UNIVERSITI PUTRA MALAYSIA

PARALLEL EVOLVING MORPHOLOGY, MAGNETIC PROPERTIES AND THEIR RELATIONSHIPS IN Ni0.5Zn0.5Fe2O4

ISMAYADI ISMAIL

ITMA 2012 18
PARALLEL EVOLVING MORPHOLOGY, MAGNETIC PROPERTIES AND THEIR RELATIONSHIPS IN Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$

By

ISMAYADI ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

January 2012
In appreciation of their love and sacrifices, this thesis is dedicated to Parents Haji ISMAIL AWANG and Hajah MEK ESAH AWANG, to my beloved wife SAKINAH SHAMSUDIN and my three children, ZAFRAN HAKIM, ARIF AMSYAR and HIJRIN BALQISH.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

PARALLEL EVOLVING MORPHOLOGY, MAGNETIC PROPERTIES AND THEIR RELATIONSHIPS IN Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$

By

ISMAYADI ISMAIL

January 2012

Chairman: Associate Professor Mansor Hashim, PhD

Institute: Institute of Advanced Technology

For more than seven past decades, the ferrite research literature has only very superficially dealt with the question of how the evolving microstructure of a ferrite material relates to its accompanying, resultant magnetic properties. The literature has only covered in great detail the answers for the case of ferrite materials obtained from final sintering. Thus, this work was a fresh attempt to critically track the evolution of magnetic properties parallel to the microstructural changes in bulk Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ samples and to relate the properties to the changes wherever possible. The study was divided into five parts. The first part involved two variables (milling time and ball to powder weight ratio (BPR)) of a mechanical alloying process where they were varied in order to study their effect on the magnetic properties of the material. The alloyed powders were used as starting powders for the rest of the research work. In the second
part, parallel sintering of a number of samples was carried out with sintering temperatures of 500 to 1400°C, subjecting one sample to only one particular sintering temperature. This was a multi-sample sintering process with 100°C increments. The third part dealt with higher-precision multi-sample sintering of several samples with sintering temperatures of 800 to 1000°C with much smaller increments of 25°C. The fourth part involved studies of the effect of soaking time on microstructural evolution and its influence on the magnetic properties. The last part carried out was similar to the second part (multi-sample), but it was run more carefully and critically with only one sample (single-sample) being subjected to various ascending sintering temperatures from 500 to 1400°C.

The results from first-part on the mechanical alloying parameters variation showed that there were no significant trends to relate the milling time and BPR with the permeability and losses of the material studied. After the samples were sintered at 1150°C, all the effects of the alloying process seemed to diminish. The results from the multi-sample sintering with the nanosized starting powders subjected to various sintering temperatures showed a clear development trend of the phase, morphology and magnetic properties of the samples. It is very interesting that the results revealed a critical region of sintering temperature for the development of magnetic properties which was observed at 800°C and 900°C with the sigmoid B-H curve shape taken to indicate a strong magnetic order. For the first time, this work has reported the evolution of the B-H hysteresis loops associated with the changes of magnetic states from paramagnetism to moderate ferromagnetism to strong ferromagnetism with microstructural changes. The results of the higher precision third part on the
relationship between ordered magnetism and the microstructure of the samples revealed a very startlingly systematic trend: a highly refined evolution trend covering a critical region of ordered magnetism which emerged and developed in step with morphological changes. Further work on the soaking time parameter was to study another possible way for the microstructure to influence the magnetic properties. The results showed a slow grain growth rate indicating a slow diffusion of atoms during the sintering process; it is believed that there was an increase in number of grain growth spots and these were the regions of mixed superparamagnetic and paramagnetic mass with ferromagnetic mass starting to dominate the samples. The last part of this work, carried out using single-sample sintering, also produced very gratifying results from the research point of view: the fascinating results from the single-sample sintering showed very systematically the evolution of microstructure-magnetic property relationships with a clarity superior to that shown by the multi-sample sintering.

Finally, after analysing the results and the observations of the work mentioned above, it is strongly believed that there are three factors found to sensitively influence the samples content of ordered magnetism – their ferrite-phase crystallinity degree, the number of grains above the critical grain size and large enough grains for domain wall accommodation. This research work has shed new light on the microstructure-magnetic properties evolution in ferrites.
Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERKEMBANGAN SEIRING EVOLUSI SIFAT-SIFAT MORFOLOGI, MAGNETIK DAN HUBUNGANNYA DALAM Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$

Oleh

ISMAYADI ISMAIL

Januari 2012

Pengerusi: Profesor Madya Mansor Hashim, PhD
Institut: InstitutTeknologiMaju

Bagi lebih daripada tujuh dekad yang lampau, literatur penyelidikan ferit hanya telah menangani secara amat cetek persoalan bagaimana sesuatu mikrostruktur ferit yang sedang mengalami evolusi berkait dengan sifat magnet yang terhasil seiring dengannya. Maka kerja ini adalah cubaan terbaru untuk mencerap secara kritikal evolusi ciri-ciri magnet seiring dengan perubahan mikrostruktur bagi sampel Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$. Kajian ini telah dibahagikan kepada lima bahagian. Bahagian pertama melibatkan dua pemboleh ubah (masa mengisar dan nisbah berat bola terhadap berat serbuk (BPR)) bagi proses pengaluan mekanik dimana pemboleh ubah tadi dipelbagai untuk mengkaji kesannya terhadap sifat magnet bahan. Dalam bahagian kedua, pensinteran selari bagi sampel-berbagai telah dilakukan dengan suhu pensinteran dari 500 sehingga 1400°C dengan setiap sampel hanya dikenakan satu suhu pensinteran. Ini adalah proses pensinteran pelbagai sampel dengan kenaikan 100°C. Bahagian ketiga berurusan dengan pensinteran selari pelbagai sampel yang lebih persis dengan suhu pensinteran dari 800
sehingga 1000°C dengan kenaikan yang jauh lebih kecil, 25°C. Bahagian keempat melibatkan kajian pada kesan masa rendaman pembakaran terhadap evolusi mikrostruktur dan pengaruhnya ke atas sifat magnet. Bahagian terakhir telah dibuat sama seperti bahagian kedua (pelbagai-sampel), tetapi dilakukan secara kritikal dengan hanya satu sampel (sampel-tunggal) dan dikenakan pelbagai suhu pensinteran secara menaik dari 500°C sehingga 1400°C.

Keputusan daripada bahagian pertama mengenai variasi parameter pengaloian mekanik menunjukkan bahawa tiada hala perubahan yang bermakna untuk mengaitkan masa mengisar dan BPR dengan keboleh-telapan dan ‘kehilangan’ bahan yang dikaji. Selepas sampel dibakar pada 1150°C, semua kesan-kesan proses pengaloian didapati hilang. Keputusan daripada pensinteran pelbagai-sampel dengan serbuk permulaan bersaiz nano dikenakan pelbagai suhu pensinteran menunjukkan perkembangan jelas fasa, morfologi dan sifat magnet bagi bahan. Adalah sangat menarik melihat keputusan-keputusan yang menyingkap suatu kawasan kritikal suhu pensinteran bagi pembinaan sifat magnet yang diperhatikan pada 800°C dan 900°C dengan bentuk sigmoid B-H diambil sebagai petunjuk tertib magnet yang kuat. Buat pertama kalinya kerja ini telah melaporkan evolusi gelung histeresis BH dikaitkan dengan perubahan keadaan dari keparamagnetan kepada keferomagnetan sederhana seterusnya kepada keferomagnetan kuat. Keputusan bahagian ketiga mengenai hubungan kemagnetan bertertib dengan mikrostruktur sampel menyingkap suatu hala perubahan sistematik yang amat menakjubkan: suatu hala evolusi yang amat halus yang meliputi suatu kawasan kritikal kemagnetan bertertib yang muncul dan berkembang seiring dengan perubahan-

Akhir sekali, selepas menganalisis keputusan dan pemerhatian kerja tadi, ianya amatlah diyakini bahawa terdapat tiga faktor yang secara sensitif mempengaruhi kandungan kemagnetan bertertib sampel iaitu darjah fasa kehabluran, jumlah butiran melepasi saiz kritikal butiran dan butiran yang cukup besar untuk penempatan dinding domain. Kerja penyelidikan ini telah menyumbangkan pengetahuan baharu tentang terhadap evolusi mikrostruktur-sifat magnet dalam bahan ferit.
ACKNOWLEDGEMENTS

It is neither my strength nor my wisdom, but Allah’s mercies that made this work a success, thus, I glorify Him. May all praises and salutations of the Lord be upon the Messenger of Allah and upon his Family and Companions, and those who are guided by the light of his ‘sunnah’ till the Day of Judgment.

Countless of people contribute to this thesis; mentors and /or supervisors, family, friends and even some strangers have set off trains of thought and spark ideas or understandings. This means that, by mentioning names, I would be omitting someone. Never the less, my unreserved appreciation goes to my able supervisor Associate Professor Dr. Mansor Hashim for his guidance and suggestions, without which, this work would not have been a success. This thesis is, but a fraction of evidence reflecting his vast insight into magnetism and magnetic materials. I am highly indebted and eternally grateful. To my co-supervisors, Dr. Khamirul Amin Matori, Dr. Rosidah Alias and Assoc. Prof. Dr. Jumiah Hassan, I thank them for keeping me right on track. Their contributions would forever remain indelible in my memories.

To my colleagues in the magnetic materials research group (Idzariati, Rodziah, Norailiana, Hapishah, Shamsul, Fadzidah, Masni, Ghazaleh, Mehran and last but not least Samaila), I appreciate the memorable interactions that we had from where I drew my strength, thank you very much for lighting my path; ‘please lets keep the ball rolling, and bit faster, if possible’. To my numerous friends including but not limited to Sarinawani, Rosnah, Kadri, Noor Lina, Kak Ani, I say thanks for everything.
In measuring the characteristics of my samples, the efforts of Mr. Rafiuszaman from Institute of BioScience UPM (TEM), Mr Mohd Zin and Mrs. Kamsiah from Physics Dept. UPM (XRD) are highly acknowledged. Further acknowledged are all those whom have contributed to the success of this thesis hence or otherwise. The reviewers and handling editors of American Journals of Applied Sciences, International Journal of Nanotechnology, Journal of Magnetism and Magnetic Materials, Journal of Superconductivity and Novel Magnetism for not only critically reviewing, but also accepting to publish various sections of this work in their reputable journals.

I am highly grateful to my brothers and sisters; Noraisha Akma, Noraisha Wani Azma, Ismashazly and Noraisha Asni for their warm support and prayers. The support and prayers of my parents’ in-law; Haji Shamsudin and Mek Teh Ahmad are fully acknowledged.

The crowning glory goes to my beloved wife Sakinah Shamsudin and my three children Zafran Hakim, Arif Amsyar and Hijrin Balqish for standing by my side throughout the course of this study. Thank you very much for joining me “in sacrificing today for a better tomorrow” I LOVE YOU ALL and may Allah reward you with the best of rewards.

I cannot find the words for my parents Haji Ismail Awang and Hajah Mek Esah Awang “my Lord! Bestow on them Thy Mercy, even as they cherished me in childhood.”
I certify that a Thesis Examination Committee has met on 3rd January 2012 to conduct the final examination of Ismayadi Ismail on his thesis entitled “Parallel Evolving Morphology, Magnetic Properties, and Their Relationships in Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy

Members of the Thesis Examination Committee are as follows:

Mohd. Nizar Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Wan Mohamad Daud Wan Yusoff, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Halimah Mohamed Kamari, PhD
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Jamshid Amighian, PhD
Department of Physics
Islamic Azad University
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xi
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mansor Hashim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Khamirul Amin Matori, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Rosidah Alias, PhD
Researcher
Microelectronic and Nano Technology Program,
TM Research & Development,
TMR&D Innovation centre,
(Member)

Jumiah Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ISMAYADI ISMAIL

Date: 3 January 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
1.1 Background of the Study 1
1.2 Microstructural-magnetic properties relationships of Ferrite Materials 2
1.3 Problem Statement 4
1.4 Objectives 4
1.5 Thesis Outline 5

2. LITERATURE REVIEW
2.1 Introduction 6
2.2 Some Aspects of Doping and Temperature Effects on Soft Ferrites 6
2.3 Mechanical Alloying (MA) 8
 2.3.1 History of Mechanical Alloying 9
 2.3.2 Mechanical Alloying Routes for Soft Magnetic Ferrites 9
 2.3.3 The Process of Mechanical Alloying 13
 2.3.4 Process Variables 14
 2.3.4.1 Type of Mill 15
 2.3.4.2 Milling Container 16
 2.3.4.3 Milling Speed 17
 2.3.4.4 Milling Time 18
 2.3.4.5 Ball-to-powder Weight Ratio 21
 2.3.4.6 Milling Atmosphere 23
 2.4 Microstructural Considerations 24
 2.4.1 Grain Size Effects on Magnetic Properties 24
 2.4.2 Effects of Porosity and Density on Magnetic Properties 26
 2.4.3 Grain Boundary Consideration 27
 2.5 Influence of Domain and Microstructure 29
 2.6 Magnetic domains and hysteresis loop 30
4.7.1.4 Resistivity Measurement 84
4.7.1.5 Materials Density Measurement 85
4.7.2 Magnetic Properties Measurement 87
 4.7.2.1 BH Hysteresisgraph Tracer 87
 4.7.2.2 Vibrating Sample Magnetometer (VSM) 89
 4.7.2.3 Impedance/material Analyzer 91
 4.7.2.4 Curie Temperature Measurement 92
4.8 Error Estimate 93

5. RESULTS AND DISCUSSION 94
5.1 Introduction 94
5.2 Optimization of Alloying Process 95
 5.2.1 Milling Time and BPR dependence on Permeability and Losses of \(\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \) Synthesized via Mechanical Alloying Process 95
 5.2.2 Permeability and Losses as a Function of Milling before Sintering 104
 5.2.3 Permeability and Losses as a Function of Milling after Sintering at 1150\(^\circ\)C 108
 5.2.4 Purity Study via EDX Spectrums of Mechanically alloyed NiO, ZnO and Fe\(_2\)O\(_3\) powders with Different Milling Time. 115
5.3 MSS (multi-sample sintering) samples with sintering temperatures from 500\(^\circ\)C to 1400\(^\circ\)C. 118
 5.3.1 Phase and physical characterisations of MSS 118
 5.3.2 Resistivity and Magnetic Properties of MSS samples 133
 5.3.3 Zinc Loss Measurement using Linescan Analysis of EDX Spectrums 154
5.4 MSS samples with sintering temperature from 800\(^\circ\)C to 1000\(^\circ\)C. 159
 5.4.1 Phase and physical characterisations of MSS samples with sintering temperature from 800\(^\circ\)C to 1000\(^\circ\)C 159
 5.4.2 Microstructure and magnetic properties of MSS samples with sintering temperature from 800\(^\circ\)C to 1000\(^\circ\)C 165
5.5 Effect of soaking time on microstructural and magnetic properties evolution of MSS \(\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \). 179
 5.5.1 Effect of soaking time on physical and phase properties of MSS \(\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \). 179
 5.5.2 Effect of soaking time on magnetic properties of MSS \(\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \). 186
5.6 SSS (single-sample sintering) samples with sintering temperature from 500\(^\circ\)C to 1400\(^\circ\)C. 200
 5.6.1 Phase and physical characterisations of SSS sample with sintering temperature from 500\(^\circ\)C to 1400\(^\circ\)C 200
5.6.2 Magnetic properties of SSS sample with sintering temperatures from 500°C to 1400°C

6. SUMMARY, CONCLUSION AND RECOMMENDATION 226
 6.1 Introduction 226
 6.2 Main Summary of Results 226
 6.3 General Conclusion 232
 6.4 Recommendations for Future Work 235

REFERENCES 236
APPENDIX 246
BIODATA OF STUDENT 247
LIST OF PUBLICATIONS 248
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>93</td>
</tr>
<tr>
<td>5.1</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>121</td>
</tr>
<tr>
<td>5.5</td>
<td>144</td>
</tr>
<tr>
<td>5.6</td>
<td>160</td>
</tr>
<tr>
<td>5.7</td>
<td>165</td>
</tr>
<tr>
<td>5.8</td>
<td>177</td>
</tr>
</tbody>
</table>

xviii
at 800°C to 1000°C.

5.9 Data of average grain size, density, theoretical density and porosity of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ after sintering at 800°C with different soaking time. 181

5.10 Magnetic properties of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ after sintering at 800°C with different soaking time. 195

5.11 Average grain size, density, theoretical density, porosity, lattice parameter, cell volume, intensity peak and frequency (%) of grains ≥0.3µm of single-sample Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$. 204

5.12 Some magnetic properties of single-sample Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$. 219
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mechanical routes used for producing the nanocrystalline/nanosized soft magnetic ferrites. (Sepelak et al., 2005)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase content of mixtures in Mn-Fe-O system versus milling time (Padella et al., 2005).</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Effect of milling time on grain size of Cr. (Huang & McCormick, 1997)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>XRD pattern of CoFe$_2$O$_4$, 12 h milling as a function of BPR (Waje et al., 2010)</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of the sintering mechanisms for a system of two particles (Kang, 2005).</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Hexagons superimposed on a group of tri-connected polygons (Kang, 2005)</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Abnormal grain growth in a hot-pressed sample (Cahn, Haasen and Kramer, 1996)</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic of magnetic dipole moment alignments in zero applied-field at room temperature for: A) paramagnetic or superparamagnetic material, B) ferromagnetic material, C) antiferromagnetic material and D) ferrimagnetic material (Zalich, 2005)</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Behavior of Superparamagnetic Particles with and without the presence of an applied external Magnetic Field (Zalich, 2005)</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Structure of spinel; open circles are oxygen ions, full circles are Me$^{2+}$ cations and shaded circles are Fe$^{3+}$ cations. Only one layer (100) is shown for the sake of clarity (Louh et al., 2003)</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Sphere model of the spinel structure revealing tetrahedral and octahedral sites between oxygen anions (Louh et al., 2003).</td>
<td>53</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of ZnFe$_2$O$_4$ addition on the magnetization of the ferrites of Ni, Co, and Mn. Increased saturation magnetization effects should be noted (Stuijts et al., 1964)</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Depresion of the magnetic Curie temperature, Tc, with Zn additions to Mn, Co, Ni and Li/Fe ferrites (Louh et al., 2003).</td>
<td>58</td>
</tr>
<tr>
<td>3.10</td>
<td>A cluster of tetrakaidecahedral grains with insulating boundary surfaces between them (Mendelson, 1969).</td>
<td>61</td>
</tr>
<tr>
<td>3.11</td>
<td>Curve of first magnetization and hysteresis cycle pertinent to ferromagnetic materials (Ciureanu and Gavrila, 1990).</td>
<td>66</td>
</tr>
<tr>
<td>3.12</td>
<td>Ball–Powder–Ball Collision of Powder Mixture during MA (Suryanarayana, 2001)</td>
<td>70</td>
</tr>
<tr>
<td>3.13</td>
<td>General Behavior of Powder Particles A, B and Formation of a New Phase C (adapted from Lee et al., 1998)</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Flowchart for the preparation and characterization of morphological and magnetic properties of the Ni${0.5}$Zn${0.5}$Fe$_2$O$_4$</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Heating and Cooling Rate during the Sintering.</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic Diagram of the XRD (Cullity and Stock, 2001).</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>An Optical Image Showing (a) TEM copper Grid covered with a Lacey Carbon Film, (b) A Lacey Carbon Film. (www.soquelec.ca/calibspec90-92b.asp).</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Schematic of Electrons from Primary Beam of TEM Interacting with Sample</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Density measurement by Archimedes principle/method</td>
<td>86</td>
</tr>
<tr>
<td>4.7</td>
<td>The basic circuit configuration for BH Hysteresisgraph Tracer</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>The signal flow of permeability measurement</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD pattern of Ni-Zn ferrites, 4 h milling as a function of BPR.</td>
<td>97</td>
</tr>
</tbody>
</table>
5.2 Crystallite size and micro strain as function of BPR variation. 98
5.3 XRD spectra of Ni-Zn-ferrites milled for various milling time. 99
5.4 Particle size and microstrain as function of different milling time. 101
5.5 SEM images of (a) 12 and (b) 24 hours with BPR 10:1 milled samples 102
5.6 TEM micrographs of (a) 12 hours, (b) 24 hours and (c) 48 hours milled samples. 103
5.7 Patterns of relative loss factor, μ” as a function of BPR with 4 hours of milling of Ni-Zn ferrites. 104
5.8 Patterns of relative permeability real, μ’ as a function of BPR with 4 hours of milling of Ni-Zn ferrites. 105
5.9 Patterns of relative Tan δ as a function of BPR with 4 hours of milling of Ni-Zn ferrites. 106
5.10 Patterns of relative permeability real, μ’ as a function of milling time with BPR 10:1 of Ni-Zn ferrites. 107
5.11 Patterns of relative loss factor, μ” as functions of BPR with 4 hours of milling and sintering at 1150°C of Ni-Zn ferrites. 109
5.12 Patterns of relative permeability real, μ’ as a function of BPR with 4 hours of milling and sintering at 1150°C of Ni-Zn ferrites. 109
5.13 Patterns of relative Tan δ as functions of BPR with 4 hours of milling and sintering at 1150°C of Ni-Zn ferrites. 110
5.14 Patterns of relative loss factor, μ” as functions of milling time with BPR 10:1 and sintering at 1150°C of Ni-Zn ferrites. 111
5.15 Patterns of relative permeability real, μ’ as functions of milling time with BPR 10:1 and sintering at 1150°C of Ni-Zn ferrites. 112
5.16 Patterns of relative Tan δ as functions of milling time with BPR 10:1 and sintering at 1150°C of Ni-Zn ferrites.

5.17 EDX spectrums of NiO, ZnO and Fe₂O₃ powders after: (a) 1 hour, (b) 5 hours, (c) 10 hours, (d) 20 hours.

5.17 (continued) EDX spectrums of NiO, ZnO and Fe₂O₃ powders after: (e) 30 hours, (f) 40 hours and (g) 96 hours of milling time.

5.18 XRD graph of MSS Ni₀.⁵Zn₀.⁵Fe₂O₄ after sintering from 500°C to 1400°C. □ = Fe₂O₃, ⊙ = Ni₀.⁵Zn₀.⁵Fe₂O₄

5.19 The crystallite size and lattice strain of sintered MSS samples from 500°C to 1400°C

5.20 DSC of milled and unmilled samples of Ni₀.⁵Zn₀.⁵Fe₂O₄

5.21 SEM micrographs for MSS Ni₀.⁵Zn₀.⁵Fe₂O₄ compacts sintered at: (a) 500°C, (b) 600°C, (c) 700°C, (d) 800°C, (e) 900°C, (f) 1000°C.

5.21 (continued) SEM micrographs for MSS Ni₀.⁵Zn₀.⁵Fe₂O₄ compacts sintered at: (g) 1100°C, (h) 1200°C, (i) 1300°C and (j) 1400°C.

5.22 Average Grain size versus sintering temperature of MSS samples

5.23 Grain size distribution of MSS Ni₀.⁵Zn₀.⁵Fe₂O₄ sintered at: (a) 500°C, (b) 600°C, (c) 700°C, (d) 800°C, (e) 900°C, (f) 1000°C.

5.23 (continued) Grain size distribution of MSS Ni₀.⁵Zn₀.⁵Fe₂O₄ sintered at: (g) 1100°C, (h) 1200°C, (i) 1300°C, (j) 1400°C

5.24 Theoretical density (%Dₘ) versus sintering temperature for MSS Ni₀.⁵Zn₀.⁵Fe₂O₄

5.25 Shrinkage (%) as a function of sintering temperature for MSS Ni₀.⁵Zn₀.⁵Fe₂O₄.

5.26 Plots of log D versus the reciprocal of absolute temperature (1/T)
5.27 Effect of sintering temperature (from 500°C to 1400°C) on the resistivity of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4}. 134

5.28 Frequency dependence of loss factor, μ” of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at various temperatures (500 to 1400°C) 137

5.29 Frequency dependence of permeability real, μ’ of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at various temperatures (500 to 1400°C) 139

5.30 M-H hysteresis loop (from VSM) of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} at different sintering temperatures 140

5.31 Variation of saturation magnetization (M\textsubscript{s}) of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500 to 1400°C 141

5.32 M\textsubscript{s} as a function of average grain size of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500 to 1400°C 143

5.33 B-H hysteresis loop of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500°C to 1400°C 145

5.34 Saturation magnetization (B\textsubscript{s}) as a function of sintering temperature 147

5.35 Remanence magnetization (B\textsubscript{r}) as a function of sintering temperature 147

5.36 Initial magnetization curve of Magnetization, M of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500°C to 1400°C 148

5.37 Initial magnetization curve of relative permeability, μ\textsubscript{r} of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500°C to 1400°C 149

5.38 Typical scanning electron images of microstructures of specimens of: (a) Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 900°C and, (b) Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 1000°C. 151

5.39 Coercivity as a function of sintering temperature of MSS Ni\textsubscript{0.5}Zn\textsubscript{0.5}Fe\textsubscript{2}O\textsubscript{4} sintered at 500°C to 1400°C 152

5.40 Coercivity of multi-sample sintering as a function of average grain size 153
5.41 The variation of initial permeability with temperature for the MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at different temperatures.

5.42 EDX spectrums using linescan analysis technique of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with 1100°C sintering temperature. (a) iron, (b) nickel, (c) zinc, (d) oxygen, (e) EDX spectra over linescan and (f) the micrograph of position of linescan performed.

5.43 EDX spectrums using linescan analysis technique of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with 1200°C sintering temperature. (a) iron, (b) nickel, (c) zinc, (d) oxygen, (e) EDX spectra over linescan and (f) the micrograph of position of linescan performed.

5.44 EDX spectrums using linescan analysis technique of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with 1300°C sintering temperature. (a) iron, (b) nickel, (c) zinc, (d) oxygen, (e) EDX spectra over linescan and (f) the micrograph of position of linescan performed.

5.45 EDX spectrums using linescan analysis technique of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with 1400°C sintering temperature. (a) iron, (b) nickel, (c) zinc, (d) oxygen, (e) EDX spectra over linescan and (f) the micrograph of position of linescan performed.

5.46 XRD spectra of sintered MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ samples from 800°C to 1000°C

5.47 Proposed spherical model for grain boundary volume: (a) Particles with grain size of 100nm and (b) Particles with grain size of 300nm.

5.48 Measured density of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C to 1000°C

5.49 Theoretical density (%) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C to 1000°C

5.50 Porosity (%) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C to 1000°C

5.51 Shrinkage (%) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C to 1000°C
5.52 SEM micrographs of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at: (a) 800°C, (b) 825°C, (c) 850°C, (d) 875°C.

5.52 (continued) SEM micrographs of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at: (e) 900°C, (f) 925°C, (g) 950°C, (h) 975°C and (i) 1000°C.

5.5 Grain size distribution of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at: (a) 800°C, (b) 825°C, (c) 850°C, (d) 875°C, (e) 900°C and (f) 925°C.

5.53 (continued) Grain size distribution of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at: (g) 950°C, (h) 975°C and (i) 1000°C.

5.54 M-H loops of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800 to 1000°C.

5.55 Variation of saturation magnetization (Ms) of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800 to 1000°C.

5.56 BH hysteresis of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.57 Magnetization, M as a function of sintering temperature of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.58 Relative permeability real, \(\mu' \) of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.59 Relative loss factor, \(\mu'' \) of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.60 Average saturation magnetization, Ms as a function of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.61 Relative permeability, \(\mu_r \) as a function of sintering temperature of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} sintered at 800°C to 1000°C.

5.62 XRD spectra of MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} after sintering at 800°C with various soaking time.

5.63 Crystallite size and microstrain curves for the MSS Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} as function of soaking time.
5.64 Typical scanning electron images of microstructures of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with (a) 1, (b) 5, (c) 10 and (d) 20 hours of soaking time.

5.64 (continued) Typical scanning electron images of microstructures of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with (e) 30, (f) 40 and (g) 96 hours of soaking time.

5.65 Grain size distribution of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with (a) 1, (b) 5, (c) 10, (d) 20 hours of soaking time.

5.65 (continued) Grain size distribution of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with (e) 30, (f) 40 and (g) 96 hours of soaking time.

5.66 Frequency dependence of relative permeability real, μ' of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ after sintering at 800°C with different soaking time.

5.67 Frequency dependence of relative loss factor, μ'' of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ after sintering at 800°C with different soaking time.

5.68 M-H loops of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with various soaking time.

5.69 Variation of saturation magnetization (M$_s$) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C with various soaking time.

5.70 BH hysteresis loop of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ after sintering at 800°C with different soaking time.

5.71 Magnetic material of: (i) measured by VSM and (ii) measured by BH hysteresis. ρ_{theory} is the theoretical X-ray density and ρ_{exp} is the experimental density, m_1 is the mass of sample subjected to VSM measurement, and m_2 is the mass of sample subjected to BH hysteresis measurement.

5.72 Saturation induction (B$_s$) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C as a function of soaking time.

5.73 Remanence magnetization (B$_r$) of MSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 800°C as a function of soaking time.
5.74 Initial magnetization curve of magnetization, M of MSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ sintered at 800°C with different soaking time.

5.75 Initial magnetization curve of relative permeability, μ_r of MSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ sintered at 800°C with different soaking time.

5.76 Coercivity of MSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ sintered at 800°C as a function of soaking time.

5.77 Coercivity as a function of particle size with the effect of soaking time.

5.78 XRD patterns of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ after sintering from: (a) 500°C, (b) 600°C, (c) 700°C, (d) 800°C, (e) 900°C, (f) 1000°C.

5.78 (continued) XRD patterns of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ after sintering from: (g) 1100°C, (h) 1200°C, (i) 1300°C, (j) 1400°C.

5.79 The crystallite size and lattice strain of SSS sample from 500°C to 1400°C.

5.80 SEM micrographs of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ compact sintered at: (a) 500°C, (b) 600°C, (c) 700°C, (d) 800°C, (e) 900°C, (f) 1000°C.

5.80 (continued) SEM micrographs of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ compact sintered at: (g) 1100°C, (h) 1200°C, (i) 1300°C and (j) 1400°C.

5.81 EDX spectrums using linescan analysis technique of single-sample $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ with 1400°C sintering temperature. (a) iron, (b) nickel, (c) zinc, (d) oxygen, (e) EDX spectra over linescan and (f) the micrograph of position of linescan performed.

5.82 Grain size distribution of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ sintered at: (a) 500°C, (b) 600°C, (c) 700°C, (d) 800°C, (e) 900°C, (f) 1000°C.

5.82 (continued) Grain size distribution of SSS $\text{Ni}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4$ sintered at: (g) 1100°C, (h) 1200°C, (i) 1300°C, (j) 1400°C.
5.83 Plots of log D versus the reciprocal of absolute temperature ($1/T(Kelvin)$) 212

5.84 M-H hysteresis loop (from VSM) of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ at different sintering temperatures 214

5.85 Variation of saturation magnetization (M_s) of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 500 to 1400°C 214

5.86 BH hysteresis loops of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with sintering temperatures from 500 to 1400°C 215

5.87 Initial MH-magnetization curve of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ with sintering temperatures from 500 to 1400°C. 217

5.88 μ_r, (relative permeability) of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at various sintering temperatures 218

5.89 Coercivity as a function of average grain size of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 500°C to 1400°C. 220

5.90 Relative loss factor, μ'' of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 500°C to 1400°C 221

5.91 Relative permeability real, μ' of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at 500°C to 1400°C 222

5.92 Effect of sintering temperature (from 500°C to 1400°C) on the resistivity of SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ 223

5.93 The variation of initial permeability (μ_i) with temperature for the SSS Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ sintered at different temperatures. 224
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRD</td>
<td>x-ray diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>wt %</td>
<td>Weight percent</td>
</tr>
<tr>
<td>hkl</td>
<td>Miller indices</td>
</tr>
<tr>
<td>MUT</td>
<td>Material under test</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standard</td>
</tr>
<tr>
<td>BPR</td>
<td>Ball-to-powder weight ratio</td>
</tr>
<tr>
<td>MA</td>
<td>Mechanical alloying</td>
</tr>
<tr>
<td>a.u</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>χ</td>
<td>Magnetic susceptibility</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field strength</td>
</tr>
<tr>
<td>H_C</td>
<td>Coercivity</td>
</tr>
<tr>
<td>M</td>
<td>Mass magnetization</td>
</tr>
<tr>
<td>M_R</td>
<td>Remanent magnetization</td>
</tr>
<tr>
<td>M_S</td>
<td>Saturation magnetization</td>
</tr>
<tr>
<td>σ_R</td>
<td>Specific remanent magnetization</td>
</tr>
<tr>
<td>σ_S</td>
<td>Specific saturation magnetization</td>
</tr>
<tr>
<td>θ_C</td>
<td>Curie temperature</td>
</tr>
<tr>
<td>θ_N</td>
<td>Néel temperature</td>
</tr>
</tbody>
</table>
2θ 2 theta degree

\(d_m \) mean grain diameter

\(\gamma \) magnetic domain wall energy proportional to the global anisotropy constant

\(M_{sv} \) magnetization per unit volume

\(M_{sm} \) magnetization per unit mass
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Ferrites are ceramic materials with magnetic properties which are mixed metal oxides containing iron oxide as their main component. They can be formed into permanent magnets for uses in motors, speakers and other electrical-mechanical energy conversion devices. They can also be formed into soft magnetic materials which are used as core materials for transformers, inductors and in microwave communication systems. Generally, ferrites are classified into three classes based on three different crystal types which are:

1) the spinel type, giving spinel ferrites,

2) the garnet type, giving garnet ferrites (as simply garnets)

3) the magnetoplumbite type, giving hexagonal ferrites.

Magnetically, the ferrites in categories 1) and 2) come under the class of “soft: ferrites while the ferrites in 3) belong to the class of “hard” ferrites. A soft magnetic material becomes magnetised by a relatively low applied magnetic field. When the applied field is removed, relatively low magnetism is retained in soft ferrites. Soft ferrites mostly
contain divalent or trivalent metal ions (nickel, zinc, manganese, yttrium, etc.), trivalent iron ions and divalent oxygen ions. Conversely, a high applied magnetic field is required for magnetizing hard ferrites. High remanent magnetism characterizes the properties of hard ferrites. They are prepared from iron oxide and barium oxide or strontium oxide.

Nickel Zinc ferrite is the most popular composition of soft ferrites. Due to the high resistivity and low eddy current losses and coercivity, ferrites of the nickel-zinc type are used in high frequency applications as a core material for power transformers and circuit inductors in the megahertz frequency region. They are more stable than the other types of ferrites, easily manufactured, low cost and have excellent and desirable magnetic properties. The properties of NiZn ferrite are sensitive to the compositional variability and the microstructure which is governed by the preparation process (Verma et al., 2005). In NiZn ferrites, the electrical and magnetic properties of ferrites depend on the stoichiometric composition. The nickel zinc ferrite with the well known composition of Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ is chosen in this study.

1.2 Microstructural-magnetic properties relationships of Ferrite Materials

Nanosized particles of the high-energy-milled spinel ferrites exhibit interesting physical and chemical properties markedly different from those of their bulk counterparts. The high-field magnetization irreversibility (Kodama et al., 1996), the variation of the Neel temperature with grain size (Chinnasamy et al., 2002), a high coercivity (Shi and Ding,
and an altered (reduced (Lin et al., 1995) or enhanced (Oliver et al., 2000, Jiang et al., 1999 and Clark and Evans, 1997)) magnetic moments in comparison with the corresponding bulk materials have been observed in nanosize high-energy-milled ferrimagnetic spinels. Mechanical treatment of the spinel ferrites was found to be a useful activation method leading to an enhanced chemical reactivity of nanoscale powders (Sepelak et al., 1997). Nanostructured spinel ferrites prepared by high energy milling method are often inherently unstable owing to their small constituent sizes, nonequilibrium cation distribution, disordered spin configuration, and high chemical activity. Sintering of the milled spinel ferrites recrystallises the nanostructure and causes its transition from an excited metastable (activated) state into the low-energy crystalline state. During the process of sintering, the advantageous properties of the nanosize-milled spinel ferrites are mostly lost (Sepelak et al., 1998), thus an understanding of the relaxation mechanism of mechanically induced metastable states and of the thermal stability of nanostructure is necessary. A better understanding of the response of nanoscale spinel ferrites to changes in temperature is crucial not only for basic science (the development of an atomistic and microscopic theory of the mechanochemical processes) but also because of the technological high-temperature applications in catalysis, ferrofluids and information storage. To gain insight into the microstructural-magnetic property evolution relationships, this experimental work focuses on the study of the response of the fine nano-size starting powders of mechanically alloyed nickel zinc ferrite (Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$) to changes in sintering temperature. Although extensive studies have recently been performed on the nanoscale-milled soft ferrites (Kodama et al., 1996, Chinnasamy et al., 2002, Sepelak et al., 2000, Oliver et al., 2000 and Jiang et
al., 1999), no measurements, of the thermally induced structural and magnetic evolutions in this metastable solid have been reported.

1.3 Problem Statement

A fundamental line of scientific enquiry has been neglected by ferrite and garnet researchers for more than 70 years: What would be the composition-microstructure relationships at various intermediate sintering conditions during the parallel evolutions of the morphology and the material properties? This research work intends to track carefully and critically the fundamental evolutions. Do the changes of microstructure affect the magnetic properties of the materials? How do magnetic properties evolve with the microstructure changes? What would happen to the ions of the materials parallel to the microstrucre changes, do they also contribute to magnetization of the materials?

1.4 Objectives

The ultimate goal of this research is to critically track the evolution of magnetic properties parallel to the microstructural changes. Previous literatures mostly based on the micron-size starting powder and gradually were grown to the bulk solid samples. It is interesting to study the evolution of the magnetic properties with the nano-size starting powders and observe transition of paramagnetic to ferromagnetic behavior. This research work embarks on the following objectives:
1) To prepare Ni$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ using mechanically alloyed nanoparticles.

2) To study the phase formation and crystallite size evolution of the as-prepared ferrite using XRD.

3) To study the effect of the sintering temperature on the microstructural evolution and magnetic properties of Ni-Zn ferrites.

4) To study the evolution of magnetic properties with microstructure changes.

1.5 Thesis Outline

General introduction of ferrite, microstructural-magnetic relationships and some research questions were discussed in chapter one while related literatures of the synthesis methods, composition tailoring, mechanical alloying and its important parameters, and some microstructural consideration on magnetic properties were reported in chapter two. Chapter three reported the basic theories as they affect ferrites and sintered materials. Specifically, the chapter reports the fundamentals of magnetization, the chemistry of spinel ferrites, sintering parameters and mechanical alloying process. The preoccupations in chapter four were methodologies employed for the preparations and the characteristics measurement of the as-prepared ferrite and sintered NiZn ferrite. The discussion of the obtained results of the as-prepared ferrites and the microstructure-magnetic properties forms chapter five. Chapter six summarized and concludes the research findings, in addition to some suggested recommendations. The list of his publications was attached at the end of the thesis, preceded by the author’s biography appendices and references/bibliographies respectively.
REFERENCES

Bera, J., Roy, P.K., (2005), Effect of grain size on electromagnetic properties of Ni$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$ ferrite, Journal of Physica B, 363, 128-132.

Pedzich, Z., Bucko, M.M., Krolokowski, M., Bakalarska, M., Babiarz., J. (2004). Microwave sintering of (Bi0.75Ca1.2Y1.05)(V0.6-Fe4.4)O12 Microwave Magnetic Materials, J. Eur. Ceram. Soc. 24, 1053-1056.

Rikugawa, H., (1982), Relationship between microstructures and magnetic properties of ferrites containing closed pores, IEE Trans. Magn. 18, 1535-1537.

