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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirements for the degree of Master of Science 

 

 

MODIFIED SEQUENTIAL FENCES FOR IDENTIFYING  

UNIVARIATE OUTLIERS 

 

By 

 

WONG HUI SHEIN 

 

November 2016 

 

Chairman: Anwar Fitrianto, PhD 

Faculty: Institute for Mathematical Research 

 

The existence of outliers in data set can bring some impacts on statistical data analysis 

and affect decision making. Thus, it is vital for researcher to identify the outliers. 

Sequential fences is a graphical method which was proposed by Schewertman and de 

Silva (2007). Besides its simplicity, this method is also effective in detecting multiple 

outliers while maintaining the approximate specific outside rate at each stage as the 

series on number of outlier fences. This research focuses on the modification of 

sequential fences to improve its efficiency. 

 

Sequential fences method is modified by replacing interquartile range with various 

robust scales such as semi-interquartile range, , median absolute deviation 

( ) and Gini’s mean difference ( ) in order to improve outlier detection in 

symmetric distribution. Ultimately, the utilisation of  in sequential fences seems 

to demonstrate a comparable accuracy in detecting the contaminated data. We have 

shown that GSF approach effectively reduce the masking and swamping problems in 

identifying the outliers. 

 

Furthermore, a new approach is proposed by considering the skewness of underlying 

distribution to increase efficiency of sequential fences in skewed distribution. 

Conclusively, based on the numerical examples and simulation study, newly proposed 

method has been adjusted according to the skewness of the underlying distribution of 

data. The results show that the new approach performed better in reducing swamping 

effect which is misclassifying non-contaminated observation as outlier in asymmetric 

distribution.  
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Moreover, we proposed a new method with modified algorithm and methodology 

namely bootstrap sequential fences. The proposed method involves initial screening of 

data and bootstrap technique to improve the performance of sequential fences. The 

modified sequential fences method is found can accurately detect the outliers in 

positively skewed distribution. In addition, this proposed method also estimates 

trimmed mean and trimmed standard deviation with smaller bias and smaller root of 

mean squares error. Thus, proposed method proves its superiority over the existing 

techniques. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

PAGAR BERURUTAN TERUBAHSUAI BAGI MENGENAL PASTI  

DATA UNIVARIAT TERPENCIL 

 

Oleh 

 

WONG HUI SHEIN 

 

November 2016 

 

Pengerusi: Anwar Fitrianto, PhD 

Fakulti: Institut Penyelidikan Matematik  

 

Kewujudan data terpencil dalam data boleh membawa kesan negatif terhadap analisis 

data statistik dan menjejaskan kesimpulan. Oleh itu, ini adalah penting bagi penyelidik 

untuk mengenal pasti data terpencil. Pagar berurutan adalah satu kaedah grafik yang 

dicadangkan oleh Schewertman dan de Silva (2007). Selain mudah, kaedah ini juga 

berkesan dalam mengesan pelbagai data terpencil disamping mengekalkan kadar luar 

tertentu yang sesuai pada setiap peringkat sebagai siri pada bilangan pagar titik 

terpencil. Kajian ini memberi tumpuan kepada pengubahsuaian pagar berurutan untuk 

meningkatkan kecekapannya. 

 

Kaedah pagar berurutan telah diubahsuai dengan menggantikan julat antara kuartil 

dengan pelbagai skala teguh seperti julat semi-antara kuartil, , sisihan mutlak 

median (MAD) dan perbezaan min Gini (GMD) untuk meningkatkan pengecaman data 

terpencil dalam taburan simetri. Penggunaan GMD dalam pagar berurutan 

menunjukkan ketepatan yang setanding dalam mengesan data yang tercemar. Kami 

telah menunjukkan bahawa pendekatan GSF berkesan dalam mengurangkan masalah 

litupan dan limpahan dalam mengenal pasti titik terpencil. 

 

Selain itu, satu pendekatan yang baru telah dikemukakan dengan mempertimbangkan 

kepencongan taburan dasar untuk meningkatkan kecekapan pagar berurutan dalam 

taburan pencongan. Kesimpulannya, berdasarkan contoh-contoh berangka dan simulasi 

kajian, pendekatan baru yang dicadangkan telah disesuaikan mengikut kepencongan 

taburan pendasar data. Keputusan menunjukkan bahawa pendekatan baru memberikan 

prestasi yang lebih baik dalam mengurangkan kesan limpahan yang tersilap 

mengklasifikasikan titik bukan tercemar sebagai titik terpencil dalam taburan bukan 

simetri. 
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Di samping itu, kami juga mencadangkan satu kaedah baru dengan algoritma dan 

kaedah yang diubahsuai iaitu bootstrap pagar berurutan. Kaedah yang dicadangkan 

melibatkan pemeriksaan awal data dan teknik bootstrap untuk mepertingkatkan prestasi 

pagar berurutan. Kaedah pagar berurutan yang diubahsuai didapati bahawa boleh 

mengesan titik terpencil dengan tepat dalam lengkung pencong positif. Tambahan pula, 

pendekatan baru ini juga menunjukkan kecenderungan dan punca kuasa dua min ralat 

yang lebih kecil dalam penganggaran min terpangkas dan sisihan piawai terpangkas. 

Oleh yang demikian, terbuktilah keunggulan pendekatan baru berbanding dengan 

teknik-teknik yang sedia ada. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1   Outlier Definitions 

An outlier is an observation that appears discrepant with the other values of the sample. 

Outliers can also be defined as those observations that look different from other 

members in the data (Beckman & Cook, 1983). Another definition of an outlier is a 

value which appears inconsistent to the researcher (Iglewicz & Hoaglin, 1993). In other 

words, inconsistent observations with respect to the remaining data are defined as 

outliers. An outlier is also defined as an observation which deviates away from the 

other data values and this outlying observation is suspected that it was created by other 

mechanism (Hawkins, 1980). 

From the historical definitions, these can be illustrated that an outlier is a subjective 

and post-data concept. Methods for dealing with outliers are applied to the data for 

checking the existence of the outliers after the contaminated observations are detected 

via a visual examination of the data (Beckman & Cook, 1983; Grubbs, 1969). In short, 

an observation that comes from a distribution that is different from that for all the other 

remaining observations is determined as a contaminated observation.  

1.1.1 Causes and Influences of Outliers 

The occurrence of outliers in the data set can be caused by mistake in recording or due 

to the malfunction of measuring instrument. Besides, the existence of discordant 

observations might be due to the natural variability which comes from the outside of 

the sample. These outliers may have great influence on the parametric data analyses 

and resulted in misleading results. During the estimation of parameters, the presence of 

outliers may cause high errors variance and low power of test (Zimmerman, 1994, 

1995, 1998). When there are outliers in the errors, the normality in univariate case and 

sphericity and multivariate normality become low and lead to type I and type II errors. 

In linear regression, the effect of outlier is at least distorting the parameter estimation 

(Osborne & Overbay, 2004). 

1.1.2 Swamping and Masking 

Outlier identification plays a vital role in statistical inference, data processing and 

modeling. The presence of outliers might result in biased parameter, poor forecasting 

and misspecification in modeling (Tsay et al., 2000; Fuller, 1987). There are many 

literatures on the outliers detection methods. Some methods might classify clean 

observations as outliers and fail to detect the real outliers. Thus, swamping and 

masking effects emerge. The swamping and masking effects can cause mistake in 
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making decision during the regression analysis. (Chatterjee & Hadi, 2006). The 

characteristics of these effects are defined by Iglewicz and Martinez (1982) and Ben-

Gal (2009).  

Swamping effect occurs when a second observation is labeled as an outlier in the 

presence of first outlier. After discarding the first outlying observation, the second 

observation is detected as clean observation. This phenomenon is classified as the 

swamping effect. Swamping effect happens when outlier shifts the mean and the 

covariance estimates toward it and away from other inliers on another side of 

distribution tail. Hence, this causes the gap between these observations to the mean is 

large and make them look similar to outliers. 

Another phenomenon is that the second observation is classified as outlier without the 

existence of the first outlier. After eliminating the first outlier, the second observation 

is appeared as an outlier. This occurrence is denoted as the masking effect. Masking 

effect occurs when mean and covariance estimates are skewed towards a group of 

outliers, and the resulting distance of the outlier from the mean is decreased. 

1.2  Tukey’s Boxplot 

Traditional boxplot is one of the most frequently and widely used techniques for 

studying the shape of the distribution and analyzing some characteristics of the 

distribution such as location and spread. In addition, the boxplot technique also can be 

used to identify the potential outliers which deviate markedly from the remaining data.  

Figure 1.1: Construction of boxplot 
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The boxplot consists of five components which give a robust statistical summary of the 

distribution of a dataset. These components are illustrated in Figure 1.1 The 

components used to construct the boxplot are two hinges which are first quartile      

and third quartile     , median, observations which lie 1.5 constant from the 

interquartile range measured from median, two whiskers that connect to the lower and 

upper hinges and potential outliers which lie apart from median and exceed extreme. 

The first quartile and third quartile are equivalent to 25
th

 percentile and 75
th

 percentile 

respectively while the interquartile range is the difference between the third and first 

quartile.  

 

Inner fences in a boxplot are positioned at an interval of 1.5 IQR beneath first quartile 

and above third quartile which can be denoted as  

 
[                    ]                                            (1.1) 

 

whereas the outer fences are located at a distance of 3 IQR less than first quartile and 

more than third quartile which are presented as  

 
[                ]                                             (1.2) 

 

Any observation that falls outside the inner fences is labeled as a mild outlier while 

value that falls beyond outer fences is marked as extreme outlier.  

 

1.3  Sequential Fences 

 

Schewertman and de Silva (2007) has modified the boxplot and introduced sequential 

fences as another useful technique to detect the outliers in the data. In this study, the 

sequential fences proposed by Schewertman and de Silva is henceforth referred as 

SDSF. The technique proposed by Schewertman and de Silva (2007) identifies outliers 

sequentially based on the specific sample size and the pre-specified outside rate 

attained which is the probability that an uncontaminated observation falls beyond the 

fences.  

 

For the construction of sequential fences, the sample sizes are adjusted using Poisson 

model in order to decrease the tail probabilities. The adjustment is similar to the 

adjustment done in Davies and Gather (1993) and Gather and Becker (1997). This 

SDSF increases the accuracy to identify the outliers, reduces the swamping effect and 

less likely to misclassify an uncontaminated observation as an outlier in large sample 

size. In the procedure of outlier identification, this method allows the researchers to 

have flexibility in setting the level of confidence. The fences are constructed 

continuously until there is no extra outlier detected.  
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1.4  Problem Statement 

 

Although there are a lot of literatures on outlier identification methods, most of the 

existing methods are suitable only for symmetric distributions as discussed in detail in 

Chapter 2. The popular boxplot method (Tukey, 1977) is too liberal and cause many 

unusual observations to be overlooked. The sequential fences method which was 

proposed by Schwertman and de Silva (2007) allows flexibility in setting the outside 

rate to detect the extreme and mild outliers. This method uses interquartile range to 

measure the dispersion of the data. A natural question comes to our mind is whether it 

can be developed using an alternative robust scale that can measure the dispersion of 

the data in the sequential fences method. Thus, it is important to find out the suitable 

robust scale in the replacement of interquartile range in order to improve the 

performance of sequential fences approach in detecting the outliers.  

 

Furthermore, the major problem of the existing outlier detection techniques is too 

conservative in which these techniques work well in symmetric distribution and have 

low performance in asymmetric distribution. Some methods obey normality 

assumptions while most of the real data do not follow normal distribution. Some 

authors proposed outliers techniques for skewed data, but the performance of these 

techniques needs improvement. Therefore, the modification of the sequential fences 

method which was proposed by Schwertman and de Silva (2007) is needed to be 

improved by making some adjustments to the approach for detecting outliers in skewed 

data with the consideration of the skewness of the distributions. 

 

Moreover, procedure of screening for the data before further analysis of data is 

important (Tabachnick & Fidell, 2001). Identification of outliers is a part of the data 

screening procedure which should be done regularly before starting a statistical 

analysis (Beckman & Cook, 1983; Ahmad et al., 2011). Simulated univariate data may 

contain outlying observations. When the data is from symmetric distribution, the 

extreme values that are located at the left or right tail may be suspected as outliers. For 

skewed distribution data, it is suspected that the extreme observation at the longer tail 

might be outlying observation.  

 

In order to know whether the outliers present in the data, initial screening of the data is 

necessary. In the boxplot method, the data which are used to obtain the central 

tendency and spread of data such as mean and standard deviation are assumed normal. 

Test statistics are greatly affected when the data is non-normal. The critical values of 

sequential fences technique (Schwertman & de Silva, 2007) depends on the calculation 

of median and interquartile range. In Chapter 4, it can be observed that the existing 

sequential fences perform well in the symmetric distributions but capture too much 

outliers on the long tail of skewed distribution. Thus, the fences should be adjusted to 

allow a better coverage of the centre of the data especially when the data are skewed.  
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1.5  Objectives of Study 

 

Since the study is focused on modification of sequential fences, the objectives of this 

study are i) to propose method for outlier identification in symmetric distribution with 

higher accuracy and lower misclassification of non-contaminated observations as 

outliers ii) to increase the accuracy in detecting the real outliers in asymmetric 

distribution with minimum swamping and masking effect and iii) to provide an 

efficient sequential fences in identifying outliers in wider types of distributions with 

new algorithm and parameters estimation. 

 

1.6  Limitation of Study 

 

SAS review 9.3 is selected as our research tool which helps in simulation, 

bootstrapping and computing the results. Due to the long computation time in large 

replications, the number of observations contamination is set up to three outliers. The 

sample size of the simulation is limited to       only, because simulations involve 

10,000 replications. The procedures of sequential fences take some time because this 

method has to keep constructing the fences sequentially and checking for the presence 

of outliers continuously until there is no additional outlying observation being 

captured.  

 

1.7  Overview of Thesis 

 

Since this study is related to modification of existing sequential fences method (SDSF) 

which was proposed by Schwertman and de Silva (2007), it is important to improve its 

performance in outlier detection in symmetric and asymmetric distribution data.  

 

Chapter 3 provides a review of sequential fences method of detecting the outliers in the 

normally distributed data. Instead of using interquartile range (IQR), this study 

modifies the existing sequential fences technique for identifying outliers by using 

different robust scales such as semi-interquartile range (SIQR), median absolute 

deviation (MAD), Qn, Sn and gini‟s mean difference (GMD). This study also compares 

proposed methods with the existing sequential fences method and generalized extreme 

studentized deviate (ESD) test. Two empirical examples are used to illustrate the 

efficiency of the methods. Simulation study is conducted with different number of 

outliers. The performance of all outlier detection techniques has been compared by 

evaluating the proportion of correctly identifies the outliers and the proportion of 

misclassifies the uncontaminated observation as outliers. Superiority of the proposed 

technique has been validated by simulation results.  

 

In Chapter 4, SDSF method is extended to form a new technique based on the 

skewness of underlying distribution data to identify outliers in skewed distributions. 

Adjustment of the fences construction has been made using moment measure of 

skewness to measure the skewness of the data. Similarly, the proposed method and 
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existing SDSF are applied to a real data set as illustration and comparison. Besides 

Normal distribution, simulation study has been conducted on skewed distributions such 

as Lognormal, Chi-square, Gamma and Weibull with different parameters, and the 

simulation results are compared with existing SDSF method. The proposed technique 

shows its outstanding performance compared to SDSF technique in detecting outliers in 

the different distributions and also in real data set at different nominal outside rates. 

 

In Chapter 5, a modification of algorithm and formulation are proposed based on the 

SDSF method which can identify outliers in the symmetric and asymmetric 

distributions. Instead of using Monte Carlo simulation, a new methodology involving 

bootstrapping technique has been developed. Before contamination of the data, a clean 

simulated data is generated and verified using Gini Sequential Fences (GSF) method 

which is proposed in Chapter 3. For the performance study, bootstrap resampling study 

has been done on the symmetric and skewed distribution, such as normal, chi-square 

with different degrees of freedom and lognormal distribution with different parameters. 

The performance of the newly proposed technique is compared with SDSF method and 

Tukey‟s boxplot by matching number of outliers detected with the contaminated 

observations for different sample sizes. Apart from that, based on the outliers detected, 

trimmed mean and trimmed standard deviation adopting bootstrap resampling 

technique has been calculated. The comparison of the estimation of parameters based 

on bias and mean square errors have been done. From the result, the supremacy of 

proposed modification method over existing SDSF technique and boxplot is proven.  
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