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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
 of the requirement for the degree of Master of Science 

NUMERICAL SIMULATION OF MIXING CHARACTERISTICS OF 
CNG-AIR MIXER FOR DUAL-FUEL VEHICLE 

By 

HASSAN SADAH MUHSSEN 

November 2016 

Chairman  : Siti Ujila Masuri, PhD 
Faculty       : Engineering 

A compressed natural gas (CNG)-air mixer is a device like a carburettor positioned at 
the air intake manifold of the engine to mix CNG with incoming air at proper 
amounts of CNG and air prior to entering the combustion chamber. According to 
literature, the best design of CNG-air mixer is one that is able to meet the conditions 
of 1) supply the engine with a homogeneous mixture of CNG and air, 2) with air and 
CNG with the required air fuel ratio (AFR), and 3) without reduction of the air intake 
manifold size. The homogeneous mixture occurs when the uniformity index (UI) of 
methane mass fraction (MCh4) =1.0. From previous studies, there is no design of 
CNG-air mixer which could satisfy all the above three conditions at the same time. 

This research carried out a computational fluid dynamics (CFD) study to design a 
CNG-air mixer for CNG-diesel dual fuel (DDF) engine. The objectives of this study 
were to examine the performance of existing Secondary Fuel Premixing Controller 
(SFPMC) commercial mixer and modify it in terms of air fuel ratio (AFR) and CNG-
air mixture homogeneity (CAMH).  

The validity and reliability procedures of the simulation results were carried out 
using the grid independent test, and verification by comparing the results with the 
literature. 

Results from simulation indicated that the original mixer (model 1) was unable to 
control AFR due to the shaft design of the control valve. Furthermore, this mixer 
could not provide a homogeneous mixture of CNG and air due to the mixer’s internal 
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design, position and directions of the CNG holes. Therefore, the mixer design was 
modified in terms of AFR and CNG-air mixture homogeneity. Design modification 
of the control valve shaft was the first method to control AFR, while the second 
modification involved removing the control valve and also assuming that the gas 
flow rate is controlled by the electronic flow controller and electronic control unit 
(ECU). For the mixture homogeneity, there were 10 alternative designs that were 
tested (models 2-11) to achieve the desired design. The uniformity index (UI) of 
methane mass fraction (MCh4) was the approach used to quantify CNG spread on the 
mixer outlet. The UI of MCh4 represents how MCh4 varies over a plane surface, where 
a value of 0 and 1 indicate the lowest and highest uniformity of gas spread, 
respectively. Based on the results obtained from mixer models 1-11, it can be 
concluded that models 8 and 11 showed a superior performance in terms of UI. The 
minimum UI of MCh4 at the outlet of these two mixer models was not less than 0.96 
at various engine speeds of 1000, 1500, 2000, 3000, and 3600 rpm, and 0.87 at 
various AFRs of 10, 17.2, 20, 30, and 40. On the other hand, at the outlet of original 
mixer, the maximum UI of MCh4 was not higher than 0.57 at various engine speeds, 
and 0.58 at various AFRs. In terms of AFR, the optimized mixer with a new control 
valve shaft showed better controlling of AFR at the various engine speeds compared 
with the original mixer. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Sarjana Sains 

SIMULASI BERANGKA CIRI-AM MENCAMPUR PENGADUN CNG-
UDARA UNTUK KENDERAAN DWI-BAHAN BAKAR  

Oleh 

HASSAN SADAH MUHSSEN 

November 2016 

Pengerusi    :   Siti Ujila Masuri, PhD 
Fakulti         :  Kejuruteraan 

Pengadun gas asli termampat (CNG)-udara adalah alat seperti karburetor yang 
diletakkan di pancarongga pengambilan udara enjin untuk mencampur CNG dengan 
udara masuk pada jumlah CNG dan udara yang sesuai sebelum memasuki kebuk 
pembakaran. Menurut literatur, reka bentuk yang paling sesuai untuk pengadun 
CNG-udara adalah sesuatu yang dapat memenuhi syarat-syarat 1) membekalkan 
enjin dengan campuran homogen CNG dan udara, 2) dengan udara dan CNG pada 
nisbah udara bahan bakar  yang diperlukan  (AFR), dan 3) tanpa pengurangan saiz 
pancarongga pengambilan udara. Campuran yang homogen berlaku apabila indeks 
keseragaman (UI) bagi pecahan jisim metana (MCh4) =1.0. Dari kajian sebelum ini, 
tidak ada reka bentuk pengadun CNG-udara yang boleh memenuhi kesemua tiga-tiga 
syarat di atas secara serentak. 

Kajian ini adalah satu kajian menggunakan pengkomputeran dinamik bendalir (CFD) 
untuk mereka-bentuk pengadun CNG-udara bagi enjin CNG-diesel dwi-bahan bakar 
(DDF). Objektif kajian ini adalah untuk mengkaji prestasi pengadun dagangan 
Pengawal Pra-Adunan Bahan Bakar Sekunder yang sedia ada dan mengubahsuainya 
dari segi nisbah udara bahan bakar (AFR) dan kehomogenan campuran CNG-udara 
(CAMH). 

Prosedur kesahan dan kebolehpercayaan bagi keputusan simulasi telah dijalankan 
menggunakan grid ujian bebas, dan penentusahan oleh perbandingan keputusan 
dengan literatur. 

Keputusan daripada simulasi menunjukkan bahawa pengadun asal (model 1) tidak 
dapat mengawal AFR disebabkan oleh reka bentuk shaf injap kawalan yang tidak 
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sesuai. Tambahan pula, pengadun ini tidak dapat menyediakan campuran homogen 
CNG dan udara disebabkan oleh reka bentuk dalaman, kedudukan dan arah lubang 
CNG. Oleh itu, reka bentuk pengadun telah diubahsuai dari segi AFR dan 
kehomogenan campuran CNG-udara. Pengubahsuaian reka bentuk shaf injap 
kawalan adalah kaedah pertama untuk mengawal AFR, manakala pengubahsuaian 
kedua melibatkan mengeluarkan injap kawalan dan juga menganggap bahawa kadar 
aliran gas dikawal oleh pengawal elektronik aliran serta unit kawalan elektronik 
(ECU). Untuk kehomogenan campuran, terdapat 10 reka bentuk alternatif yang diuji 
(model 2-11) untuk mencapai reka bentuk yang dikehendaki. Indeks keseragaman 
(UI) bagi pecahan jisim metana (MCh4) adalah pendekatan yang digunakan untuk 
mengukur agihan CNG pada saluran keluar pengadun. UI MCh4 mewakili bagaimana 
MCh4 berbeza agihannya di atas sesuatu permukaan, yang mana nilai 0 dan 1 masing-
masing menunjukkan keseragaman bagi penyebaran gas yang paling rendah dan 
paling tinggi. Berdasarkan keputusan yang diperolehi  daripada model pengadun 1-
11, dapat disimpulkan bahawa model 8 dan 11 menunjukkan prestasi yang lebih baik 
dari segi UI. UI minimum MCh4 di saluran keluar kedua-dua model pengadun 
tersebut tidak kurang daripada 0.96 pada pelbagai kelajuan enjin di paras 1000, 1500, 
2000, 3000, dan 3600 rpm, dan 0.87 di pelbagai AFRs iaitu 10, 17.2, 20, 30, dan 40. 
Sebaliknya, di saluran keluar pengadun asal, UI maksimum MCh4 tidak melebihi  
0.57 pada pelbagai kelajuan enjin, dan 0.58 pada pelbagai AFRs. Dari segi AFR, 
pengadun yang dioptimumkan dengan shaf injap kawalan baru menunjukkan 
pengawalan AFR yang lebih baik pada pelbagai kelajuan enjin berbanding dengan 
pengadun asal. 
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TCF Trillion cubic feet 
TDC Top dead centre 
UHC Unburned hydrocarbon 
UI Uniformity index 
λ Relative air fuel ratio 
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CHAPTER 1 

 
1 INTRODUCTION 

 Background 1.1

High thermal efficiency, durability, low carbon dioxide emission, reliability, high 
torque, and fuel economy are the factors that have made the diesel engines the 
preferred choice for passenger transport, trucks, and power generation operations 
(Chintala & Subramanian, 2013). In contrast, high localized temperature and 
combustion with heterogeneous air-fuel mixture have made the diesel engine 
produce a high level of nitrogen oxides emission and particulate matter emission 
(Chintala & Subramanian, 2013). Previous investigations have shown that people are 
prone to heart and lung diseases when exposed to exhaust particulate matter emission 
(Azad, Uddin, & Alam, 2012; Chintala & Subramanian, 2013). Many types of 
alternative fuels like alcohol, CNG, LPG, biogas, producer gas, and hydrogen were 
studied widely in the literature (Lata, Misra, & Medhekar, 2012). The factors such as 
high auto-ignition temperature, clean nature of combustion, and high availability at 
attractive prices make natural gas a good alternative fuel for diesel and gasoline 
engines (R. G. R. Papagiannakis et al., 2010). Compressed natural gas (CNG) is one 
of the natural gas forms, with some properties that make it an attractive alternative 
fuel for diesel fuel such as high octane number, high hydrogen to carbon rate, and 
leaner burn due to wide ignition limit (Kamil, Rahman, & Bakar, 2011).  

Although CNG plays a significant role in reducing combustion emissions, the 
problems of high rate of NOx and PM (particulate matter) emissions have been taken 
into account in recent times (T. F. Yusaf, Buttsworth, Saleh, & Yousif, 2010). CNG-
diesel dual fuel (DDF) system has been developed to decrease NOx and particulate 
matter emissions of diesel engines (Chintala & Subramanian, 2013; N. Kapilan, 
2010; T Yusaf, Baker, Hamawand, & Noor, 2013). The work principle of the DDF 
engine is represented by the burning amount of the premixed CNG-air mixture by 
injecting a small amount of diesel “pilot” fuel inside the engine combustion chamber 
near the end of the compression stroke (Khan, Yasmin, & Shakoor, 2015b). CNG-air 
mixer is used to convert the diesel engine to DDF engine without more engine 
modifications. The main purpose of the mixer is to obtain a homogeneous mixture 
and suitable ratios of air and CNG as required by the engine (Abagnale et al., 2014; 
Chang, Yaacob, & Mohsin, 2007; Gorjibandpy & Sangsereki, 2010; Talal Yusaf & 
Yusoff, 2000). Venturi mixer, throttle body injection mixer (TBIM), venturi 
mixjector, and secondary fuel pre-mixing controller (SFPMC) are the devices that 
are used to mix the CNG and air prior to entering the engine combustion chamber.  

All these mixing devices have been investigated extensively except the latter type, 
which is SFPMC. From the results of investigation of mixing devices except the 
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SFPMC, there was no mixer found that is optimized to provide a homogeneous 
CNG-air mixture (HCAM) at various engine speeds and various AFR without 
throttling engine air inlet. SFPMC mixer can be investigated and developed for a 
CNG-dual fuel diesel engine. Hence, this study focused on the modeling, testing and 
improving the mixing quality of CNG-air mixture in SFPMC mixer. 

 Problem Statement 1.2

All the CNG-air mixing devices like venturi mixer, venturi mixjector and throttle 
body injection mixer (TBIM) have been much investigated except the secondary fuel 
pre-mixing controller (SFPMC). The results of previous studies on the venturi 
showed a weakness in its performance in terms of CNG-air mixture homogeneity 
(CAMH) and AFR controlling at various engine speeds. In the venturi mixer the gas 
is rich at the wall regions and lean at the axial region; also the mixer should be long 
enough to provide homogenous mixture of CNG and air. Moreover, AFR is 
controlled by mixer design not as required by the engine due to stationary parts of the 
venturi mixer (MM & MRM, 2008; Mohsin, 2008; Ramasamy, 2006; T Yusaf et al., 
2013; Talal Yusaf & Yusoff, 2000). For these two reasons, TBIM and venturi 
mixjector were the two suggested mixers to improve the CAMH and AFR 
controlling. TBIM is workable only with engine with throttle body and the CAMH 
depended on the butterfly valve position and gas injection frequency (Chang et al., 
2007; Mohsin, 2008). On the other hand, venturi mixjector is a venturi mixer which 
uses electronic gas injectors to control AFR. Although this mixer controlled AFR and 
improved engine performance, but it is still venturi shaped which chokes the engine 
air intake. Moreover, CAMH occurs at intake manifold and the mixing is not 
completed at the mixer outlet (Supee, Shafeez, et al., 2014). Therefore, there is a 
need for analytical study of SFPMC mixer to work with 3.168 liter diesel engine. 

 Objectives 1.3

The objectives of this study are: 

1. To examine the performance of existing secondary fuel pre mixing controller 
(SFPMC) commercial mixer in terms of AFR and CNG-air mixture 
homogeneity (CAMH). 

2. To improve the design of the mixer by: 

(a) Provide a homogeneous CNG-air mixture by keeping uniformity index (UI) 
of methane mass fraction (MCh4) at the outlet of new mixer higher than 85% 
at various engine speeds and various AFRs. 
 

(b) Design two new mixers in terms of controlling AFR; one with control valve 
(assuming the gas flowrate is mechanically controlled), and one without 
control valve (assuming the gas flowrate is electronically controlled). 
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 Scope 1.4

The scope of the study is as follows: 
1. SFPMC mixer is designed for 4-cyinders, 4-stroke, and 3.168 litter capacity 

diesel engine. 
2. Engine operating at steady state with varied engine speeds 1000, 1500, 2000, 

3000, and 3600 rpm. 
3. Various AFR operations from rich (AFR = 10), to stoichiometric (AFR = 17.2) 

and to lean (AFR = 20, 30, and 40). 
4. Initial mixer dimensions are taken from real commercial mixer. 
5. Design two new mixers; one with control valve (to control gas flowrate 

mechanically), and one without control valve (to control gas flowrate 
electronically). 

6. Using computational fluid dynamics (CFD) as analysis tool to investigate the 
performance of the mixer. 

7. Since this study is focused on the fluid flow pattern inside the mixer, control 
valve mechanism (in mixer with control valve) and the flow controller (in mixer 
without control valve) are not a part of this study. 

 Significance of research 1.5

From the two primary objectives of study, the designed and best modified CNG-air 
mixer for DDF engine will be presented and selected. This mixer provides a 
homogeneous mixture of CNG and air with required AFR. Moreover, this mixer does 
not reduce air intake manifold to avoid engine power drop.  

The correct strategies in this research to obtain the best design of the mixer in term of 
mixing homogeneity could be followed as a guide for mixer design. Furthermore, 
controlling gas flowrate mechanically by modified CNG-air mixer could be used as a 
guide for designing fluids flow control systems. 

In addition, this research summarizes the techniques of using CFD simulation results 
to visualize and quantify of mixing homogeneity level of the mixture components. 

 Thesis Organization 1.6

Chapter 2 reviews the literature on the diesel dual fuel engine, characteristics of 
CNG as alternative fuel, the effects of AFR and mixture homogeneity on the engine 
performance, methods to show and quantify mixture homogeneity, types of CNG-air 
mixer and its performance in terms of AFR and homogeneity of CNG-air mixture, 
and finally the use of CFD as an analysis tool. 
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Chapter 3 describes the methodology used to model and modify the design of 
SFPMC real commercial mixer, and the setting up of the simulation software 
(ANSYS FLUENT) to examine the original mixer and the suggested alternative 
designs in terms of AFR and homogeneity of CNG-air mixture. 

Chapter 4 presents the results and discussions on the effect of mixer design on AFR 
and the homogeneity of CNG-air mixture (HCAM). It begins by showing the effect 
of the original mixer design on the AFR and mixture homogeneity. After that, this 
chapter shows the comparison between the original mixer and the 10 suggested 
alternative designs in terms of CNG-air mixture homogeneity. Then, this chapter 
shows the results of a comparison between original mixer and the best two designs in 
terms of AFR and CNG-air mixture homogeneity. 

Chapter 5 provides the general conclusions and the recommendations for future 
related studies. 
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