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In this study, a bimaterial of cemented tungsten carbide (WC) and steel was fabricated 

via die compaction process as it combines the hardness of WC and toughness of steel 

used for making machine tools. Major challenges related to this study is in two folds; 

firstly, the cobalt (Co) commonly used as WC binder has been reported to be scarce in 

supply and toxic making the International Agency for Research on Cancer (IARC) 

classify sintered WC–Co hard metals as carcinogenic and harmful to humans. 

Secondly, microstructural analysis has revealed the formation of detrimental phase (eta 

carbide) in co-sintered tungsten carbide and steel bilayer resulting in the deterioration 

of properties of this bilayer. Therefore, there is a need to replace cobalt with iron (Fe) 

as the binder, and also control the carbon (C) content in Fe as part of the composition 

in order to suppress eta carbide formation. WC–Fe–C and Fe–W–C bimaterial was 

fabricated with varying carbon content of Fe part composition (Fe–6W–xC, x = 0.2, 

0.4, 0.6 and 0.8 wt.%). Sintering temperature was varied (1280oC, 1290oC &1295oC) 

to control the sintering kinetics and limit mismatch between layers that commonly 

occur in bilayer compacts. Microstructural analysis revealed significant reduction of 

the eta carbide phase with increasing carbon content as the bilayer specimen, MC–0.8 

with the highest carbon addition (0.8 wt.%) sintered at 1280oC was observed to have 

vestigial trace of eta carbide phase when compared to other samples. An improved 

density results (6.1%) with increased carbon level resulting in stronger interfacial bond 

was observed in bilayer samples sintered at 1280oC, while weak interfacial bond owing 

to shrinkage mismatch was observed in samples sintered at 1295oC. Hardness values 

increased with increasing carbon addition at all sintering temperatures (At 1280oC, 

MC–0.2 = 132.80 & 692.93 kgfmm-2 while MC–0.8 = 150.97 & 735.70 kgfmm-2 for 

Fe and WC parts respectively) which was attributed to the reduction of eta carbide 

formation. Through diametral compression test, bilayer samples sintered at 1280oC 

were found to possess higher values of tensile strength which significantly increased 

from 45.10 MPa to 55.75 MPa with increase in carbon content. 
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Di dalam kajian ini, dwibahan tungsten karbid tergabung (WC) dan keluli telah 

dihasilkan melalui proses pemadatan acuan kerana ia menggabungkan kekerasan WC 

dan keliatan keluli yang digunakan untuk membuat alat-alat pemesinan. Cabaran 

utama ke arah ini terdapat dalam dua bahagian iaitu yang pertama, bekalan kobalt (Co) 

yang biasa digunakan sebagai pengikat WC adalah sukar didapati dan bertoksik 

menyebabkan Agensi Antarabangsa untuk Penyelidikan Kanser (IARC) mengelaskan 

logam keras WC–Co yang tersinter sebagai karsinogenik kepada manusia. Kedua, 

analisis mikrostruktur telah mendedahkan pembentukan fasa memudaratkan (eta 

karbid) di dalam dwilapisan tungsten karbid dan keluli tersinter, yang menyebabkan 

pengurangan sifat bahan dwilapisan tersebut. Oleh itu, terdapat keperluan untuk 

menggantikan pengikat Co dengan besi (Fe) serta mengawal kandungan karbon (C) 

dalam Fe di sebahagian komposisi untuk mengurangkan atau menghapuskan 

pembentukan eta karbid. WC–Fe–C dan Fe–W–C dwibahan telah dibentuk melalui 

kaedah metalurgi serbuk yang melibatkan pencampuran serbuk, pemadatan dan 

langkah pensinteran. Kandungan karbon di sebahagian komposisi Fe telah diubah (Fe–

6W–XC, x = 0.2, 0.4, 0.6 dan 0.8 wt.%) untuk mengurangkan pembentukan eta karbid 

selepas pensinteran. Disebabkan pengecutan tidak sepadan kerana perbezaan 

ketumpatan adalah konsisten dan memberi kesan terhadap padatan dwilapisan 

tersinter, suhu pembakaran sampel dwilapisan telah diubah (1280, 1290 dan 1295oC) 

untuk mengelakkan ketidaksepadanan dalam dwilapisan yang sering terjadi dalam 

padatan dwilapisan. Analisis mikrostruktur mendedahkan pengurangan ketara fasa eta 

karbid dengan peningkatan kandungan karbon sebagai spesimen dwilapisan. MC–0.8 

dengan tambahan tertinggi karbon (0.8 wt.%) yang disinter pada suhu 1280oC telah 

didapati mempunyai kesan sisa fasa eta karbid yang sedikit berbanding sampel yang 

lain. Kadar pemadatan yang dipertingkatkan sebanyak 6.1% menyebabkan ikatan 

antara muka yang kuat telah diperhatikan dalam sampel dwilapisan disinter pada 

1280oC, manakala keretakan dan ikatan antara muka yang lemah kerana 

ketidaksepadanan pengecutan yang besar dan pembentukan cecair berlebihan di antara 

muka telah diperhatikan dalam sampel yang disinter pada 1295oC. Nilai kekerasan 

meningkat dengan peningkatan kandungan karbon pada semua suhu pensinteran (Pada 
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1280oC, MC–0.2 = 132.80 & 692.93 kgfmm-2 manakala MC–0.8 = 150.97 & 735.70 

kgfmm-2 bagi bahagian Fe dan WC, masing-masing) yang disebabkan oleh 

pengurangan pembentukan eta karbid. Melalui ujian mampatan lintang, spesimen yang 

disinter pada 1280oC didapati mempunyai nilai kekuatan tegangan yang lebih tinggi 

yang meningkat dengan ketara daripada 45.10 Mpa kepada 55.75 MPa dengan 

peningkatan kandungan karbon. 
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CHAPTER ONE 

INTRODUCTION 

 Background of Research 

Global technological advancement has made multifunctional components a major 

constituent in many applications such as aeronautic, automotive parts, structural 

systems, cutting tools amongst others. These components are designed and assembled 

from a combination of different materials with complementary properties in order to 

develop specific functions such as thermal, mechanical, wear resistance that are not to 

be provided by a single material and to enhance structural efficiency or minimise 

weight (Pascal et al., 2009). This purpose may require the use of materials of different 

classes such as composite/metal (cemented carbide and steel) combining hardness and 

toughness properties required in machining and drilling tools (Pascal et al., 2005). In 

this regard, assembly techniques required to obtain these multimaterial components 

from single material parts often involve fragile and expensive operations (Largiller et 

al., 2012). Powder metallurgy (PM) is a suitable technique with limited processing 

steps involving powder mixing, compaction of mixed powder into a porous compact 

with green strength then sintering that transforms the green compact to bulk material 

with reduced porosity, increased density, desired mechanical and physical properties 

(Thomazic et al., 2010). Die compaction process, a step in PM technique is very 

efficient as it allows cost-effective fabrication of components, produces near net shape 

components. The quest to make technology economical and create excellent properties 

in components in numerous industries has channelled research efforts towards 

developing bimaterial components by conventional powder metallurgy to meet these 

demands. Several studies on multimaterial by PM has been carried out successfully 

and some with notable challenges of thermal expansion mismatch, sintering rate, 

shrinkage mismatch, delamination; Al2O3/ZrO2 by tape-casting and lamination (Cai et 

al., 1997), 3Y–TZP/430L stainless steel (Dourandish & Simchi, 2009), 316L/17–4PH 

(Simchi et al., 2006) and W/AL2O3 (Boonyongmaneerat & Schuh, 2006). 

Boonyongmaneerat & Schuh (2006) observed a strain incompatibilty of about 4.7% 

due to sintering environment which induced biaxial stresses in W/Al2O3 bilayer while 

boron addition to the stainless-steel part composition minimized the shrinkage 

mismatch of about 9.7% observed in zirconia ceramic and stainless steel bilayer. It can 

now be concluded that powder compositions and sintering parameters must be 

explored and controlled for successful manufacturing of multifunctional components. 

Tungsten carbide (WC) has attracted great interest from both engineers and 

academicians owing to its strength, hardness and wear resistance properties. Since its 

discovery in Germany in 1923 by Schroter, cobalt (Co) has been the common choice 

of binder for WC–based hardmetal as it provides it with adequate toughness (Penrice, 

1987). The adhesion of cobalt to tungsten carbide and its capillary action or wettability 

provides a ductile bonding matrix for WC particles during sintering and allows the 

achievement of very dense components. However, some drawbacks are related with 

this system. The relatively high cost of cobalt and the toxicity concern when there is a 

possibility of high Co levels in the environment has prompted attempts by researchers 
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to substitute cobalt binder for alternative materials (Gonzalez et al., 1995; Hanyaloglu 

et al., 2001). 

Fe–W–C system and other iron (Fe) alloy binders have been studied in the past by 

researchers in an attempt to replace the Co binder. The Fe–W–C system is similar to 

the Co–W–C both in properties and thermodynamically, and when its composition is 

adjusted by the strict control of carbon addition to avoid free graphite or eta phase 

formation; mechanical properties such as hardness, transverse rupture strength, 

toughness show comparable or even superior values than those found in the WC–Co 

system (Fernandes et al., 2003). Fe–W–C is a steel of good toughness property with a 

low amount of carbon content that provides ductility property and also some tungsten 

to limit the tungsten gradient that will be generated by diffusion from the WC base 

part. 

For the purpose of this study and in order to meet the growing demand for advanced 

components in industries, a bilayer component made up of WC–Fe–C and Fe–W–C 

parts with variable percentage weight of carbon in the steel part powder composition 

was fabricated through die compaction process to combine both hardness and 

toughness properties. Evaluation of mechanical properties was carried out on 

fabricated samples in conjunction with the physical properties after sintering at 

different temperatures to understand the interaction between the two layers as it affects 

the interfacial strength and bonding of co-sintered bilayer compacts. 

 Problem Statement 

Technological advancement has been a great tool in global development which in turn 

has increased the demand for multifunctional components in structural systems, 

machine tools, mining and automobile industries. This development has stimulated 

researcher’s pace towards generating specific properties such as hardness, toughness, 

wear-resistance by assembling different classes of materials in a bimaterial component 

that should not be provided in a single material to meet the increasing demand of these 

industries but not all of these researchers have been successful with this task due to 

some major challenges. In machining industries where drilling and cutting tools are 

largely required, the combined use of steel and cemented tungsten carbide provides 

toughness and hardness at the same time for this tools. Cobalt binder commonly used 

to provide toughness in cemented tungsten carbide for production of these tools is 

unfriendly to the environment and therefore must be substituted with iron ( Penrice, 

1987; Hanyaloglu et al., 2001; Trung et al., 2014).  

In the development of cemented tungsten carbide and steel bilayer, i.e., WC and Fe 

base parts, Pascal et al. (2009) highlighted that the task of sintering different materials 

simultaneously with chemical compatibility comprising excellent mechanical 

properties in one component as well as suppressing formation of eta carbide at the 

interface of this bilayer due to depletion of carbon content in powder composition is 

challenging. Furthermore, it was reported that the selection of a suitable sintering 

temperature to form healthy and cohesive interface must be carefully considered as 

higher temperatures of 1300oC and above have been discouraged due to the excess 

liquid formed during sintering at this temperature. This complex eta carbide is 
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detrimental to the mechanical properties of the final product and therefore, it must be 

suppressed. In order to provide a possible solution to this challenge, die compaction 

process which is a step in PM technique was required to fabricate this multifunctional 

bilayer component made up of hard and tough parts with new powder formulations 

after which evaluation of physical and mechanical properties of the bilayer compacts 

was carried out under different sintering temperatures to determine its reliability and 

achieve excellent properties. 

 Significance of Study 

The need for multifunctional components is fast growing in numerous industries. 

Powder metallurgy (PM) has provided a cost effective assembly technique of 

composite/metallic components. Fabrication of these components through PM majorly 

provides industries with better components having different material properties 

assembled together which could serve multiple functions. As a result of increasing 

application of tungsten carbide in areas such as machining industries, there arises the 

need to substitute the toxic and scarce cobalt binder for iron binder in WC composite. 

Interestingly, if some processing parameters such as carbon content and sintering 

temperature are well controlled, the proposed WC/Fe bilayer can provide superior 

properties of adequate strength and toughness to start a cut without chipping or 

destroying the tool's cutting edge and hardness or wear resistance to keep a cut going 

once it is started.  

Therefore, this study examined some experimental analysis conducted to fabricate 

WC/Fe bilayer component with emphasis particularly on physical and mechanical 

properties which are key issues in determining components life’s span and the 

possibility to enlarge the range of applications of tungsten carbide in drilling tools and 

other applications in different industries where they would be subjected to high efforts 

even in corrosive environments. 

 Objectives 

1. To analyse the physical properties of sintered bilayer compacts at various sintering 

temperatures to achieve a defect-free interface. 

2. To evaluate the mechanical properties of sintered bilayer compacts. 

 Scope of Study 

Multifunctional components are made up of different materials that possess specific 

properties like mechanical, thermal, electrical, corrosion resistance. The scope of this 

work is focused on processing of WC–Fe–C and steel (Fe–W–C) bilayer through die 

compaction process of PM technique with the carbon content of the steel composition 

varied (0.2, 0.4, 0.6, 0.8 wt.% Cgr) to compensate for carbon loss during sintering and 

prevent eta carbide formation. The mechanism for bonding WC/Fe bilayer is through 

liquid phase sintering (LPS) where the liquid required for interlayer diffusion is formed 

around 1138oC (Pascal et al., 2009) and sintering above 1300oC for 1 hr is also reported 

to deform bilayer. Therefore, sintering temperature was varied (1280oC, 1290oC 
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&1295oC) to control the sintering behaviour of bilayer compacts and maintain sound 

interface between layers. 

The physical and mechanical properties of the samples were analysed and comparisons 

were made after sintering at different temperatures for 60 minutes. Shrinkage 

mismatch were also observed for all samples at different sintering temperatures 

through geometrical means as material parts in bilayers have been reported not to 

exhibit similar behaviour during sintering. 

 Thesis Outline 

The first chapter which is the introductory part of this thesis gives an insight into the 

study as a whole. It has the background, problem statement, significance of study and 

research objectives. Also inclusive is the scope which highlights the areas which this 

study will cover. 

Chapter two presents a critical survey of relevant investigations in the line of this 

study. Overviews of the processing technique, backgrounds, effectiveness of WC-

based hardmetals as well as concept of multifunctional components are presented to 

give basis to the procedural steps embarked upon in this study. 

An experimental documentation of the steps and procedures employed for this work 

are described in chapter three. Here, discussions on the steps involved in the processing 

technique of bilayer samples, equipments utilized for analysis and microscopic 

techniques are presented. 

Chapter four presents detailed results obtained in the course of this study and the 

discussion of the data in relation with the research objectives and the existing findings 

related to this field of study. 

The conclusion and summary of results of this study are presented in chapter five 

followed by recommendations for future research studies. 
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