UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF RICE HUSK ASH-BASED GEOPOLYMER BINDER FOR FIRE RESISTANT COATING

MOHD SALAHUDDIN BIN MOHD BASRI

FK 2016 169
DEVELOPMENT OF RICE HUSK ASH-BASED GEOPOLYMER BINDER FOR FIRE RESISTANT COATING

By

MOHD SALAHUDDIN BIN MOHD BASRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To Allah SWT, my beloved parents, sisters, and brothers for supporting and encouraging me with affections, love, and their denoted contribution towards success in my life.
DEVELOPMENT OF RICE HUSK ASH-BASED GEOPOLYMER BINDER FOR FIRE RESISTANT COATING

By

MOHD SALAHUDDIN BIN MOHD BASRI

December 2016

Chair: Faizal Mustapha, PhD, PEng
Faculty: Engineering

Despite the growing popularity of geopolymer in various industrial applications, the literature showed gaps on understanding of factors influential on the properties of geopolymer binder (GB). The main objective of this research is to develop an eco-friendly rice husk ash (RHA)-based GB material suitable as fire resistant coating and panel materials for building construction. Four experiments were conducted; namely fire resistant, compression, flexural, and adhesion tests. Fractional factorial design (FrFD) and response surface methodology (RSM) were used to design the experiments incorporating five factors; namely ratio of activated alkaline (AA) solution, RHA to AA (RHA/AA) ratio, curing temperature, curing time, and sodium hydroxide concentration and analyze their interrelationship and effect on GB properties. The optimum range for GB composition was accordingly determined using superimposed contour plotting. Results showed that RHA/AA ratio was the most influential factor on all GB properties (thermal, mechanical, and physical properties). RHA provided effective fire resistant properties since its GB coating exhibited intumescent-like expansion. The newly developed formulation of GB which exhibited semi-brittle behavior was able to produce good fire resistance and compressive strength properties. In addition, good adhesion and flexural properties were important in providing coating with good fire resistant properties. Optimal GB panels were formulated at W/S and Si/Al ratios of 1.05 to 1.13 and 95 to 110, respectively while optimal GB coating formulated at W/S and Si/Al ratios of 110 to 130 and 1.20 to 1.33, respectively. RHA proved to be the best alternative aluminosilicate source and the RHA-based GB, when used as panel or coating materials, can potentially improve fire safety in building construction.
PEMBANGUNAN PENGIKAT GEOPOLIMER BERASASKAN ABU SEKAM
PADI SEBAGAI SALUTAN TAHAN API

By

MOHD SALAHUDIN BIN MOHD BASRI

Disember 2016

Pengerusi: Faizal Mustapha, PhD, PEng
Fakulti: Kejuruteraan

Walaupun populariti geopolimer semakin berkembang dalam pelbagai aplikasi industri, tinjauan literatur mengenalpasti jurang dalam memahami faktor-faktor yang mempengaruhi sifat-sifat pengikat geopolimer (GB). Objektif utama penyelidikan ini adalah untuk membangunkan bahan GB berasaskan abu sekam padi yang mesra alam sesuai digunakan sebagai bahan salutan tahan api dan bahan panel untuk pembinaan bangunan. Empat eksperimen telah dijalankan iaitu ujian ketahanan api, mampatan, lekatan dan lenturan. Rekabentuk faktoran pecahan (FFD) dan kaedah tindakbalas permukaan (RSM) telah digunakan untuk menyediakan rekabentuk eksperimen yang melibatkan lima faktor iaitu nisbah larutan aktivasi alkali (AA), nisbah RHA kepada AA (RHA/AA), suhu pengawetan, masa pengawetan, dan kepekatan natrium hidroksida (NaOH) dan mengkaji hubungkait dan kesannya terhadap sifat-sifat GB. Julat optimum bagi komposisi GB dikenalpasti menggunakan plot kontur bertindan. Hasil kajian mendapati bahawa nisbah RHA/AA adalah faktor yang paling mempengaruhi semua sifat-sifat GB (sifat haba, mekanikal, dan fizikal). RHA memberi sifat tahan api yang efektif oleh kerana salutan GB itu mempamerkan kembangan seakan mengembung. Formulasi GB yang baru dibangunkan yang mempamerkan sifat separa rapuh mampu menghasilkan sifat ketahanan api dan kekuatan mampatan yang baik. Tambahan pula, sifat lekatan dan sifat lenturan yang baik adalah penting untuk menyediakan salutan yang mempunyai sifat ketahanan api yang baik. Panel GB yang optimum telah dirumuskan pada nisbah W/S dan Si/Al masing-masing 1.05 ke 1.13 dan 95 ke 110, manakala salutan GB yang optimum dirumuskan pada nisbah W/S dan Si/Al masing-masing 110 ke 130 dan 1.20 ke 1.33. RHA terbukti sebagai sumber bahan alumino-silikat alternatif terbaik dan GB berasaskan RHA berpotensi untuk meningkatkan faktor keselamatan dalam pembinaan bangunan apabila digunakan sebagai bahan panel atau salutan.
ACKNOWLEDGEMENTS

All praise is to Almighty Allah for His endless blessings, kindness, guidance, strength, and will which motivated me to successfully complete my doctoral study. May His name be glorified and praised.

First and foremost, I would like to express my heartfelt appreciation and utmost gratitude to my supervisor Associate Professor Ir. Dr. Faizal Mustapha for his continuous support and invaluable guidance for my Ph.D. study, for his patience, motivation and enthusiasm. I would like to extend my sincere appreciation to my excellent Supervisory Committee, Dr. Norkhairunnisa Mazlan, Dr. Mohamad Ridzwan Ishak and Dr. Mazli Mustapha to whom I owe an immense debt. During my doctoral study, they provided me with valuable advice, good teaching, their enlightening experience and the necessary facilities that generally kept me on track and focused throughout. Indeed, I could not wish for a better Supervisory Committee and I am grateful for their strong supervision which enabled me to complete this thesis.

I am grateful to all the lecturers and staff of the engineering faculty, INTROP, ITMA, Institute of Bioscience, and Faculty of Science for facilitating me during my entire period of study. Special thanks are credited to Mr. Saffairus bin Salih, Mr. Ahmad Saiful bin Abu Samah, Mrs. Nik Norhafiza binti Nik Razali, Mrs. Anidazura binti Zulkifli, Mrs. Noor Hazwani binti Abdul Rahim, Mr. Muhammad Wildan Ilyas bin Mohamed Ghazali, Mr. Mohd Saiful Azuar bin Md. Isa, Mr. Mazrul Hisham bin Mustafa Kamal and others whose names are not mentioned, for their kind and helpful assistance in laboratory analysis and for their valuable effort and time. May Allah bless their kind contribution.

It is my greatest pleasure to acknowledge Universiti Putra Malaysia for funding my study under the Research University Grant (RUGS) [93771000 & 9393700], Geran Putra IPS (GP-IPS) [9466800], and Fundamental Research Grant Scheme (FRGS) sponsored by the Ministry of Education [5524464]. I am also grateful to SGS Conference Support Group Team, UPM, for their financial support.

I respectfully acknowledge the blessings and good wishes of all my dearest friends for their help, encouragement, and support. Special thanks to my dearest father, Mohd Basri bin Hamzah; my beloved mother, Azizah binti Abu Samah; my sisters, and brothers for their endless love, great sacrifice, patience, and support during my study. Last but not least, my sincere gratitude to the Ministry of Education Malaysia for granting me MyPhD Scholarship under the MyBrain15 Program to fund this study.

THANK YOU
I certify that a Thesis Examination Committee has met on 27 December 2016 to conduct the final examination of Mohd Salahuddin bin Mohd Basri on his thesis entitled "Development of Rice Husk Ash-Based Geopolymer Binder for Fire Resistant Coating" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

B.T. Hang Tuah bin Baharudin, PhD
Associate Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Sapuan bin Salit @ Sinon, PhD
Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abd. Rahim bin Abu Talib, PhD
Associate Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Shaker Abdel Meguid, PhD, PEng.
Professor
University of Toronto
Canada
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 March 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Faizal Mustapha, PhD, PEng
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Norkhairunnisa Mazlan, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamad Ridzwan Ishak, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mazli Mustapha, PhD
Senior Lecturer
Faculty of Engineering
Universiti Teknologi Petronas
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee:

Signature: ____________________________
Name of Member of Supervisory Committee:

Signature: ____________________________
Name of Member of Supervisory Committee:

Signature: ____________________________
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
APPROVAL iv
DECLARATION vi
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS xx

CHAPTER

1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem statement 2
1.3 Research Objectives 3
1.4 Research Scope 4
1.5 Thesis organization 5

2 LITERATURE REVIEW 6
2.1 Overview 6
2.2 Rice husk ash 6
2.3 Geopolymers 10
2.3.1 Chemistry of geopolymer 11
2.3.2 Microstructure of geopolymer 14
2.4 Properties of geopolymer 15
2.4.1 Flexural Strength and Flexural Modulus 17
2.4.2 Compressive Strength 20
2.4.3 Thermal Properties 23
2.4.4 Adhesion Strength 32
2.5 Factors affecting the properties of geopolymer 33
2.6 Geopolymer binder 36
2.6.1 Intumescent coatings 36
2.6.2 Panel 41
2.7 Applications of geopolymer binder technology 44
2.8 Statistical design methods 46
2.8.1 Fractional factorial design (FrFD) 47
2.8.2 Response surface methodology (RSM) 48
2.9 Summary 49

3 METHODOLOGY AND PRELIMINARY FINDINGS 50
3.1 Overview 50
3.2 Sample preparation 50
3.3 Experimental procedure 57
3.3.1 Flexural test 57
3.3.2 Compression test 59
3.3.3 Fire resistance test 61
3.3.4 Adhesion 64

3.4 Microstructural and element characteristics analysis 66
3.4.1 Thermogravimetry analysis (TGA) 66
3.4.2 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 66
3.4.3 Fourier transform infrared Spectroscopy (FTIR) 67
3.4.4 Particle size distribution (PSD) 67
3.4.5 X-ray fluorescence 68
3.4.6 X-ray diffraction (XRD) 68
3.4.7 Differential scanning calorimetric (DSC) 68
3.4.8 Coefficient of thermal expansion (CTE) 69

3.5 Experimental design and analysis 69
3.5.1 Fractional factorial design (FrFD) 69
3.5.2 Response surface methodology (RSM) 73

3.6 Preliminary findings on materials 76
3.6.1 Rice husk ash (RHA) 76
3.6.2 Activated alkaline solution 79
3.6.2 Mild steel plate 79

4 RESULTS AND DISCUSSION (THERMAL PROPERTIES) 81
4.1 Overview 81
4.2 Fractional factorial design (FrFD) 81
4.2.1 Statistical analysis 81
4.2.2 Regression model 83
4.2.3 Average error 84
4.2.4 Pareto plot 84
4.2.5 Main effect plot 85
4.2.6 Interaction plot 86
4.2.7 Normal probability plot of residual 88
4.3 Response surface methodology (RSM) 89
4.3.1 Statistical analysis of fire resistance properties 89
4.3.2 Effect of factors on fire resistance properties 91
4.3.3 Effect of Si/Al ratio and W/S ratio on The responses 92
4.3.4 Optimization of the responses 94
4.3.5 Experimental validation 95
4.3.6 Material characterization and microstructural analysis 96

4.4 Summary 109

5 RESULTS AND DISCUSSION (MECHANICAL PROPERTIES) 112
5.1 Overview 112
5.2 Fractional factorial design (FrFD) – Compressive strength
5.2.1 Statistical analysis 113
5.2.2 Regression model 113
5.2.3 Average error 114
5.2.4 Pareto plot 114
5.2.5 Main effect plot 115
5.2.6 Interaction plot 116
5.2.7 Normal probability plot of residual 116
5.3 Response surface methodology (RSM)
– Compressive strength 117
5.3.1 Statistical analysis of compressive strength 118
5.3.2 Effect of factors on compressive strength 118
5.3.3 Optimization of the responses 121
5.3.4 Experimental validation 122
5.3.5 Microstructural and thermal analysis 122
5.4 Response surface methodology (RSM)
– Flexural properties 136
5.4.1 Statistical analysis of flexural strength 136
5.4.2 Statistical analysis of flexural modulus 139
5.4.3 Optimization of the responses 141
5.4.4 Experimental validation 142
5.4.5 Flexural behavior and microstructure analysis 143
5.5 Summary 147

6 RESULTS AND DISCUSSION (PHYSICAL PROPERTIES) 150
6.1 Overview 150
6.2 Fractional factorial design (FrFD) 150
6.2.1 Statistical analysis 150
6.2.2 Regression model 151
6.2.3 Average error 152
6.2.4 Pareto plot 152
6.2.5 Main effect and interaction plots 153
6.2.6 Normal probability plot of residual 154
6.3 Response surface methodology (RSM) 154
6.3.1 Statistical analysis of adhesion strength 155
6.3.2 Effect of factors on adhesion strength 156
6.3.3 Optimization of the responses 158
6.3.4 Experimental validation 158
6.3.5 Coating adhesion behavior and microstructure analysis 159
6.4 Summary 161

7 RESULTS AND DISCUSSION (OPTIMUM RANGE OF GEOPOLYMER BINDER COMPOSITION) 163
7.1 Overview 163
7.2 Compressive strength and fire resistance properties 164
7.3 Fire resistance and adhesion properties 166
7.4 Flexural and adhesion properties 169
7.5 Fire resistance, flexural, and adhesion properties 172
7.6 Summary 173

8 CONCLUSIONS, CONTRIBUTION AND RECOMMENDATIONS 174
8.1 Conclusion 174
8.2 Main contributions 177
8.3 Recommendations for future research 177

REFERENCES 178
APPENDICES 195
BIODATA OF STUDENT 239
LIST OF PUBLICATIONS 240
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical compositions of different types of RHA</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristic of infrared bands of silicon compounds</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Recent research findings conducted on geopolymer binder and coating using various kinds of aluminosilicate sources</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Previous studies using RHA materials</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Temperature and heat evolution during fire testing</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Characteristic of thermal expansion for different region (temperature range)</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Components used in intumescent coatings.</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Applications of Geopolymers</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Calculated weight ratio for AA and RHA/AA</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Coded and uncoded values of the factors for fire resistant test</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Coded and uncoded values of the factors for compressive test</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Coded and uncoded values of the factors for adhesion test</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Total number of experiments between FFD and RSM</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Factors and levels used for fire resistant test</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Factors and levels used for flexural test</td>
<td>75</td>
</tr>
<tr>
<td>3.8</td>
<td>Factors and levels used for compressive test</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Factors and levels used for adhesion test</td>
<td>76</td>
</tr>
<tr>
<td>3.10</td>
<td>Chemical composition of RHA</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Estimated effects and coefficient for TAE in fire resistant test</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimated effects and coefficient for TT300 in fire resistant test</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Design matrix and response values for sample S5 and S7</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Estimated effects and coefficient for TT300 in fire resistant test</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Estimated effects and coefficient for TAE in fire resistant test</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Experimental validation for fire resistance properties</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Difference in Si/Al ratio, H₂O, and Na₂O content of sample S7, and S5 after fire resistant test</td>
<td>98</td>
</tr>
<tr>
<td>4.8</td>
<td>EDX result of sample S7 and S5 before fire resistant test</td>
<td>100</td>
</tr>
<tr>
<td>4.9</td>
<td>EDX result of sample S7 and S5 measured at point X₁ and X₂ after fire resistant test</td>
<td>101</td>
</tr>
<tr>
<td>4.10</td>
<td>EDX result of different area across the thickness of the intumescent geopolymer coating after fire test (sample S7)</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Estimated effects and coefficient for compressive strength</td>
<td>113</td>
</tr>
<tr>
<td>5.2</td>
<td>Design matrix and response values for compressive test</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Estimated effects and coefficient for compressive strength</td>
<td>118</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental validation for compressive strength</td>
<td>122</td>
</tr>
<tr>
<td>5.5</td>
<td>Characteristic bands of each spectrum in RHA and sample S23, S7, and S28</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>Inverted peak area and AS ratio from FTIR spectra of RHA and geopolymer samples at Si-O-Si stretching vibration in</td>
<td></td>
</tr>
</tbody>
</table>
a compressive test

5.7 Design matrix and response values for flexural test
5.8 Estimated effects and coefficient for flexural strength
5.9 Estimated effects and coefficient for flexural modulus
5.10 Experimental validation for flexural strength and flexural modulus

6.1 Estimated effects and coefficient for adhesion strength (MPa)
6.2 Design matrix and response values for adhesion test
6.3 Estimated effects and coefficient for adhesion strength
6.4 Experimental validation for adhesion strength
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>X-ray image of rice</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>SEM micrograph of RH (a) and SEM micrograph of RHA (b)</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>X-ray diffraction pattern of RHA</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structure of poly(sialates)</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic formation of geopolymer material</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Geopolymer molecular structure</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Descriptive model of alkali activation of aluminosilicates</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Three-point bend test for: (A) as-deposited cold spray, (B) annealed cold spray (1h@600°C), and (C) as-deposited electro-deposition</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Sketch of the three-point bend tests for specimens with infiltrated layer</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Thermal test of the coated samples</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Thermal expansion of FA geopolymer with Si/Al ratio = 2.3 and H₂O/SiO₂ = 2.0 for various types of sample dimensions</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Dilatometry data for Mount Piper FA geopolymer specimens with r (silicate modulus) values as marked, and m = 0.15</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Dilatometric curves using (a) FA with different Si/Al ratio, (b) metakaolin with different viscosity, (c) vermiculite with different spray composition</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>US intumescent coatings market demand, by end-use, 2012 to 2022 (Kilo Tons)</td>
<td>37</td>
</tr>
<tr>
<td>2.15</td>
<td>Expanded intumescent char after the bunsen burner test</td>
<td>38</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematic diagram of the formation of intumescent char during intumescence</td>
<td>40</td>
</tr>
<tr>
<td>2.17</td>
<td>Sandwich panel</td>
<td>41</td>
</tr>
<tr>
<td>2.18</td>
<td>Typical parts of fire door</td>
<td>42</td>
</tr>
<tr>
<td>2.19</td>
<td>Wall structure</td>
<td>43</td>
</tr>
<tr>
<td>2.20</td>
<td>Predicted time to flashover in ISO 9705 corner/room fire test with various structural composites as wall materials</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the study</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart for FrFD</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Flowchart for RSM</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Flowchart for mixture and fabrication process of geopolymer binder</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Geopolymer binder</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Straining (a) and spreading the geopolymer mixture (b)</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Press machine</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Flexural test of geopolymer coating</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Flexural test specimens</td>
<td>58</td>
</tr>
<tr>
<td>3.10</td>
<td>A 3-D view of three-point bending test set-up</td>
<td>58</td>
</tr>
</tbody>
</table>
3.11 Compressive test specimens ... 60
3.12 Test set-up for the measurement of compressive strength 60
3.13 A schematic representation of the general thermographic measurement situation ... 61
3.14 Calibration set-up in determining the emissivity of mild steel plate .. 62
3.15 Fire resistant test specimen ... 63
3.16 ISO-834 standard fire curve ... 63
3.17 Diagram of fire resistant test set-up ... 64
3.18 Sample that has undergone adhesive failure 65
3.19 Elcometer 106 Pull Off Adhesion Tester 66
3.20 Dolly applied on the coating surface 65
3.21 (a) Pulverizing machine RT-02A and (b) Endecotts Laboratory Test Sieve ... 67
3.22 RHA before and after grinding .. 76
3.23 Particle Size Distribution of RHA ... 77
3.24 SEM micrograph of RHA particles before grinding 78
3.25 SEM micrograph of ground RHA particles 78
4.1 Experimental and calculated temperature at equilibrium in fire resistant test ... 84
4.2 Experimental and calculated time taken to reach 300°C in fire resistant test ... 84
4.3 Pareto plot of the standardized effects of (a) TAE, and (b) TT300 in fire resistant test ... 85
4.4 Main effect plot for (a) TAE and (b) TT300 in fire resistant test 86
4.5 Interaction plot for TAE in fire resistant test 87
4.6 Interaction plot for TT300 in fire resistant test 87
4.7 Normal Probability plot of the residual (a) TAE, (b) TT300 in fire resistant test ... 88
4.8 Contour plot for the effect of RHA/AA ratio and NaOH concentration on the TT300 in fire resistant test 91
4.9 Contour plot for the effect of RHA/AA ratio and NaOH Concentration on the TAE in fire resistant test 91
4.10 Contour plot for the effect of W/S ratio and Si/Al ratio on the TT300 in fire resistant test ... 93
4.11 Contour plot for the effect of W/S ratio and Si/Al ratio on the TAE in fire resistant test ... 93
4.12 Optimization plot in fire resistant test 94
4.13 Graph temperature versus time of validated samples in fire resistant test ... 95
4.14 Thermal images of validated samples in fire resistant test 96
4.15 X-ray powder diffraction patterns of RHA, sample S7, and S5 Before fire resistant test ... 97
4.16 XRD patterns of sample S7, and S5 after fire resistant test 98
4.17 SEM micrographs of sample S7 (a, b) and S5 (c, d) and their magnification before fire resistant test .. 99
4.18 SEM micrographs of sample S7 (a, b) and S5 (c, d) and their magnification after fire resistant test ... 100
4.19 Colour difference across the thickness of the intumescent geopolymer coating after the fire test (sample S7) ... 102
4.20 TGA of Sample S7 and S5 in fire resistant test .. 104
4.21 Schematic representation of intumescent process .. 104
4.22 Result of fire resistant test .. 105
4.23 Mild steel plate coated with geopolymer binder for sample (a) S5 and (b) S7 after fire resistant test ... 106
4.24 DSC result of RHA, sample S7, and S5 in fire resistant test 107
4.25 Thermal expansion characteristic of geopolymer samples in fire resistant test .. 108
5.1 Experimental and calculated compressive strength 114
5.2 Pareto plot of the standardized effects on compressive strength 115
5.3 Main effect plot for compressive strength .. 115
5.4 Interaction plot for compressive strength .. 116
5.5 Normal Probability plot of the residual data for compressive strength 117
5.6 Contour plot of the effect of RHA/AA ratio and NaOH Concentration on compressive strength .. 119
5.7 Relationship plot between RHA/AA ratio and Si/Al ratio for compressive strength ... 120
5.8 Contour plot of compressive strength, W/S ratio, and Si/Al ratio 121
5.9 Optimization plot for compressive strength .. 121
5.10 FTIR spectra of RHA, sample S23, S7, and S28 ... 123
5.11 Stress-strain curve for; (a) brittle, and (b) ductile material............................. 125
5.12 Cracking or fracturing process of brittle material under compression 126
5.13 Ductile material during compressive strength ... 126
5.14 Example of construction of 0.20% offset yield strength for sample S28 127
5.15 Young’s modulus of brittle sample ... 128
5.16 Young’s modulus of ductile sample ... 128
5.17 The SEM micrographs of RHA-based geopolymer; S28 – ductile (a-b), S5 - semi-ductile (c-d), S7 - semi-brittle (e-f), and S23 - brittle (g-h) .. 129
5.18 The plot of compressive stress versus time to failure 130
5.19 W/S ratio and Si/Al ratio in selected brittle and ductile samples 131
5.20 Images of RHA-based geopolymer coating samples (a-c) S28, (d-f) S5, (g-i) S7, and (j-l) S23 and its infrared images before
and after fire resistant test

5.21 Time-temperature curves of selected geopolymer coating samples

5.22 Colour difference in coating layer of geopolymer sample (a) S5, (b) S7, (c) S23, and (d) S28

5.23 Diagram of color variation across geopolymer panel after fire resistant test

5.24 Contour plot of curing temperature vs. RHA/AA ratio for flexural strength

5.25 Contour plot of W/S ratio vs. Si/Al ratio for flexural strength

5.26 Contour plot of curing temperature vs. RHA/AA ratio for Flexural modulus

5.27 Contour plot of W/S ratio vs. Si/Al ratio for flexural modulus

5.28 Optimization plot for maximum responses for flexural modulus and flexural strength

5.29 Validated sample for flexural test

5.30 Load-extension (displacement) characteristics of samples during three-point bending tests: (i) Substrate without coating; (ii) S14; (iii) S13, and (iv) S17

5.31 Image and SEM micrograph of samples following flexural test (a) S13, (b) S14, and (c) S17 for flexural test

5.32 SEM images of (a) S17 - Brittle coating, exhibited lowest flexural strength, (b) S14 - Brittle coating, exhibited highest flexural strength, and (c) S13 - Ductile coating

5.33 Particle agglomeration of RHA-based geopolymer following flexural test: (a) S13, and (b) S17 for flexural test

6.1 Experimental and calculated adhesion strength

6.2 Pareto chart of the standardized effects for adhesion strength

6.3 Main effect plot for adhesion strength

6.4 Interaction plot for adhesion strength

6.5 Normal Probability plot of the residual data for adhesion strength

6.6 Contour plot for the effect of RHA/AA ratio and curing Temperature on the adhesion strength

6.7 Scatterplot of RHA/AA ratio and Si/Al ratio for adhesion strength

6.8 Contour plot of adhesion strength, W/S ratio, and Si/Al ratio

6.9 Optimization plot for adhesion strength

6.10 Adhesive failure on (a) sample S17 and (b) sample S26

6.11 Cross-section SEM micrographs of (a) coated sample S17 and (b) coated sample S26

6.12 SEM micrograph of geopolymer binder (sample S17)

6.13 SEM micrograph of geopolymer binder (sample S26)

7.1 Contour plot for TAE
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Contour plot for TT300</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>Contour plot for compressive strength</td>
<td>165</td>
</tr>
<tr>
<td>7.4</td>
<td>Superimposed contour plots</td>
<td>166</td>
</tr>
<tr>
<td>7.5</td>
<td>Contour plot for TAE</td>
<td>167</td>
</tr>
<tr>
<td>7.6</td>
<td>Contour plot for TT300</td>
<td>167</td>
</tr>
<tr>
<td>7.7</td>
<td>Contour plot for adhesion strength (large scale)</td>
<td>168</td>
</tr>
<tr>
<td>7.8</td>
<td>Superimposed contour plot for responses</td>
<td>169</td>
</tr>
<tr>
<td>7.9</td>
<td>Contour plot for adhesion strength (reduced scale)</td>
<td>170</td>
</tr>
<tr>
<td>7.10</td>
<td>Contour plot of flexural strength</td>
<td>170</td>
</tr>
<tr>
<td>7.11</td>
<td>Contour plot of flexural modulus</td>
<td>171</td>
</tr>
<tr>
<td>7.12</td>
<td>Superimposed contour for responses affected by W/S ratio and Si/Al ratio</td>
<td>171</td>
</tr>
<tr>
<td>7.13</td>
<td>Superimposed contour plots for three properties (flexural, thermal, and adhesion properties)</td>
<td>172</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>2-FrFD</td>
<td>2-level Fractional Factorial Design</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Activated Alkaline</td>
<td></td>
</tr>
<tr>
<td>Adj MS</td>
<td>Adjusted Mean Square Value</td>
<td></td>
</tr>
<tr>
<td>Adj SS</td>
<td>Adjusted Sum of Errors</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Alumina</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variant</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>Area of the Inverted Peak</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>Blast Furnace Slag</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
<td></td>
</tr>
<tr>
<td>CTE</td>
<td>Coefficient of Thermal Expansion</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>Degree of Freedom</td>
<td></td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
<td></td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-Ray Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td>Estimated Effect and Coefficient</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Fly Ash</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>FFD</td>
<td>Full Factorial Design</td>
<td></td>
</tr>
<tr>
<td>FrFD</td>
<td>Fractional Factorial Design</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>Geopolymer Binder</td>
<td></td>
</tr>
<tr>
<td>GBC</td>
<td>Geopolymer Binder Coating</td>
<td></td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium Hydroxide</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Notation</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Na$_2$SiO$_3$</td>
<td>Sodium Silicate</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxide</td>
<td></td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
<td></td>
</tr>
<tr>
<td>PSD</td>
<td>Particle Size Distribution</td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>Rice Husk</td>
<td></td>
</tr>
<tr>
<td>RHA</td>
<td>Rice Husk Ash</td>
<td></td>
</tr>
<tr>
<td>RHBA</td>
<td>Rice Husk Bark Ash</td>
<td></td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
<td></td>
</tr>
<tr>
<td>S/L</td>
<td>Solid-to-Liquid</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Standardized Effect</td>
<td></td>
</tr>
<tr>
<td>SEC</td>
<td>Standard Error of Coefficient</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>Silica</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Sequential Sum of Errors</td>
<td></td>
</tr>
<tr>
<td>TAE</td>
<td>Temperature at Equilibrium</td>
<td></td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetry Analysis</td>
<td></td>
</tr>
<tr>
<td>TT300</td>
<td>Time Taken to Reach 300°C (°C)</td>
<td></td>
</tr>
<tr>
<td>Vs</td>
<td>Versus</td>
<td></td>
</tr>
<tr>
<td>W/S</td>
<td>Water-to-Solid</td>
<td></td>
</tr>
<tr>
<td>Wt.</td>
<td>Weight (g)</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
<td></td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

% Percent
\bar{x} Average
°C Degree Celcius
µm Micrometer
cm Centimeter
E Slope of Proportional Limit (Young’s Modulus)
H Inverted Peak Height
M Molar
mm Millimeter
MPa Mega Pascal
V_1 Ratio of AA Solution
V_2 RHA/AA ratio
V_3 Curing Temperature
V_4 NaOH Concentration
V_5 Curing Time
\varepsilon Compressive Strain
\varepsilon_e Engineering Strain
INTRODUCTION

1.1 Research Background

The collapse of World Trade Center in the United States of America is a turning point in research intensification of fire protection materials. One of the most vital aspects of building regulations is fire protection. Structural integrity, rapid flame spread, smoke and toxic fume emissions are normally the problems caused by fire in buildings. Buildings must be installed with active and passive fire protection systems. Active fire protection systems such as extinguishers, water sprinklers, and fire detectors work to effectively combat fire at the beginning of fire outbreak. At the same time, passive systems act as a sub-defense unit which is extremely important to control rapid fire spread and protect the structural integrity of the buildings.

Coatings and panels are passive fire protection systems. Steel, which is largely used in building construction, normally is unable to withstand high temperatures between 470°C and 500°C causing it slowly to lose its strength. Without coating, the temperature of unprotected steel increases rapidly due to high thermal conductivity of steel. Therefore, unprotected steel structures do not have desirable resistance against fire resulting in rapid creeping, buckling, collapse or other failure. For safety reason, fire resistant coating materials are necessary to keep the temperature of steel structures below the critical temperature during fire incidents. On the other hand, core panel such as in sandwich wall panel or fire door is unduly important to prevent fire from spreading to other side of the wall or door.

New fire resistant building materials are required for higher sustainability and durability. Since overall cost components in building constructions come from building materials and labor, the need for lower-cost and time-efficient technology becomes urgent. ‘Geopolymer’, a term coined by a French scientist named Joseph Davidovits, is the best alternative which is environmentally friendly and possesses excellent mechanical and thermal properties including good fire resistance and insulation properties (Davidovits, 1989).

For the last 30 years, geopolymers were applied in various field of applications. One of the first objective in geopolymer development is to be an alternative to existing fire and heat resistance organic thermosetting polymer which were insufficient as passive fire protection during a tragic fire in France around 1970 (Davidovits, 2002). Geopolymers or activated-alkaline aluminosilicate are prepared by synthesizing activated alkaline solution with aluminosilicate sources.
such as waste sources including fly ash, metakaolin, kaolin, blast furnace slag, palm oil fuel ash and rice husk ash (RHA).

According to Food and Agriculture Organization of the United Nations (2015), global annual rice paddy production between 2014 and 2015 was around 745 million tons. In Malaysia, rice paddy production in the same period was approximately 2.6 million tons. In general, more than 149 million tons of rice husks are produced annually. RH is one of the largest available biomass resources and the low cost of RH may potentially reduce the costs of geopolymer through lowered cost of production compared to other resin systems in the market such as polyimides, cyanide esters, silicone, epoxy, polyurethane and acrylic resins (Han et al., 2008) (Oyetola and Abdullahi, 2006).

1.2 Problem Statement

Coatings which are widely used for protective purpose contain combustible material that will easily burn during a fire event. Although the coating may have effective fire resistance properties, if it is burnt and emit smoke, especially toxic smoke, the emission of burnt steel smoke may pose a high risk to the community in case of fire events. Current coatings mainly available in the market are epoxy resin, whilst intumescent coating materials are less used due to lack of information.

A building structure reinforced with steel but with poor or insufficient coating may fail to protect its function in load-bearing resulting in building collapse. In order to prevent such catastrophic event, the coating must be able to withstand bending moment before the event thus preventing cracks development in the coating. Eco-friendly coating should possess good fire resistance properties in order to function as an effective shield to protect steel from early degradation during fire event. With the use of fire resistant coating, fire rate can be reduced, allowing longer opportunity time for escape and more lives could be saved in fire catastrophes. Initiative must be taken as well in providing not only better durability and longevity of the whole coating system, but also coating with effective good bonding with the steel surface before and during the fire event.

Existing wall panels in the market have poor fire resistance properties in some of the materials which are widely used such as resins, polystyrene, and polyurethane (Zhang et al., 2014). Therefore, environmental-friendly and energy consumption factors have to be crucially considered as alternatives to current wall panels. Although some of the panel structures, used as insulation materials, should possess high fire resistance characteristic, their mechanical requisites including compressive strength for walls and doors must not be unduly compromised. In addition, intensive research studies on the relationship between compressive strength and fire resistance properties of fire resistant materials, using statistical analysis approach, are not as yet well established.
Geopolymer binder has been proven to possess excellent fire resistance properties and various waste materials have been used in producing geopolymer binder including fly ash, metakaolin, kaolin, and blast furnace slag. Although RHA was found to contain the highest silica to alumina ratio among agricultural wastes, the utilization of this resource is still low due probably to several reasons including; (i) low awareness of RH potential among farmers and industrial communities, (ii) information on the material and its utilization was insufficiently known to the public, (iii) socio-economic problems, (iv) low penetration of technology, (v) lack of interest and (vi) lack of awareness about environmental problems (Omatola and Onojah, 2012).

In Malaysia, rice husk is considered biodegradable waste product in the rice mill industry and is burned in open area or dumped in landfills. Rice husk is a good source of renewable energy but if improperly incinerated, this vast quantity of waste may potentially pollute the environment including the air which through open burning, soil and water. Through large-scale industrial utilization of RHA as an aluminosilicate source in fire resistant geopolymer material, the environmental pollution can be reduced through the application of green technology in the manufacture of more sustainable eco-friendly and cost effective geopolymer binder (GB) material.

Despite the growing popularity of geopolymer in various applications, limited research has been devoted to identify the influence of several factors on the properties of RHA-based geopolymer binder. In this study, a new and novel type of geopolymer binder based on RHA was developed for coating and panel applications, particularly as a construction building material. Using statistical approach, this novel formulations of RHA-based geopolymer binder are expected to possess high compressive strength, good adhesion bonding, promising fire resistance properties, and good flexural strength and flexural modulus. The new product, based on RHA, should have efficient and cost-effective properties, with wide potential applications in industry.

1.3 Research Objectives

The main objective of this study is to design experimental work using suitable statistical method and develop a RHA-based geopolymer binder product which is suitable for fire resistant coating and panel materials for various applications, particularly in the construction building industry.

Along with the main objective, there are several specific objectives including:

i. To design experimental works using fractional factorial design (FrFD) and response surface methodology (RSM) and conduct experiments on fire resistant, compressive strength, flexural strength, flexural modulus, and adhesion strength properties of RHA-based geopolymer binder.
ii. To statistically analyze the experimental data to determine the effect of each factor, including ratio of activated alkaline (AA) solution, RHA/AA ratio, curing temperature, sodium hydroxide (NaOH) concentration, and curing time, and its interactions on the properties of the RHA-based geopolymer binder and respectively conduct their optimization tests.

iii. To investigate and characterize the microstructural and element characteristics of RHA-based geopolymer binder.

iv. To identify the optimum range for silica to alumina (Si/Al) ratio and water to solid (W/S) ratio in RHA-based geopolymer binder compositions which produced the best mechanical, thermal, and physical properties of RHA-based geopolymer binder.

Although the best binder may be discovered during the research process, it should be noted that the purpose of this study is not to solely develop the best or strongest possible binder material for coating and panel applications, but rather to study and identify the characteristics of RHA-based geopolymer binder that can be the best alternative as fire resistant binder material in the present market.

1.4 Research Scope

In achieving the objectives of this study, experimental works consisting of fire resistant, compressive, three-point bending (flexural), and adhesion tests were conducted based on three main properties; namely, thermal, mechanical, and physical properties. For this purpose, five factors were considered, namely; (i) ratio of activated alkaline (AA) solution, (ii) rice husk ash to activated alkaline (RHA/AA) ratio, (iii) curing temperature, (iv) sodium hydroxide (NaOH) concentration, and (v) curing time. RHA was used as aluminosilicate source whereas sodium silicate and NaOH solution as the AA solution. The geopolymer binder (GB) used in this study was fabricated into two main types of material; coating and panel. Mild steel plate was used as a substrate throughout this study. Statistical methods, including fractional factorial design (FrFD) and response surface methodology (RSM) were employed in experimental design and analysis.

The geopolymer binder materials were characterized into seven main tests including (i) mechanical properties test by using three-point bending (flexural) test, and compressive test, (ii) thermal properties test by using fire resistant test, (iii) physical properties test by using pull-off adhesion test, (iv) thermal analysis by using thermogravimetry analysis (TGA), differential scanning calorimetric (DSC), and coefficient of thermal expansion (CTE), (v) microscopy analysis by using scanning electron microscopy (SEM), (vi) element characterization by using energy dispersive X-ray spectroscopy (EDX), fourier transform infrared spectroscopy (FTIR), x-ray fluorescence (XRF), x-ray diffraction (XRD), differential scanning calorimetric (DSC), and (vii) particle size analysis by using particle size distribution (PSD).
1.5 Thesis Organization

This thesis consists of eight chapters. Chapter one discusses the background of the research and problem statement, followed by an outline of the research objectives, the scope and organization of the dissertation.

Chapter two presents the literature review for related studies that have been carried out and reported previously including rice husk ash, geopolymer, properties of geopolymer, influential factors, and statistical design method including fractional factorial design (FrFD) and response surface methodology (RSM). Chapter three describes the methods in conducting experiments, analyzing data and results on the preliminary findings of rice husk ash.

Results and discussions are presented in chapter four until seven. Chapter four presented the results and discussions of thermal properties (fire resistant) of RHA-based geopolymer binder coating (GBC). Chapter five discussed the properties of the binder under mechanical properties including compressive strength, flexural modulus, flexural strength. Chapter six discusses the results for physical properties (adhesion strength) of RHA-based GBC. Chapter seven discusses the optimum range of GB compositions namely Si/Al ratio and W/S ratio which produced the best properties in terms of thermal, mechanical, and physical properties. Finally, the conclusion, contribution, and recommendations for future research is given in Chapter eight.
REFERENCES

Intumescent Coatings Market Analysis By Application (Cellulosic, Hydrocarbons), By End-Use (Oil & Gas, Construction, Automotive) And Segment Forecasts To 2022. United States: Grand View Research, Inc.

Minitab 17: Getting started with Minitab 17. (2013). Minitab Inc.

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1), 246-254.

Planning, Analysis, and Optimization (pp. Chapter 4, Sec. 4.6). New Jersey: John Wiley & Sons.

LIST OF PUBLICATIONS

Patent

Journals

Proceeding

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: ________________

TITLE OF THESIS / PROJECT REPORT:

DEVELOPMENT OF RICE HUSK ASH-BASED GEOPOLYMER BINDER FOR FIRE RESISTANT COATING

NAME OF STUDENT: MOHD SALAHUDDIN BIN MOHD BASRI

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

☐ PATENT Embargo from __________ until __________ (date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)
New IC No/ Passport No.: Name:
Date: Date:

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]