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Design shear resistance coupled with lack of a probabilistic framework for the al-
ternate deflection requirement check for reinforced concrete (RC) slab, and the un-
economical approach for profiled composite slab strength determination are main
challenges that contribute to design conservatism. This thesis proposes to ad-
dress these challenges by implementing a rational- based approach in developing
schemes for limit state performance enhancement and a numerical function for
profiled composite slab strength devoid of experimental procedure. Performance
enhancement schemes employs the probabilistic safety appraisal in providing im-
provement measures to the concrete shear resistance function and the provision for
a simplified probabilistic deflection check while maintaining an acceptable closed
form solution. Hence, variable deflection, λdefl and shear resistance, λprop factors
are introduced to modify the existing limit state. Similarly, a procedural algorithm
lead to the development of profiled composite slab strength determination function
for both longitudinal shear estimation methods by considering section slenderness
and deck characteristics. First, composite deck safety performance against the
load ratio function leads to safety bounds definitions that takes into consideration
section slenderness and sheeting deck characteristics values delineated through l/6
and l/8, culminating in the formation of modified strength function. The proba-
bilistic based optimisation scheme shows potentials to improve RC slab design by
suggesting 4% design moment reduction. Similarly, the concrete shear capacity can
be increased significantly with an enhancement λprop factor of 2.0, and a similar
λdefl value of 5.15 is also proposed to shore up the limiting deflection requirement
check under the use of a concrete strength class of 30 MPa. Furthermore, the
developed strength determination effectively performs well in mimicking the prob-
abilistic deck performance and composite slab strength determination that shows
improvement in strength load estimation difference between the two longitudinal
shear methods to 12% from 26%. The strength test performance between the

i



© C
OPYRIG

HT U
PM

developed scheme and the experiment based test results indicates high similarity,
demonstrating the viability of the proposed strength determination methodology
developed in this study.
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KEUPAYAAN KEKUATAN DIUBAHSUAI BAGI PAPAK
KOMPOSIT MENGGUNAKAN PENDEKATAN

KEBOLEHHARAPAN

Oleh

KACHALLA MOHAMMED

September 2016

Pengerusi: IZIAN ABD. KARIM, PhD
Fakulti: Kejuruteraan

Rintangan ricih rekabentuk digandingkan dengan kekurangan kerangka kerja ke-
barangkalian sebagai alternatif semakan pesongan bagi papak konkrit bertetu-
lang, dan pendekatan yang tidak ekonomi untuk penentuan kekuatan papak ren-
cam berprofil adalah cabaran utama yang menyumbang kepada rekabentuk yang
konservatif. Tesis ini bercadang untuk menangani cabaran-cabaran ini dengan
melaksanakan pendekatan berasaskan-rasional dalam membangunkan skim untuk
meningkatkan prestasi keadaan had dan rangkap berangka untuk kekuatan papak
rencam berprofil tanpa menjalankan prosedur eksperimen. Skim-skim peningkatan
prestasi ini menggunakan penilaian kebarangkalian keselamatan dalam menyedi-
akan langkah-langkah penambahbaikan kepada rangkap rintangan ricih konkrit
dan peruntukan bagi semakan kebarangkalian pesongan dipermudah disamping
mengekalkan penyelesaian bentuk tertutup yang boleh diterima. Oleh itu, faktor
pembolehubah pesongan, λdefl dan rintangan ricih, λprop diperkenalkan bagi men-
gubahsuai keadaan had sedia ada. Begitu juga, satu prosedur algoritma menjurus
kepada pembangunan rangkap penentuan kekuatan papak rencam berprofil un-
tuk kedua-dua kaedah anggaran ricih membujur dengan mengambilkira kelangsin-
gan keratan dan ciri-ciri geladak dibangunkan. Pertama, prestasi keselamatan
geladak komposit terhadap rangkap nisbah beban membawa kepada definisi had
keselamatan yang mengambilkira kelangsingan keratan dan nilai ciri-ciri kepingan
geladak ditandakan melalui l/6 dan l/8 memuncak kepada pembentukan rangkap
kekuatan diubahsuai. Skim pengoptimuman berasaskan kebarangkalian menun-
jukkan potensi untuk meningkatkan rekabentuk papak konkrit bertetulang dengan
mencadangkan pengurangan 4% momen rekabentuk. Begitu juga, keupayaan ricih
konkrit boleh meningkat ketara dengan peningkatan faktor λprop sebanyak 2.0,
dan nilai λdefl sebanyak 5.15 juga dicadangkan untuk menyokong keperluan se-
makan pesongan yang dihadkan bagi penggunaan kelas kekuatan konkrit bergred
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30 MPa. Disamping itu, rangkap penentuan kekuatan yang dibangunkan berkesan
dalam mengajuk prestasi kebarangkalian geladak dan penentuan kekuatan papak
komposit dengan menunjukkan peningkatan dalam perbezaan anggaran kekuatan
beban antara kedua-dua kaedah ricih membujur sebanyak 12% daripada 26%.
Prestasi ujian kekuatan diantara skim yang dibangunkan dan keputusan ujian
berasaskan eksperimen menunjukkan persamaan yang tinggi, menandakan daya
maju bagi kaedah cadangan penentuan kekuatan yang dibangunkan dalam kajian
ini.
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CHAPTER 1

INTRODUCTION

1.1 Background

This chapter presents a general overview of contemporary problems related to dif-
ferent slabs, and it is divided in to six sections after a discussion of the deterministic
approach in achieving safety and design economy. This is followed by section 1.2,
which provides an account of the problem statement related to the current design
and strength verification of reinforced concrete (RC) slab and profiled deck com-
posite slab, respectively. Section 1.3 presents the formulated research hypothesis.
The goals, scope and limitation of this study, as well as its research significance,
are concisely presented under sections 1.4, 1.5 and 1.6, respectively. Finally, the
general thesis structure layout is discussed in section 1.7.

The engineering settings for organised structural building from onset to comple-
tion requires the client who owns the finished product, the engineering team that
handles and facilitates the herculean task of designing and construction using ap-
propriate tools and machineries are all necessary in ensuring that the structural
building performs adequately in discharging its general purpose for which it is in-
tended for under specific condition safely. Similarly, achieving these noble feats
should be economically effective as well; herein the cost benefit ratio should be
minimal to the best possible option. Safety and economic considerations are no
doubt the guiding principles when a professional engineer engages in the design
and construction of a building. This to a significant extent stands to be the dif-
ference between professional engineers and quacks who operates under the guise
of engineering personnel: Apart from making their living from such deceptive and
potentially dangerous, no cost-saving value is added to the project even if should
they succeed in providing services for their unsuspecting client.

Structural building mainly consist of several members, and slab generally consti-
tutes more in terms of structural weight and volume compared to other members
(Yardim et al., 2013). Structural slab is part of modern high-rise building construc-
tion of both private and public buildings. Slab construction can either be in the
form of reinforced concrete slab or composite slab. The former is most commonly
used with reinforced concrete buildings, while the latter is usually applicable in
steel structured buildings. Generally, irrespective of their area of application, both
types will performed the same functions in building, but the design principles and
suitability test for strengths differs considerably. However, in general terms, both
are designs are based on a deterministic principle.

Engaging design engineers for structural buildings construction ultimately leads
economical designs with a low probability of failure. That is, the chance of the
structures action values exceeding material-strength resistance. Action values are
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a function of the structural load type and its magnitude on the building, and the
resistance is determined solely by the member stiffness. Intuitively, ultimate struc-
tural failure is unavoidable if the member stiffness is not suitable for the load task
on the building, and the building response is deemed unsatisfactory in such a situ-
ation. For example, the use of methods such as yield line analysis as well as design
based method have a tendency to grossly under-predict slab peak load (Siemaszko
and Doliski, 1996; Hossain and Olufemi, 2005). Hence, the current deterministic
approach attempt to provide safety by the application of conservative makeshift
use of safety factors. These factors are applied to both the load and strength pa-
rameters through amplifying the former and reducing the latter. The reason for
that is based on the deterministic hypothesis, where strength variables are assigned
with known value assumed to be free from uncertainty influence. However, this
assumption does not hold in most cases, and even if it does, certainly it comes at
an additional cost. Those factors will not guarantee the required safety because of
the absence of acceptable framework in dealing with inherent uncertainties. Thus,
the assumption only succeeds in making the design overly conservative. However,
this is not to say that the flaws associated with the deterministic method make
it invalid; Hence, it is still required with rational design approach formulations.
The application of the rational method on structural design is highly encouraging;
previous studies (Low and Hao, 2001; Ferrand, 2005; Neves et al., 2006) on its use
for slab design have shown it to be beneficial (Chul-Woo et al., 2007a; Marsh and
Frangopol, 2008). However, little research addresses how to balance safety and
design economy effectively with the use of this powerful rational approach.

Certainly, the goal of designing structures is to achieve a low probability of failure;
i.e. low probability of realising action value higher than the resistance (Larsen,
1995). Structural building design is primarily based on codes and standards that
are deemed satisfactory by engineering judgement and previous experience with
similar structures. In other words, deterministic approaches that consider load-
resistance factors, allowable stress and deflection, are based on professional expe-
riences and examination of available data (Galambos et al., 1982). The aim of all
design codes is presumably structural safety and economy of design, which is the
heart of structural design. Hence, whether it is RC slab design or design strength
verification of profiled deck composite slab (PDCS), the safety and economic con-
sideration from all design stages applicable to the respective slab is highly essential
not only in attaining the desired cost-benefit ratio but also for inwards research
and development of the respective deck.

Nowadays, structural mechanics puts more emphasis on the consideration of un-
certainties that are inherent in structural design. Generally speaking the current
deterministic design method is conservative, minimising the importance of the
cost-benefit ratio while focusing. For example, the costlier and expensive labora-
tory procedure remains the only means for verifying PDCS capacity, and the use of
analytical methods in RC slab design tend to grossly under-predict slab peak load
capacity (Siemaszko and Doliski, 1996; Hossain and Olufemi, 2005). Importantly,

2



© C
OPYRIG

HT U
PM

design safety factors may contribute to over design, achieving a low probability of
failure occasionally. Thus the effectiveness of any design or strength verification is
largely dependent on balancing safety and economy of design.

Balancing safety and economical design is a strenuous task that requires accom-
modation of many diverging issues. For example, the RC slab design must capture
the interest of not only flexural requirements, but also shear and deflection consid-
erations at all design stages. Similarly, as it applies to PDCS, longitudinal shear
capacity ultimately determines its performance appraisal and, interestingly, the
current two methods for its strength appraisal are conflicting and vague. Slabs
generally are among the biggest structural units contributing to the overall struc-
tural dead weight by more than 50% (Yardim et al., 2013), consequently requir-
ing an appropriate solution that is capable of balancing both safety and economic
considerations. This can be achieved through the use of a probabilistic framework.

The probabilistic measure is an undeviating framework that provides reassurance
in treating inherent design uncertainties (Epaarachchi et al., 2002). It provides
considerable help in reducing the high level of conservatism in the design models.
Hence, in this study, probabilistic judgements will be applied to both reinforced
concrete and composite slabs with a view to mitigating the high level of conser-
vatisms of typical reinforced concrete slab design as well as alternate for costly
PDCS laboratory strength tests.

1.2 Problem statements

Generally, slabs are a structural systems commonly used in residential buildings
(both public and private) (Benavent-Climent et al., 2012; Semelawy et al., 2012).
In most cases, slabs are either supported by columns directly (commonly known as
flat slab, which is very easy to build), or by beam-column connections (Sahab et al.,
2005b). In this thesis, slabs are classified in to two categories: i) RC slab, and ii)
profiled deck composite slab. Conventionally, both are designed on a deterministic
approach.

”Deterministic model has no stochastic element, where the entire input
and output relation of the model are conclusively determined”, Veritas
(1992).

The load and resistance factor design and the allowable stress methods are good
deterministic models, and both all based on professional experience (Ellingwood
et al., 1980). However the major drawbacks of those methods hardly leads to the
required safety level without compromising the design economy because of their
limitations in taking care of gross errors (Gosling et al., 2013; Addis, 1990; Beal,
1979; Mortensen, 1983). These errors are clearly attributed to the inherent un-
certainties associated with the materials properties, loads and dimension or those
related to lack of quantitative knowledge about statistical properties (Diniz, 2008).
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These limitations clearly tempers the hope of presenting safe and economical struc-
ture in every aspect (Jinxin et al., 2011).

Current deterministic based design outputs may yield to required safety mea-
sure, but bound by their limitations and the measures taken to address them,
the design outputs are overly conservative. This conservatism was necessitated to
accommodate variability, and this is done through increasing design loads with a
subsequent reduction in materials strength properties. For example, the known
empirical shear equations returns contentious values (Collins et al., 2008), and
concrete shear strength is found to be underestimated (Lantsoght et al., 2015).
Similarly, because of shear strength influencing parameters like shear span length,
deck cross section, concrete depth, etc., development of a numerical PDCS strength
determination approach is hampered. To mitigate this conservatism concern, this
study proposes to solve it with the RC slab design enhancement and simplified
strength verification for PDCS. Sections 1.2.1 and 1.2.2 provide more detailed
overview of contemporary problems associated with the aforementioned slab types
considered in this study.

1.2.1 Profiled deck composite slab (PDCS)

The use of profiled deck composite slab in the construction industry has many
advantages, including its simple construction compared to other flooring systems.
The profiled sheeting serves as shuttering by shouldering wet concrete during the
construction stage, for example. This composite construction method gained popu-
larity for eliminating time-consuming forms erection and their subsequent removal
(Chen, 2003; Abbas et al., 2015). Another advantage of that construction system
is the benefits derived from the decking sheet during service through performing
the function of tensile reinforcement (Marimuthu et al., 2007; Degtyarev, 2012;
Gholamhoseini et al., 2014; Abdullah et al., 2015). The composite action between
the profiled sheeting deck and the hardened concrete (Figure 1.1) will come in
to play with effective development of longitudinal shear at the steel-concrete in-
terface. Several studies (Burnet and Oehlers, 2001; Chen, 2003; Tenhovuori and
Leskel, 1998; Tsalkatidis and Avdelas, 2010; Abbas et al., 2015) show that the
behaviour of profiled deck composite slab is affected by the bond failure between
the decking sheet and the concrete. Abdullah et al. (2015) show that the most im-
portant shear bond strength influencing factor is the shear-span-to-effective-depth
ratio, and this is a key factor in characterising PDCS shear capacity.

Metal deck embossing provides equivalent shear resistance characteristics for effec-
tive composite action between the sheeting deck and hardened concrete. However,
a number of factors are known to affect the longitudinal shear capacity estimation
for this composite construction system; section slenderness is one such example.
Apart from known concerns that influences the PDCS shear bond capacity of pro-
filed composite slab, the shear bond parameters are normally determined from
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(a)

(b)

(c)

Figure 1.1: Typical profiled deck slab (a) Profiled deck composite slab
construction (b) Embossing (c) Modelled profiled deck slab

the capital-intensive laboratory procedure. Such procedures includes the slope-
intercept and the partial shear connection (PSC) methods, amongst others. In
addition, research findings have shown a significant strength load variation (about
26%) as well as conflicting results in longitudinal estimation from those two meth-
ods (Hedaoo et al., 2012; Abdullah et al., 2015). The implication is that selection
of the wrong longitudinal shear estimation method may lead to PDCS strength
load underestimation.

Therefore, the capital-intensive, time-consuming PDCS strength test and its lon-
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gitudinal shear capacity determination method became a major issue in strength
characterisation. Existing schemes to mitigate the differences suggest the inclusion
of the variables of concrete thickness and shear span considerations to the deficient
method (Abdullah et al., 2015). However, the suggested working framework still
lacks the alternate solution to the challenging and costly laboratory procedure
required for the shear parameters. This necessitates the need for a framework
that will improve on the longitudinal shear estimation variations from the two
method and the development of a numerical PDCS strength determination func-
tion devoid of costly laboratory work. However, the finite element method is one
of the widely used alternate numerical methods to the current costlier laboratory
procedures for composite slab strength determination but some limitations make
its results unsatisfactory. Hence, the main challenges in PDCS strength deter-
mination are longitudinal shear estimation method differences and the expensive
laboratory procedure needed to estimate longitudinal shear. Therefore, the main
challenges can be alleviated using a more rational-based numerical approach that
will lead to the development of a numerical strength test within the framework
of both longitudinal shear estimation methods. And, this numerical strength test
will eliminate the laboratory procedure while improving the estimation differences.

1.2.2 Reinforced concrete slab

RC slab is basically load and resistance factor design (LRFD), where the struc-
tural fitness is quantified beyond which it no longer satisfies the required design
conditions. The LRFD approach is balanced to withstand all structural actions on
the building that are likely to occur during its service life satisfying the principal
requirement at both the ultimate and serviceability limit state condition. The
method allows the use and application of resistance and load factors on the nomi-
nal resistance and load variables in order to prevent structural failure (Hsiao et al.,
1990). In general, these factors are known as deterministic reliability measures.

Contemporary RC slab design codes are overly conservative because of load am-
plification and reduction in material strength (Neves et al., 2006). The use of such
factors which are profoundly based on professional experiences and examination of
available data (Galambos et al., 1982), may yield the required structural safety, but
design economy is compromised (Behrouz and Varaee, 2011). Recent trends show
the need for a transition towards more rational and probability-based design pro-
cedures, where discrete variables properties of both load and resistance parameters
are taken in to considerations (Dolinski, 1982; Okasha and Aichouni, 2014). These
measures address inherent design problems that necessitated the use of determin-
istic safety factors. Similar earlier study findings (Ravindra and Galambos, 1978;
Galambos et al., 1982; Valdebenito et al., 2010; Vrouwenvelder, 1997) had shown
the probabilistic method’s potential for overcoming the deterministic method’s
drawbacks. Certainly, the use of a reliability approach in conjunction with the
present deterministic RC slab design will aid to achieve the required safety and
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design economy.

(a)

(b)

(c)

Figure 1.2: (a) Typical concrete slab (b) Flat slab type (c) Reinforce-
ment layout

Structural reliability based studies on reinforced concrete slab are well documented,
and considerable efforts has gone in to establishing an acceptable referral safety
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benchmark for probabilistic design. The referral safety benchmarks for a wide
range of loadings or different slab types with distinct ends conditions are known.
A significant contributions towards balancing design safety and design economy
may have been possible if the optimisation had more reliability-based inputs (Sa-
hab et al., 2005a), and little evidence is documented. Furthermore, RC slab deck
optimisation will no doubt have an influence on shear and deformation capacity re-
quirements. Hence, there is need for ensuring sufficient shear capacity (Lantsoght
et al., 2015). This action will definitely safeguard the high susceptibility to pro-
gressive failure (Jinrong et al., 2013). Presently, concrete shear capacity is a cause
of concern structural concrete design as such several attempts were made to cre-
ate new models through empirical studies (Ju et al., 2015; Lantsoght et al., 2015;
Antonio et al., 2013; Shehata and Regan, 1989). These attempts built on previous
developments, and several proposals have been presented (Hewitt and Batchelor,
1975; Kinnunen and Nylander, 1960). It is important to note that many empirical
equations are known to predict shear performance contentiously (Collins et al.,
2008), and this may not be unconnected to uncertainties in input and output de-
sign variables.

Secondly, the increasing concern for serviceability requirement checks cannot be
overemphasised (Ellingwood et al., 1986). The literature has shown that service-
ability condition results in structural defects rather than flexural failure (Daniel,
2014; Stewart, 1996b), and serviceability requirements using probabilistic models
have been presented (Holicky, 1998; Leicester, 1993; Stewart and Rosowsky, 1998).
Stewart (1996a,b) presented serviceability study results related to American and
Australian design standards, but such results for European standards are quite lim-
ited (Daniel, 2014). In addition, there are known safety-value inconsistencies under
different load configurations using traditional deflection limits. Notwithstanding,
the simplified deflection check method ( ld) is allowed by the code without neces-
sarily calculating the traditional deflection value for flat slabs. However, findings
are not available on this simplified deflection check requirement to the European
structural standard.

Therefore, in balancing both safety and design economy of a building must look
inwards to the issues of concrete shear capacity improvement and the development
of a probabilistic code for the simplified deflection check method. These are issues
that must be addressed along with structural optimisation of RC slab performance.
Existing schemes for RC slab optimisation mainly focus on the flexural capacity re-
quirement, but the need for both shear and deflection capacity enhancement from
the optimisation process has not been extensively investigated. This also warrants
an acceptable framework to improve both ultimate- and serviceability-limit state
performance in terms of optimised RC slab sections, and improvements in concrete
shear and deflection requirement capacities.
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1.3 Research hypothesis

The corner stone of meaningful research is the formulation of a research hypothe-
sis. This study has one hypothesis: Reliability plus a deterministic approach will
lead to the reduction of high level of design conservatism. Accordingly, the use of
a rational-based method will provide the much needed departure.

1.4 Aim and Objectives

The aim of this research is to produce a operational mechanism that couples de-
sign safety and economy by means of a rational-based approach to reduce the high
level of design conservatism that is a by-product of current profiled composite slab
strength determination verification methods and the ultimate and serviceability
limit state design conditions for RC slab under Eurocode requirements.

The specific objectives are:

1. To optimise RC slab flexural capacity while maintaining minimum flexural
reinforcement requirements for the section.

2. To optimise concrete shear resistance capacity and propose method to im-
prove Eurocode-compliant concrete-shear resistance technique in order to
reduce underestimation problem.

3. To develop probabilistic output based framework for RC slab serviceability
requirement using the simplified deflection l/d ratio.

4. To formulate longitudinal shear capacity safety benchmarks for profiled com-
posite slab using both the slope-intercept and partial shear connection meth-
ods to replace existing inconsistent safety datum.

5. To develop an effective numerical model for profiled composite slab strength
determination and validate through experimental validation testing.

1.5 Scope and limitation

This study scope involves the use of reinforced concrete slab design based on
Eurocode-2 specifications with static load applications for both deterministic- and
reliability-based design inputs. Predefined numerical examples are considered for
typical cases of simply supported and continuous slab types. Importantly, only
four typical continuous slab type are adopted, and all are subject to parametric
sensitivity tests on span length variations, concrete strength class change and min-
imum reinforcement requirement considerations.
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Furthermore, profiled composite slab safety indices and subsequent development
of PDCS strength determination are based on the use of slope-intercept and par-
tial shear connection methods only. Statistical tests on the viability of this new
approach using both methods are compared with experimental results. This study
designed an experimental test consisting of only eight specimens: two each for the
four shear span lengths.

This study is constrained in a number of ways. First, the experimental labora-
tory test is mainly for PDCS strength verification. This means that experimental
testing is not conducted on optimised RC slab performance; rather, a rich data
bank is made available for possible future study on this subject. Second, shear-
stud influence on PDCS longitudinal shear performance is not captured in this
study. Finally, only the two major longitudinal shear estimation methods defined
by Eurocode-4 provisions are considered.

1.6 Study significance

There are number of reasons why this research work is important. First, presently
the simplest means for PDCS strength determination is through a complex and
costly laboratory procedure. This limitation hampers the independent confirma-
tion of deck strength parameters supplied by the manufacturer in most cases.
Therefore, decking-material users are forced to rely on data provided by the pro-
ducer. Apart from the difficulty of verifying the deck data authenticity, the meth-
ods used for defining deck safety parameters are conflicting, introducing an addi-
tional variable to the design and production process. Hence, this study approach
will ensure the simplification of PDCS strength verification, which can be of great
help to both deck-material manufacturers and product end-user. The development
of a PDCS numerical strength test will lead to considerable cost savings by elimi-
nating laboratory testing expenses.

Second, this study will produce a probabilistic PDCS longitudinal-shear safety
benchmark for the two methods thus providing a solution to current safety data
inconsistencies. Safety code developers will find this particularly useful for up-
dating PDCS longitudinal shear codes. Furthermore, this study methodology will
bridge the significant variations in strength capacity estimates derived from the
two existing longitudinal-shear testing methods.

Third, this study will provide a much-needed to the scarce literature on reliability
based assessments of profiled deck composite slab. In addition, it will serve as a
useful reference for future research on profiled deck composite slab strength veri-
fication.

Finally, relating to RC slab optimisation assessment, this study outcomes can be
to moment reduction factors, increasing the concrete shear resistance capacity, and
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the defining new probabilistic serviceability buffer limits for RC slab design.

1.7 Thesis Structure

The thesis is presented in five chapters, summarized as:

• Chapter 1 provides the general background of the problem statement, and
the study’s justification is explained herein. The aim of the research, as well
as its objectives, significance, scope and limitations are also presented in this
chapter.

• Chapter 2 presents a general review of structural slab design optimisation
as it relates to ultimate- and serviceability-limit state violations. A concise
review of existing shear and deflection requirements for RC slab design is
also presented in this chapter. Similarly, the chapter presents a review of
alternative strength determinations for profiled deck composite slab strength.
Also in this chapter, in-depth critical review for closed form solutions to
multi-fold integral.

• Chapter 3 explains this study’s general methodology. Similarly, the respec-
tive limit-state formulations related to both slab types are presented, as are
experimental set-up and verification test details for profiled deck composite
slab.

• Chapter 4 provides an analysis of the reliability assessment of the optimised
RC slab design at both the ultimate-limit state (ULS) and serviceability-limit
state (SLS). A design case presenting simply supported slab and continuous
slab responses to a variety of parametric indices is also found in this chapter.
Moreover, discussion of a proposed adjustment to concrete shear resistance
and deformation check for RC slab design are also presented herein. Similar
results analysis for profiled composite slab are captured in this section. This
includes a scholarly formulation of a PDCS strength determination method
to replace the costly and time-consuming laboratory procedure. Using an-
alytic statistics, the overall effectiveness of the proposed methodology was
compared to available data from the literature. Finally, the chapter also
presents and analyses computational variation of the two methods used to
determine safety levels for longitudinal shear of profiled composite slab.

• Chapter 5 reports this study’s general findings, conclusions and recommen-
dations for use in future research on the application of this reliability concept.
Ideally, it will reduce design conservatism brought about by constraint in ex-
isting strength verification methods for RC and and profiled deck composite
slab.
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