arabic
GC	Gas Chromatography
GC/MS	Gas Chromatography / Mass Spectrometry
GC-FID	Gas Chromatography – Flame Ionization Detector
GC-TOFMS	Gas Chromatography – Time Of Flight Mass Spectrometry
i.d.	internal diameter
kg	kilogram
L	liter
m	meter
MD	maltodextrin DE15

MG	blending of 3 part MD with 1 part GA
min	minute
ml	milliliter
mm	millimeter
ND	not detected
PC	principal component
PDMS / DVB	polydimethylsiloxane / divinylbenzene
PDMS	polydimethylsiloxane
ppm	parts per million
RH	relative humidity
rpm	revolution pre minute
RSD	relative standard deviation
S	second
SDE	Simultaneously Distillation Extraction
SPME	Solid Phase Microextraction
Ti	inlet temperature
То	outlet temperature

CHAPTER I

GENERAL INTRODUCTION

Durian (*Durio zibethinus*), which belongs to a member in the *Bombaceae* family is a most favoured and expensive fruit in Southeast Asia countries. Durian species growth originated from the Malay Peninsular and now, over 20 durian varieties can be found in the Malaysian market but only certain varieties are much preferred. Durian pulp with firm, fine texture possesses 2 distinct types of aroma; which is the sulfury onion-like and delicately fruity odour. Studies have been carried out to determine the volatile and non-volatile substances that are responsible for durian flavour perception. A total of 137 durian volatile constituents were reported. Nevertheless, limited information is available regarding the flavour volatile composition that discriminate the preferred durian varieties.

The availability of durian for 4 to 5 months in a year has driven Malaysian government to increase the production of durian. However, the market for durian in Malaysia is mainly for domestic consumption whereas exportation has been constrained due to the difficulty of fruit transportation, and limited shelf life of 2 to 5 days if without refrigeration. Processing of durian into dried powder form is advantageous to overcome these market restrictions. Dehydration or drying process is widely used in preserving fruit and vegetables due to the benefits of reduced costs, added convenience, and excellent product stability against microorganisms and undesired biochemical reaction.

However, dehydration of food products were reported to result in noticeable flavourlosses and increase in off-flavour notes after exposure to high temperature treatment during drying, which subsequently altered the original flavour perception. From the standpoint of quality control and process optimization, understanding of the drying effect on flavour and odour of durian products during processing would be desirable.

Several factors have to be considered during the analysis of volatile compounds in food that include sensitivity of current instrument; complexity of food matrix and stability of flavour compounds during extraction. Solid phase microextraction (SPME) provides advantages such as eliminating the use of solvent, inexpensive, rapid and easy to use, compatibility with a wide range of analytical instruments, and improved detection limits. Meanwhile, fast gas chromatography (fast GC) technique offers the advantage of high-speed chromatography on complex sample without sacrificing data quality whilst Time-of-Flight Mass Spectrometry (TOFMS) with high spectra acquisition rate was found suited for volatile organic compounds detection in a very-fast GC. To date, the conjunction of SPME technique with fast GC and TOFMS system has been demonstrated as a suitable tool for rapid characterization and quality evaluation of some food materials. In fact, calibration or optimization of the utilized conditions is necessary to enhance the sensitivity and accuracy in the routine analysis on volatile profile of durian products in both qualitative and quantitative terms.

Loss of durian flavour volatiles during spray drying could be minimized substantially by implementing the concept of selective diffusion in microencapsulation for volatiles

retention effect. The effect of volatiles encapsulation can be perceived by the incorporation of coating or carrier material with excellent film-forming properties into the feed stock prior to spray drying. Factors including spray drying parameters and feed stock properties are important to determine for improved encapsulating efficiency.

The goals of the present study were

1) to analyze the flavour volatiles of fresh durian pulp from 3 well-known varieties in Malaysia (*D24*, *D2*, *D101*) using headspace SPME coupled to fast GCMS and further distinguish these varieties according to their volatiles composition.

2) to determine the effect of spray drying and freeze drying process on the flavour volatiles from durian pulp using headspace SPME coupled to fast GC-TOFMS.

3) to investigate the influence of the drying conditions and type of coating materials on the stability of durian flavour volatiles during spray dry microencapsulation.

