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By 

HAFIZAH BINTI MOHAMAD 

November 2016 

Chairman: Muhammad Hafiz Bin Abu Bakar, PhD 
Faculty: Engineering 

Research works based on pulsed mode-locked fiber laser (MLFL) were realized by 
employing numerous techniques such as nonlinear polarization rotation, saturable absorber 
(SA) and active modulator. The generation of MLFL encourages substantial research 
efforts due to its fascinating characteristics such as ultrashort pulse duration, broad spectral 
bandwidth and intense pulse energy, which are highly desirable in various industrial 
applications. The MLFL possesses several significant issues that need to be addressed such 
as dispersion management and operating wavelength region. Subsequently, this research 
work focuses on both issues, which are dispersion optimization and switchable wavelength 
laser operation  

In this research, a ring-configuration erbium-doped fiber laser (EDFL) setup is employed 
to generate multiwavelength-based MLFL which is assisted by an inline single-walled 
carbon nanotube (SWCNT) SA. The ultrashort pulse signal initiated by this SA is 
accompanied with the typical soliton-based mode-locked laser characteristics such as the 
observation of multiple Kelly’s sidebands, output pulse train with constant round-trip time, 
and pulse width within femtosecond range. 

The initial work in this experiment is to investigate dispersion management within the 
mode-locked EDFL, leading to pulse width generation of 970 fs with the employment of 
10 m HP980 erbium-doped fiber (EDF). This MLFL regime generates multiple pulses 
which resembles the harmonic mode-locking laser scheme. This pulsed laser scheme is 
unstable, due to the lengthy EDF used which contributes to high nonlinear effects at high 
pump power. Therefore, the EDF length is shortened to 5 m in order to reduce the 
possibility of unstable pulses generation as aforementioned. The pulse width generated by 
5 m EDF-incorporated MLFL is 886 fs, with more stable pulses observed from spectral 
and temporal measurements. Dual-laser regime is observed with the lasers observed at 
around 1530 nm and 1560 nm. Therefore, a red/blue coupler is employed in order to 
provide a cleaner output at 1560 nm. After the laser cavity is optimized through length 
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variation of single mode fiber, the pulse width is found at 864 fs with total cavity length 
of 17m.  

Based on the experimental findings during dispersion management process, the dual-laser 
regime is employed in order to generate switchable dual-lasing MLFL. The mode-locked 
laser output can be discretely varied from 1533 nm to 1560 nm or can be made to 
simultaneously oscillate at both regions, thus producing a dual-wavelength mode-locked 
operation. This is realized by spooling the fiber in the laser cavity into different radii of 
1.60 cm, 1.07 cm and 0.80 cm respectively, resulting in the respective insertion loss of 
0.11 dB, 1.21 dB and 4.20 dB. Subsequently, the pulse widths generated by each case are 
734 fs, 800 fs and 1.06 ps, respectively. Therefore, by spooling the fiber into different 
radii, the switchable MLFL is generated at different wavelength region, where the pulse 
width can be tailored. 

In conclusion, this research work has successfully overcome the issues in MLFL 
performance on dispersion management and operating wavelength bands. Both issues are 
significant in typical MLFL where further research investigation can be made in studying 
the different mode-locked regimes of dark pulse, stretch pulse and harmonic pulse. 
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KARBON TIUB NANO BERDINDING TUNGGAL 

Oleh 

HAFIZAH BINTI MOHAMAD 

November 2016 

Pengerusi: Muhammad Hafiz Bin Abu Bakar, PhD 
Fakulti: Kejuruteraan 

Kerja-kerja penyelidikan berdasarkan denyutan laser selakan mod (MLFL) 
direalisasikan dengan menggunakan pelbagai teknik seperti putaran kutub tak linear, 
penyerap boleh tepu (SA) dan pemodulat aktif. Penjanaan MLFL menggalakkan usaha 
penyelidikan yang besar kerana ciri-cirinya yang mempersona seperti tempoh denyutan 
ultrapendek, lebar spectrum jalur lebar dan tenaga denyut beramatan, di mana 
dikehendaki tinggi dalam pebagai aplikasi perindustrian. MLFL mempunyai beberapa 
isu-isu penting yang perlu diberi perhatian seperti pengurusan penyerakan dan kawasan 
operasi jarak gelombang. Selepas itu, kerja-kerja penyelidikan ini memberi tumpuan 
kepada kedua-dua isu, pengoptimuman penyerakan dan operasi laser pembolehalih jarak 
gelombang. 

Dalam penyelidikan ini, persediaan laser gentian terdop erbium (EDFL) konfigurasi 
cincin bekerja untuk menjana dasar pelbagai jarak gelombang MLFL yang dibantu oleh 
nanotiub karbon berdinding tunggal sebaris (SWCNT) SA. Isyarat denyut ultrapendek 
terdorong oleh SA ini disertai dengan ciri-ciri selakan mod laser berdasarkan soliton 
seperti pemerhatian pelbagai jalursisi Kelly, keluaran denyut-pawai dengan pemalar 
masa pergi balik dan lebar denyut dalam julat femtosaat. 

Kerja pemulaan dalam eksperimen ini adalah untuk menyelidik pengurusan penyerakan 
dalam selakan mod EDFL, menjurus kepada penjanaan lebar denyut 970 fs  dengan 
menggunakan 10 m HP980 gentian terdop erbium (EDF). Rejim MLFL ini menjana 
berbilang denyut yang menyerupai skema laser selakan mod harmonik. Skema denyut 
laser ini tidak stabil, kerana panjang EDF yang digunakan menyumbang kepada kesan 
tak linear tinggi pada kuasa pam yang tinggi. Oleh itu, panjang EDF dipendekkan kepada 
5 m untuk mengurangkan kemungkinan penjanaan denyut tak stabil seperti di atas. Lebar 
denyut dihasilkan oleh 5 m EDF dalam MLFL ialah 886 fs, dengan denyut yang lebih 
stabil diperhatikan dari spectrum dan ukuran-ukuran sementara. Rejim dwi-laser didapati 
dengan laser-laser yang terletak di sekitar 1530 nm dan 1560 nm. Oleh itu, pengganding 
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merah/biru bekerja untuk menghasilkan keluaran yang lebih jelas pada 1560 nm. Selepas 
rongga laser dioptimum mealui variasi panjang gentian mod tunggal, lebar denyut 
didapati 864 fs dengan jumlah panjang rongga 17 m. 

Berdasarkan penemuan eksperimen sepanjang proses pengurusan penyerakan, regim 
dwi-laser digunakan dalam menjana pembolehalih dwi-laser MLFL. Keluaran laser 
selakan mod diubah diskret daripada 1533 nm kepada 1560 nm atau boleh dibuat untuk 
berayun serentak di kedua-dua regim, dengan itu menghasilkan operasi serakan mod 
dwi-jarak gelombang. Ini direalisasikan oleh menggulung gentian dalam rongga laser ke 
dalam jejari yang berbeza 1.60 cm, 1.07 cm dan 0.80 cm masing-masing, menyebabkan 
kehilangan sisipan masing-masing 0.11 dB, 1.21 dB and 4.20 dB. Selepas itu, lebar 
denyut yang di hasilkan oleh setiap kes adalah 734 fs, 800 fs dan 1.06 ps, masing-masing. 
Oleh itu, dengan menggulung gentian kepada jejari yang berbeza, pembolehalih MLFL 
terhasil di regim jarak gelombang yang berbeza di mana di mana lebar denyut boleh 
disesuaikan. 

Kesimpuannya, kerja penyelidikan ini berjaya mengatasi isu-isu prestasi MLFL di dalam 
pengurusan penyerakan dan operasi jalur jarak gelombang. Kedua-dua isu bererti dalam 
jenis MLFL di mana penyelidikan lanjut boleh dibuat dalam mengkaji perbezaan rejim 
selakan mod denyut gelap, denyut regang dan denyut harmonik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In 1960s, first Q-switched mode-locked laser was introduced using a Helium-Neon 
(HeNe) laser by Hargrove et al. [1]. This laser produces picosecond or femtosecond pulse 
duration which is modulated by a Q-switched pulse envelope, with pulse repetition rate 
typically ranging from several hundreds of kilohertz to sub-megahertz. The mode-locked 
laser plagued by instability-induced Q-switched envelope due to the emission of mode-
locked bunches is termed as “Q-switched instabilities”. This continued to be an obstacle 
until the first demonstration of semiconductor saturable absorber mirror (SESAM) by 
Keller et al. in 1992 to overcome the Q-switched instabilities phenomenon [2].  

A saturable absorber (SA) is used to initiate mode-locked lasers. Solid-state laser, dye 
laser, and conventional fiber laser are some examples of mode-locked lasers which are 
assisted by SA to generate ultrashort pulse. As aforementioned, SESAM is an intra-
cavity SA which generates self-started stable passively mode-locking of diode-pumped 
solid-state lasers. SESAM shows excellent performance in terms of its possibility for 
defect engineering and micro-fabrication growth [3]. Nevertheless, SESAM possesses 
intrinsic drawbacks such as high fabrication cost, precise alignment technology 
requirement, complex molecular beam epitaxial growth technique for micro-fabrication 
and relatively small operation wavelength range of about 10 nm [4, 5]. At this point, 
frontiers of ultrafast mode-locked lasers are pushed to conventional fiber laser using 
carbon-based materials. 

The advent of inline SA based on carbon-based materials such as graphene [6] and 
carbon nanotubes [7] has provided a viable alternative for high performance mode-
locked fiber lasers. SA employing single wall carbon nanotubes (SWCNT) has fast 
response time, ultrafast recovery time (~500 fs), low saturable absorption threshold, 
polarization insensitive, ease of integration into optical system and wide tunable band 
gap [8-10]. SWCNT possesses direct bandgap depending on the diameter and chirality 
of nanotube [11]. By mixing SWCNT with different diameter distribution, mode-locked 
lasers can be initiated [12, 13]. Inline SWCNT-polymer composite films are commonly 
chosen for fiber lasers as they are compact, inexpensive, and can be easily fabricated. 
Conventional ultrashort pulse fiber laser integrated with SWCNT-SA is indispensable 
due to its array of applications in photonics devices, biomedical diagnostics, optical fiber 
communication and material processing [14-16]. Laser source possessing nanosecond to 
sub-picosecond pulse width plays significant role in the portfolio of leading laser 
manufacturers [17]. Rapid pulses allow the generation of high power required for 
multiple applications without the adverse heat effect typically associated with continuous 
wave lasers.  
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The integration of inline SWCNT-based SA with rare-earth-doped fiber gain medium in 
optical fiber cavity is the simplest method of generating mode-locked laser [4]. The 
choice of rare earth determines the operating wavelength of fiber laser. For instance, 
simultaneous pulsed fiber lasers are generated [12], whereby ytterbium-doped fiber laser 
(YDFL), erbium-doped fiber laser (EDFL) and thulium-doped fiber laser (TDFL) are 
generated at the operating wavelength of 1 μm, 1.5 μm and 2 μm respectively. Erbium is 
identified as being an excellent laser platform, which coincides with the low loss window 
of modern optical fibers thus allowing higher energy generation with lower power 
consumption. 

 
 

1.2 Problem Statement 
 
 
The performance of a conventional mode-locked fiber laser is highly influenced by 
dispersion. For instance, net anomalous dispersion produces soliton-based mode-locked 
laser. Contrarily, dissipative soliton-based mode-locked laser is generated due to net 
normal dispersion. Soliton-based mode-locked laser produces shorter pulse duration, 
whereas dissipative soliton-based mode-locked laser is more stable with higher signal-
to-noise ratio measurement [18]. Before net dispersion is computed, the dispersion 
effects of fiber connector, optical fiber, SA and contribution from active gain medium 
employed in laser cavity are taken into consideration. Although the dispersion value from 
standard optical fiber is widely available, similar situation is not observed for specialty 
fibers such as Erbium-doped fiber (EDF). Manufacturer-bundled specifications usually 
exclude the dispersion values thus complicating the task of optimizing dispersion within 
laser cavity. Combined with the intense focus on novel SA, dispersion effect on mode-
locked fiber laser has received little attention from researchers in this area.  
 
 
In addition, laser tunability is a specific feature of a conventional mode-locked laser. 
This issue contributes to high interest of research investigations due to its multiple 
practical applications, particularly in signal processing and optical communication. In 
conjunction to the development of laser tunability technology, variable optical attenuator 
[19], and variation of fiber length and fiber type [20, 21] have been proposed to achieve 
pulse width tunability of a mode-locked laser. However, the first technique is too bulky 
and costly, whereas the latter technique requires interchanging of different optical fibers 
with different fiber length within the laser cavity, which complicates the operational 
procedures of pulsed laser generation.  

 
 

1.3 Motivation and Objectives 
 
 

Optimization of dispersion value within laser capability boosts the substantial research 
efforts to give readers an efficient point of views to seize the knowledge on ultrafast 
optics. This work would be highly beneficial to provide an understanding on the impact 
of mode-locking operation under different dispersion characteristics. Besides, the 
manipulation of cavity loss with simpler design shows the novelty which fulfils the 
research gap of achieving wavelength switchable mode-locked lasers. In overall, the 
main objective of this work is to generate a SWCNT-SA based mode-locked fiber laser 
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with optimized length of gain medium, whereby this laser can be shifted flexibly at 
different operating regions across C-band transmission window by monitoring the cavity 
loss. Four specific research objectives along the pathway to achieve the main objective 
include:  
1) To design and develop a ring-structured mode-locked EDFL assisted by SWCNT-

SA
2) To analyse the impact of different cavity dispersion values on the laser performance
3) To find the optimum cavity length for the proposed mode-locked EDFL
4) To achieve wavelength switchable mode-locked EDFL by managing the cavity loss

with fiber spooling method.

1.4 Scope of Research 

Figure 1.1 lists the research scope studied in this work which includes: 
i. Fiber laser.

Continuous wave laser is the pre-requisite before a mode-locked laser is generated.
The continuous wave laser is generated using an all-fiberized ring-configuration
laser setup, which is constructed with several components. An important component
for laser generation is gain medium. Among the feasible gain media, a rare-earth
medium, EDF is employed in the experiment.

ii. Erbium-doped fiber.
EDF pumped by a laser source forms an amplifier, which is efficient for laser
generation based on amplified stimulated emission. In brief, a signal exceeds lasing
threshold power releases more photons when an incoming photon is received by the
EDF. These tremendous photons released at the gain medium output forms an
intense and coherent laser signal.

iii. Pulsed fiber laser.
A continuous wave laser is converted into pulsed laser by an SA. An SA absorbs
low light intensity due to faster recombination rate than absorption rate, thus
transmitting high light intensity. The saturated absorption state is formed by
continuous pumping of photons which are then accumulated at the metastable state.
In other words, SA strongly absorbs low intensity pulse wings, and weakly absorbs
high intensity pulse peak, thus shorten the pulse. After several repetitive round-trip
through the SA, the pulse is further shortened until it is limited by the bandwidth
(due to time bandwidth product) and dispersion.

iv. Dispersion effect.
Dispersion limits the pulse width whereby shorter pulse width can be achieved in a
net anomalous dispersion mode-locked laser regime. Besides, stable soliton-based
mode-locked lasers can only be achieved when net group velocity dispersion
approaches zero or anomalous.

v. Cavity loss.
The cavity loss is contributed by the insertion loss of all optical components within
the laser cavity. The intra-cavity loss is manipulated by spooling the fiber into
smaller radius in order to induce higher macro-bending loss. The variation in macro-
bending loss shifts the operating wavelength of the mode-locked laser across the C-
band transmission laser region flexibly without the use of either bulky attenuator or
excessive optical fibers. This exploits the research novelty of achieving laser
tunability with simpler and cost effective technique.

3 
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Figure 1.1: Scope of the research. 

1.5 Thesis Organization 

This chapter presents the overview of this thesis. First and foremost, development of 
ultrafast optics is investigated from technology of early 1960s to the employment of 
saturable absorber in these recent years. An ultrafast laser is commonly generated by 
mode-locking regime. The dominant obstacles in designing a mode-locked laser are 
related to dispersion and laser tunability issues. For instance, the manufacturers usually 
exclude the dispersion information of optical fibers which obscuring the optimization 
task. An optimized mode-locked laser is further investigated with its capability of tuning 
the laser into different operating wavelengths whereby the previous reported techniques 
are either too bulky or procedural complicated. These problems motivate the research 
effort on optimization of different dispersion characteristic within a mode-locked laser 
cavity and a simpler technique is proposed to achieve laser tunability. Therefore, a mode-
locked laser is designed with different cavity dispersion characteristics, which are 
subsequently analyzed in order to optimize the cavity length of the proposed mode-
locked EDFL. The mode-locked laser is then examined with fiber spooling process to 
manipulate the cavity loss in order to achieve laser tunablity. In short, this work covers 
five research scopes including fiber laser, EDF, pulsed fiber laser, dispersion effect and 
cavity loss. 
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The literature review of this work is described in Chapter 2. There are three main parts 
being reviewed, including fiber laser, mode-locking techniques and ultrafast pulse laser. 
Q-switching and mode-locking are techniques to generate pulsed fiber laser. In 
comparison to Q-switched laser, mode-locked laser has higher pulse repetition rate, 
narrower pulse width and broader spectral bandwidth at the cost of lower pulse energy. 
Mode-locking laser is generated either by active or passive approaches. In active mode-
locking, an external driven modulator synchronizes the acoustic wave to produce short 
pulse. On the other hand, short pulse is produced in passive mode-locking using a 
nonlinear medium, such as a saturable absorber. A saturable absorber is characterized 
with negligible loss when high light intensities or energies are applied. Self-amplitude 
modulation is induced when saturable absorber interacts with a modulated self-started 
short pulse to convert continuous wave laser to pulsed laser. This pulsed laser is 
commonly ultrafast ranging from picoseconds to femtoseconds. In ultrafast optics, the 
primary concern is the pulse width, which is transform-limited to its spectral bandwidth 
by time bandwidth product. Group velocity dispersion determines the dispersion regime 
of the mode-locked laser, whereby net anomalous dispersion is required to achieve stable 
soliton pulse. Soliton is stable against a variety of distortions by balancing mutual effect 
of group velocity dispersion and Kerr nonlinearity. Based on the critical review of former 
works, conventional soliton-based mode-locked EDFL is mostly generated by sandwich-
structured SWCNT-SA. This promotes the research opportunity of exploring mode-
locked laser with different SA structure such as microfiber-SA.   

Chapter 3 demonstrates the dispersion managed ultrashort pulse mode-locked EDFL. A 
ring-configuration mode-locked EDFL resonator is designed and developed. A section 
of 5 m and 10 m Lucent HP980 EDF is employed respectively as the gain medium for 
laser generation. Dispersion variation within the laser cavity is realized by cutback 
method in order to study the impact of dispersion towards the performance of mode-
locked fiber laser.  A section of SMF-28 is stripped away with 1 m interval along the 
cutback method to optimize the laser cavity with two different EDF lengths, which is 
then observed thoroughly in order to obtain the shortest pulse duration. As a result, the 
dispersion within the laser cavity is optimized by balancing the sum of SMF-28 with 
anomalous dispersion coefficient of -17 ps/(nm.km) at 1550 nm and the normal-
dispersed Lucent HP980 EDF. 

Chapter 4 proposes a new technique to tune the operating wavelength of mode-locked 
laser across low loss C-band window. The wavelength shifting is controlled by gradual 
adjustment of fiber spooling into numerous radii. The small fiber spooling radius 
corresponds to higher macro-bending loss. The mode-locked laser is shifted towards 
shorter wavelength by possessing smaller net gain cross section of EDF with higher total 
cavity loss. In this proposal, three wavelength regions are targeted: discrete lasing at 
1533 nm and 1560 nm, and simultaneous lasing at both operating regions. The shifting 
in the wavelength regions is predictably resulting in different pulse durations since the 
3-dB spectral bandwidth is varied due to variable output spectrum profile, as these two 
parameters are inversely-proportional related. This design serves as an alternative way 
to replace the bulky attenuator and abundant employment of different optical fiber with 
numerous lengths. Therefore, a simpler technique to generate a high beam quality and 
reliable wavelength switchable mode-locked laser is developed which is of high interest 
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in numerous research applications involving wavelength tunability and pulse width 
tunability.      

Chapter 5 concludes the research work of this thesis in overall. Four research objectives 
are fulfilled with the demonstration of experimental approaches. This study brainstorms 
the research area into four future developments. The optimization of dispersion within 
the proposed mode-locked EDFL employing Lucent HP980 EDF as the gain medium 
can be extended to different rare-earth doped EDF, such as Ga-EDF and Zr-EDF, in 
which the dispersion of these gain media is usually excluded by fiber manufacturers. 
Subsequently, a new configuration of laser cavity is developed in order to generate two 
distinct ultrafast mode-locked laser outputs using only a saturable absorber, which 
significantly reduces the operational cost. The mode-locked lasers are designed at 
different wavelength, such as S-band and L-band regions by incorporating specific gain 
media. Last but not least, the mode-locked laser is applied for supercontinuum 
generation, whereby the investigation of nonlinearity effect of optical fiber with large 
birefringence remains an interesting topic, which is yet to be explored.  
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