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For more than seven past decades, the ferrite research literature has only very 

superficially dealt with the question of how the evolving microstructure of a ferrite 

material relates to its accompanying, resultant magnetic properties. The literature has 

only covered in great detail the answers for the case of ferrite materials obtained from 

final sintering. Thus, this work was a fresh attempt to critically track the evolution of 

magnetic properties parallel to the microstructural changes in bulk Ni0.5Zn0.5Fe2O4 

samples and to relate the properties to the changes wherever possible. The study was 

divided into five parts. The first part involved two variables (milling time and ball to 

powder weight ratio (BPR)) of a mechanical alloying process where they were varied in 

order to study their effect on the magnetic properties of the material. The alloyed 

powders were used as starting powders for the rest of the research work. In the second 
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part, parallel sintering of a number of samples was carried out with sintering 

temperatures of 500 to 1400
o
C, subjecting one sample to only one particular sintering 

temperature. This was a multi-sample sintering process with 100
o
C increments. The 

third part dealt with higher-precision multi-sample sintering of several samples with 

sintering temperatures of 800 to 1000
o
C with much smaller increments of 25

o
C. The 

fourth part involved studies of the effect of soaking time on microstructural evolution 

and its influence on the magnetic properties. The last part carried out was similar to the 

second part (multi-sample), but it was run more carefully and critically with only one 

sample (single-sample) being subjected to various ascending sintering temperatures 

from 500 to 1400
o
C.  

 

The results from first-part on the mechanical alloying parameters variation showed that there 

were no significant trends to relate the milling time and BPR with the permeability and 

losses of the material studied. After the samples were sintered at 1150
o
C, all the effects of 

the alloying process seemed to diminish. The results from the multi-sample sintering with 

the nanosized starting powders subjected to various sintering temperatures showed a clear 

development trend of the phase, morphology and magnetic properties of the samples. It is 

very interesting that the results revealed a critical region of sintering temperature for the 

development of magnetic properties which was observed at 800
o
C and 900

o
C with the 

sigmoid B-H curve shape taken to indicate a strong magnetic order. For the first time, this 

work has reported the evolution of the B-H hysteresis loops associated with the changes of 

magnetic states from paramagnetism to moderate ferromagnetism to strong ferromagnetism 

with microstructural changes. The results of the higher precision third part on the 
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relationship between ordered magnetism and the microstructure of the samples revealed a 

very startlingly systematic trend: a highly refined evolution trend covering a critical region 

of ordered magnetism which emerged and developed in step with morphological changes. 

Further work on the soaking time parameter was to study another possible way for the 

microstructure to influence the magnetic properties. The results showed a slow grain growth 

rate indicating a slow diffusion of atoms during the sintering process: it is believed that there 

was an increase in number of grain growth spots and these were the regions of mixed 

superparamagnetic and paramagnetic mass with ferromagnetic mass starting to dominate the 

samples. The last part of this work, carried out using single-sample sintering, also produced 

very gratifying results from the research point of view: the fascinating results from the 

single-sample sintering showed very systematically the evolution of microstructure-

magnetic property relationships with a clarity superior to that shown by the multi-sample 

sintering.  

  

Finally, after analysing the results and the observations of the work mentioned above, it is 

strongly believed that there are three factors found to sensitively influence the samples 

content of ordered magnetism –their ferrite-phase crystallinity degree, the number of grains 

above the critical grain size and large enough grains for domain wall accomodation. This 

research work has shed new light on the microstructure-magnetic properties evolution in 

ferrites.  
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Bagi lebih daripada tujuh dekad yang lampau, literatur penyelidikan ferit hanya telah 

menangani secara amat cetek persoalan bagaimana sesuatu mikrostruktur ferit yang 

sedang mengalami evolusi berkait dengan sifat magnet yang terhasil seiring dengannya. 

Maka kerja ini adalah cubaan terbaru untuk mencerap secara kritikal evolusi ciri-ciri 

magnet seiring dengan perubahan mikrostruktur bagi sampel Ni0.5Zn0.5Fe2O4. Kajian ini 

telah dibahagikan kepada lima bahagian. Bahagian pertama melibatkan dua pemboleh 

ubah (masa mengisar dan nisbah berat bola terhadap berat serbuk (BPR)) bagi proses 

pengaloian mekanik dimana pemboleh ubah tadi dipelbagaikan untuk mengkaji 

kesannya terhadap sifat magnet bahan. Dalam bahagian kedua, pensinteran selari bagi 

sampel-berbagai telah dilakukan dengan suhu pensinteran dari 500 sehingga 1400
o
C 

dengan setiap sampel hanya dikenakan satu suhu pensinteran. Ini adalah proses 

pensinteran pelbagai sampel dengan kenaikan 100
o
C. Bahagian ketiga berurusan dengan 

pensinteran selari pelbagai sampel yang lebih persis dengan suhu pensinteran dari 800 
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sehingga 1000
o
C dengan kenaikan yang jauh lebih kecil, 25

o
C. Bahagian keempat 

melibatkan kajian pada kesan masa rendaman pembakaran terhadap evolusi 

mikrostruktur dan pengaruhnya ke atas sifat magnet. Bahagian terakhir telah dibuat 

sama seperti bahagian kedua (pelbagai-sampel), tetapi dilakukan secara kritikal dengan 

hanya satu sampel (sampel-tunggal) dan dikenakan pelbagai suhu pensinteran secara 

menaik dari 500
o
C sehingga 1400

o
C. 

 

Keputusan daripada bahagian pertama mengenai variasi parameter pengaloian mekanik 

menunjukkan bahawa tiada hala perubahan yang bermakna untuk mengaitkan masa 

mengisar dan BPR dengan keboleh-telapan dan „kehilangan‟ bahan yang dikaji. Selepas 

sampel dibakar pada 1150
o
C, semua kesan-kesan proses pengaloian didapati hilang. 

Keputusan daripada pensinteran pelbagai-sampel dengan serbuk permulaan bersaiz 

nano dikenakan pelbagai suhu pensinteran menunjukkan perkembangan jelas fasa, 

morfologi dan sifat magnet bagi bahan. Adalah sangat menarik melihat keputusan-

keputusan yang menyingkap suatu kawasan kritikal suhu pensinteran bagi pembinaan 

sifat magnet yang diperhatikan pada 800
o
C dan 900

o
C dengan bentuk sigmoid B-H 

diambil sebagai petunjuk tertib magnet yang kuat. Buat pertama kalinya kerja ini telah 

melaporkan evolusi gelung histeresis BH dikaitkan dengan perubahan keadaan dari 

keparamagnetan kepada keferomagnetan sederhana seterusnya kepada keferomagnetan 

kuat. Keputusan bahagian ketiga mengenai hubungan kemagnetan bertertib dengan 

mikrostruktur sampel menyingkap suatu hala perubahan sistematik yang amat 

menakjubkan: suatu hala evolusi yang amat halus yang meliputi suatu kawasan kritikal 

kemagnetan bertertib yang muncul dan berkembang seiring dengan perubahan-
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perubahan morfologi. Kajian lanjut dibuat terhadap parameter masa rendaman 

pensinteran bagi mengkaji suatu lagi cara yang mungkin bagi mikrostruktur 

mempengaruhi sifat magnet. Keputusan-keputusan kajian ini menunjukkan kadar 

pembesaran butiran yang perlahan, menandakan resapan atom-atom semasa proses 

pensinteran: dipercayai terdapat peningkatan jumlah tompok-tompok pembesaran 

butiran dan ini adalah kawasan percampuran jisim superparamagnet dan paramagnet 

dengan jisim feromagnet yang mula mendominasi sampel. Bahagian terakhir kerja ini 

yang telah dijalankan dengan menggunakan pensinteran sampel-tunggal juga telah 

menghasilkan keputusan-keputusan yang amat memuaskan hati dari sudut penyelidikan: 

keputusan-keputusan menarik dari pembakaran sampel-tunggal menunjukkan secara 

amat sistematik evolusi hubungan mikrostruktur-sifat magnet dengan kejelasan yang 

lebih baik berbanding kes pensinteran pelbagai sampel. 

 

Akhir sekali, selepas menganalisis keputusan dan pemerhatian kerja tadi, ianya amatlah 

diyakini bahawa terdapat tiga faktor yang secara sensitif mempengaruhi kandungan 

kemagnetan bertertib sampel iaitu darjah fasa kehabluran, jumlah butiran melepasi saiz 

kritikal butiran dan butiran yang cukup besar untuk penempatan dinding domain. Kerja 

penyelidikan ini telah menyumbangkan pengetahuan baharu tentang terhadap evolusi 

mikrostruktur-sifat magnet dalam bahan ferit.  
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CHAPTER 1 

INTRODUCTION
 

 

 

1.1 Background of the Study 

 

Ferrites are ceramic materials with magnetic properties which are mixed metal oxides 

containing iron oxide as their main component. They can be formed into permanent 

magnets for uses in motors, speakers and other electrical-mechanical energy conversion 

devices. They can also be formed into soft magnetic materials which are used as core 

materials for transformers, inductors and in microwave communication systems. 

Generally, ferrites are classified into three classes based on three different crystal types 

which are: 

1) the spinel type, giving spinel ferrites, 

2) the garnet type, giving garnet ferrites (as simply garnets) 

3) the magnetoplumbite type, giving hexagonal ferrites.  

Magnetically, the ferrites in categories 1) and 2) come under the class of “soft: ferrites 

while the ferrites in 3) belong to the class of “hard” ferrites. A soft magnetic material 

becomes magnetised by a relatively low applied magnetic field. When the applied field 

is removed, relatively low magnetism is retained in soft ferrites. Soft ferrites mostly 



© C
OPYRIG

HT U
PM

2
 

 

contain divalent or trivalent metal ions (nickel, zinc, manganese, yttrium, etc.), trivalent 

iron ions and divalent oxygen ions. Conversely, a high applied magnetic field is required 

for magnetizing hard ferrites. High remanent magnetism characterizes the properties of 

hard ferrites. They are prepared from iron oxide and barium oxide or strontium oxide. 

 

Nickel Zinc ferrite is the most popular composition of soft ferrites. Due to the high 

resistivity and low eddy current losses and coercivity, ferrites of the nickel-zinc type are 

used in high frequency applications as a core material for power transformers and circuit 

inductors in the megahertz frequency region. They are more stable than the other types 

of ferrites, easily manufactured, low cost and have excellent and desireable magnetic 

properties. The properties of NiZn ferrite are sensitive to the compositional variability 

and the microstructure which is governed by the preparation process (Verma et al., 

2005). In NiZn ferrites, the electrical and magnetic properties of ferrites depend on the 

stoichiometric composition. The nickel zinc ferrite with the well known composition of 

Ni0.5Zn0.5Fe2O4 is chosen in this study.  

 

1.2 Microstructural-magnetic properties relationships of Ferrite Materials 

 

Nanosized particles of the high-energy-milled spinel ferrites exhibit interesting physical 

and chemical properties markedly different from those of their bulk counterparts. The 

high-field magnetization irreversibility (Kodama et al., 1996), the variation of the Neel 

temperature with grain size (Chinnasamy et al., 2002), a high coercivity (Shi and Ding, 
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2001), and an altered (reduced (Lin et al., 1995) or enhanced (Oliver et al., 2000, Jiang 

et al., 1999 and Clark and Evans, 1997)) magnetic moments in comparison with the 

corresponding bulk materials have been observed in nanosize high-energy-milled 

ferrimagnetic spinels. Mechanical treatment of the spinel ferrites was found to be a 

useful activation method leading to an enhanced chemical reactivity of nanoscale 

powders (Sepelak et al., 1997). Nanostructured spinel ferrites prepared by high energy 

milling method are often inherently unstable owing to their small constituent sizes, 

nonequilibrium cation distribution, disordered spin configuration, and high chemical 

activity. Sintering of the milled spinel ferrites recrystallises the nanostructure and causes 

its transition from an excited metastable (activated) state into the low-energy crystalline 

state. During the process of sintering, the advantageous properties of the nanosize-milled 

spinel ferrites are mostly lost (Sepelak et al., 1998), thus an understanding of the 

relaxation mechanism of mechanically induced metastable states and of the thermal 

stability of nanostructure is necessary. A better understanding of the response of 

nanoscale spinel ferrites to changes in temperature is crucial not only for basic science 

(the development of an atomistic and microscopic theory of the mechanochemical 

processes) but also because of the technological high-temperature applications in 

catalysis, ferrofluids and information storage. To gain insight into the microstructral-

magnetic property evolution relationships, this experimental work focuses on the study 

of the response of the fine nano-size starting powders of mechanically alloyed nickel 

zinc ferrite (Ni0.5Zn0.5Fe2O4) to changes in sintering temperature. Although extensive 

studies have recently been performed on the nanoscale-milled soft ferrites (Kodama et 

al., 1996, Chinnasamy et al., 2002, Sepelak et al., 2000, Oliver et al., 2000 and Jiang et 
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al., 1999), no measurements, of the thermally induced structural and magnetic evolutions 

in this metastable solid have been reported. 

 

1.3 Problem Statement  

 

A fundamental line of scientific enquiry has been neglected by ferrite and garnet 

researchers for more than 70 years: What would be the composition-microstructure 

relationships at various intermediate sintering conditions during the parallel evolutions 

of the morphology and the material properties? This research work intends to track 

carefully and critically the fundamental evolutions. Do the changes of microstructure 

affect the magnetic properties of the materials? How do magnetic properties evolve with 

the microstructure changes? What would happen to the ions of the materials parallel to 

the microstrure changes, do they also contribute to magnetization of the materials? 

 

1.4 Objectives 

 

The ultimate goal of this research is to critically track the evolution of magnetic 

properties parallel to the microstructural changes. Previous literatures mostly based on 

the micron-size starting powder and gradually were grown to the bulk solid samples. It is 

interesting to study the evolution of the magnetic properties with the nano-size starting 

powders and observe transition of paramagnetic to ferromagnetic behavior. This 

research work embarks on the following objectives:  

 

 



© C
OPYRIG

HT U
PM

5
 

 

1) To prepare Ni0.5Zn0.5Fe2O4 using mechanically alloyed nanoparticles. 

2) To study the phase formation and crystallite size evolution of the as-prepared 

ferrite using XRD. 

3) To study the effect of the sintering temperature on the microstructural 

evolution and magnetic properties of Ni-Zn ferrites.  

4) To study the evolution of magnetic properties with microstructure changes. 

 

1.5 Thesis Outline 

 

General introduction of ferrite, microstructural-magnetic relationships and some 

research questions were discussed in chapter one while related literatures of the 

synthesis methods, composition tailoring, mechanical alloying and its important 

parameters, and some microstructural consideration on magnetic properties were 

reported in chapter two. Chapter three reported the basic theories as they affect ferrites 

and sintered materials. Specifically, the chapter reports the fundamentals of 

magnetization, the chemistry of spinel ferrites, sintering parameters and mechanical 

alloying process. The preoccupations in chapter four were methodologies employed for 

the preparations and the characteristics measurement of the as-prepared ferrite and 

sintered NiZn ferrite. The discussion of the obtained results of the as-prepared ferrites 

and the microstructure-magnetic properties forms chapter five. Chapter six summarized 

and concludes the research findings, in addition to some suggested recommendations. 

The list of his publications was attached at the end of the thesis, preceded by the author’s 

biography appendices and references/bibliographies respectively. 
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