UNIVERSITI PUTRA MALAYSIA

CRUSHING BEHAVIOR AND FAILURE MODES OF KENAF FIBRE-REINFORCED COMPOSITE HEXAGONAL TUBES

MUNIR FARAJ ALMABROUK ALKBIR

FK 2016 170
CRUSHING BEHAVIOR AND FAILURE MODES OF KENAF FIBRE-REINFORCED COMPOSITE HEXAGONAL TUBES

By

MUNIR FARAJ ALMABROUK ALKBIR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is gratefully dedicated to:

My beloved Mother and Father for unlimited supports and encouragements throughout my life

The soul of my sister (Halema)

My wife for her patience and understanding

My supervision committee for their support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CRUSHING BEHAVIOR AND FAILURE MODES OF KENAF FIBRE-REINFORCED COMPOSITE HEXAGONAL TUBES

By

MUNIR FARAJ ALMABROUK ALKBIR

June 2016

Chairman : Mohd Sapuan Salit, PhD, PEng
Faculty : Engineering

This research focused on the crashworthiness characteristics of kenaf fibre reinforced composite hexagonal tubes with a variety of configurations. A series of experiments were carried out for composite hexagonal tubes with a different dimension. A hand lay-up technique was used to fabricate the specimens of composite hexagonal tubes. Four phases were performed for crushing behaviour, failure mode and crashworthiness parameters of hexagonal composite tubes. The first phase was to study the effect of fibre content on the crashworthiness parameters (i.e., energy absorption and stroke efficiency) and the failure modes of a non-woven kenaf (mat) fibre-reinforced hexagonal composite tube. Various fibre contents were considered, including 25%, 30%, 35%, and 40%. A fibre content of 25% to 30% (mass percent) demonstrated the best crashworthiness parameters. A high percentage of fibre loading 40% and more, due to poor bonding between the fibre and matrix, was not capable of transferring load to another, and hence stress was accumulated at certain points of the composite, which led to lower energy absorption mechanical properties. The reinforcing fibers are strong, stiff, and effective for improving the mechanical properties of composite materials. However, reinforcing fibres are often brittle and abrasive, lack toughness, and can degrade chemically when exposed to the environment. A few distinct failure modes were identified during the experiments, including the progressive failure mode, in which failure begins at the top end of the tube, and the transverse crack failure mode, which is associated with the buckling failure mode. Phase two was devoted to study the static crushing behaviour of composite hexagonal tubes under uniform axial load. Three lengths of hexagonal composite tubes were tested 50, 100, and 150 mm with same hexagonal angle 45°. Results showed that tube with length 50 mm exhibits a high specific energy absorption as well as higher average crushing load. Phase three involved fabrication and testing of five different hexagonal tubes of reinforced natural kenaf (mat) with different angles from a range of 40° to 60° and in 5° increments of the angle, to determine the effect of geometry on crashworthiness parameters of natural kenaf fibre reinforced composite hexagonal tubes. Results obtained in this phase show that the structures failed in a few distinct failure modes such as progressive failure mode and
fragmentation failure associated with longitudinal cracks. The composite tube with $\beta=60^\circ$ exhibited a local buckling failure mode and displayed the highest specific energy absorption capability equal to 9.2 kJ/Kg. On the other hand, the new crashworthiness parameter was introduced as a catastrophic failure mode indicator (CFMI), the last phase was when the specimens were subjected to a lateral quasi-static compressive load. In this phase, the supporting plate was used inside the tube for the following reasons. The main purpose was to improve the energy absorbed by the tubes. The improvements, including the use of energy absorbing materials and structures in the plate inside the tubes, ensure more favourable decelerations during a crash/accident, resulting in fewer injuries to the car occupants. Furthermore, using a supporting plate inside the hexagonal tubes can control the load distribution during the crushing period and can diminish the structure weight. Three configurations of $\beta=40^\circ$, $\beta=50^\circ$ and $\beta=60^\circ$ of natural non-woven kenaf (mat)/epoxy were laminated. The effects of the hexagonal angles, supporting plate inside the tubes, and failure modes were studied by a lateral compression test. The crashworthiness of the tubes was evaluated by an analysis of the specific energy absorption in quasi-static lateral compression. Specific energy absorption was obtained from the load-displacement curve during testing. The failure mode of the tubes was analysed from high resolution photographs. Overall, the tube with $\beta=40^\circ$ had the best crashworthiness among the tubes. Above all, the results showed that the tubes with supporting plates showed better specific energy absorption (SEA) for all tested specimens and exhibited approximately 69% better crashworthiness than the non-supporting ones. The results also demonstrated that all specimens failed by the longitudinal failure mode.
Abstrack tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazh Doktor Falsafah

KELAKUAN PENGHANCURAN DAN MOD KEGAGALAN BAGI TIUB KOMPOSIT HEKSAGON DIPERKUAT GENTIAN KENAF

Oleh

MUNIR FARAJ ALMABROUK ALKBIR

Jun 2016

Pengerusi : Mohd Sapuan Salit, PhD, PEng
Fakulti : Kejuruteraan

Penyelidikan ini memfokuskan kepada ciri-ciri pelindungan laga bagi tiub heksagon komposit diperkuat gentian kenaf dengan pelbagai konfigurasi. Satu siri eksperimen telah dijalankan bagi tiub heksagon komposit dengan dimensi yang berbeza. Kaedah bengkalai tangan telah digunakan untuk membikin specimen tiub heksagon komposit. Empat fasa telah dilaksanakan bagi kelakuan penghancuran, mod kegagalan dan parameter pelindungan laga bagi tiub komposit heksagon.Fasa pertama adalah mengkaji kesan kandungan gentian terhadap parameter pelindungan laga (iaitu penyerapan tenaga dan keberkesanan lejang) dan mod kegagalan bagi tiub komposit heksagon diperkuat gentian kenaf tidak tertenun (tikar). Pelbagai kandungan gentian telah dikaji, termasuk 25%, 30%, 35% dan 40%. Kandungan gentian sebanyak 25% ke 30% (peratus jisim) menunjukkan parameter pelindungan laga yang terbaik. Peratusan yang tinggi bagi bebanan gentian 40% atau lebih, disebabkan ikatan yang lemah antara gentian dan matriks, tidak mampu untuk memindahkan beban ke bahagian lain, dan seterusnya tegasan telah terkumpul pada tempat yang tertentu pada komposit, yang menjurus kepada sifat mekanikal penyerapan tenaga yang lebih rendah. Gentian penguat adalah kuat, kukuh dan efektif bagi meningkatkan sifat mekanikal bahan komposit. Walau bagaimana pun, gentian penguat selalunya rapuh dan berlelas, kurang liat, dan boleh merosot secara kimia bila didedahkan kepada persekitaran. Beberapa mod kegagalan berlainan telah dikenal pasti semasa eksperimen, termasuk mod kegagalan progresif, di mana kegagalan bermula pada bahagian hujung atas tiub, dan mod kegagalan rekahan melintang, iaitu yang berkaitan dengan mod kegagalan melengkok. Fasa kedua diuntukkan bagi mengkaji kelakuan penghancuran static bagi tiub komposit heksagon di bawah beban paksian seragam. Tiga kepanjangan bagi tiub komposit heksagon telah diuji 50, 100 dan 150 mm dengan sudut heksagon yang sama 45°. Keputusan menunjukkan bahawa mod kegagalan 50 mm menunjukkan penyerapan tenaga spesifik yang tinggi dan juga purata beban penghancuran yang lebih tinggi.Fasa ketiga melibatkan pembikinan dan pengujian bagi lima tiub heksagon yang berbeza bagi gentian kenaf (tikar) dengan sudut yang berbeza daripada julat 40° ke 60° dan dalam 5° kenaikan sudut, bagi menentukan kesan geometri ke atas parameter pelindungan laga bagi tiub heksagon.
komposit diperkuat gentian kenaf. Keputusan yang diperolehi dalam fasa ini menunjukkan bahawa struktur gagal dalam beberapa mod kegagalan yang berlainan seperti mod kegagalan progresif dan kegagalan pencebisan yang berkaitan dengan rekaan membujur. Tiub komposit dengan $\beta = 60^\circ$ memamerkan mod kegagalan melengkuk setempat dan mempamerkan keupayaan penyerapan tenaga spesifik yang tertinggi bersamaan 9.2 kJ/kg. Sebaliknya, parameter pelindungan lagi yang baharu telah diperkenalkan sebagai penunjuk mod kegagalan bencana.

Fasa terakhir adalah apabila spesimen dibebankan dengan beban mampatan kuasi-statik sisi. Dalam fasa ini, plat penyokongan telah digunakan di dalam tiub atas alasan berikut. Tujuan utama adalah bagi meningkatkan tenaga yang diserap oleh tiub. Peningkatan termasuk penggunaan bahan penyerapan tenaga dalam bahan dan struktur pada plat di dalam tiub bagi memastikan nyahpecutan yang lebih diingini ketika pelanggaran/kemalangan, menghasil lebih sedikit kecederaan kepada penumpang dan pemandu kereta.

Tambahan pula, menggunakan plat di dalam tiub heksagon boleh mengawal agihan beban sewaktu penghancuran dan boleh mengurangkan berat struktur. Tiga tatarajah $\beta=40^\circ$, $\beta=50^\circ$ dan $\beta=60^\circ$ bagi epoksi/kenaf tidak tertenun telah telah dilaminat. Kesan sudut heksagon, plat penyokongan di dalam tiub, dan mod kegagalan telah dikaji menggunakan ujian mampatan sisi. Pelindungan laga tiub telah dinilai menggunakan analysis penyerapan tenaga spesifik dalam mampatan sisi kuasi-statik. Penyerapan tenaga spesifik telah diperolehi daripada lengkok beban-sesaran ketika pengujian. Mod kegagalan bagi tiub telah dianalisis menggunakan fotografi resolusi tinggi.

Secara keseluruhan, tiub dengan $\beta=40^\circ$ menunjukkan pelindungan laga yang terbaik antara semua tiub. Pada umumnya, keputusan menunjukkan bahawa tiub dengan plat penyokongan menunjukkan penyerapan tenaga spesifik yang lebih baik bagi kesemua specimen yang diuji dan mempamerkan kira-kira 69% pelindungan laga yang lebih baik daripada suatu yang tanpa penyokongan. Keputusan juga menunjukkan bahawa semua specimen gagal dengan mod kegagalan membujur.
AKNOWLEDGEMENTS

First my praise to almighty ALLAH for giving me the ability to complete this work with good health.

I appreciate the financial support of the Libyan Ministry of higher education, during my PhD study.

I would like to express my sincere gratitude to my supervisor Prof. Ir. Dr. Mohd Sapuan Salit for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of thesis. I also appreciate the advice of committee members: Assoc. Prof. Dr. Nuraini bit. Abdul Aziz and Dr. Mohamad Ridzwan Ishak, for their insightful comments and encouragement.

My sincere thanks also goes to Assoc. Prof. Dr. Zulkifle bin Leman. For his highly advise. Also, technicians in the Department Mechanical and Manufacturing Engineering (UPM) they provided me an opportunity to join their team as an intern, and who gave access to the laboratory and research facilities.

I have no enough words to express my profuse thanks to my family for their unconditional love and endless support that gave me strength to complete this work, especially the my kindly mother, my lovely father. A Special thank goes to my wife and children for their understanding, patience. Many thanks to light up my way to complete this work, is worth to mention all my friends for their support and cooperation. Thanks to my colleagues and staff in Faculty of Engineering especially Department Mechanical and Manufacturing Engineering (UPM) for their advice, assistance and kindness.
I certify that a Thesis Examination Committee has met on 9 June 2016 to conduct the final examination of Munir Faraj Almabrauk on his thesis entitled "Crushing Behavior and Failure Modes of Kenaf Fibre-Reinforced Composite Hexagonal Tubes" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zulkifle bin Leman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Edi Syams bin Zainudin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faizal bin Mustapha, PhD
Associate Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Salim Hiziroglu, PhD
Professor
Oklahoma State University
United States
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 March 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Sapuan Salit, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Nuraini Abdul Aziz, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamad Ridzwan Ishak, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNS,PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No. Munir Faraj Almabrouk alkbir, GS 35597
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Prof. Dr. Mohd Sapuan Salit

Signature:
Name of Member of Supervisory Committee: Associate Prof Dr. Nuraini bt. Abdul Aziz

Signature:
Name of Member of Supervisory Committee: Dr Mohamed Ridzwan Ishak
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES x
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xviii

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Significance of study 2
1.3 Scope of study 3
1.4 Problem statement 3
1.5 Objectives 4
1.6 Thesis Outline 4
References 6

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Mechanical and physical properties of natural fibres 11
2.3 Crashworthiness in composite structure 18
2.4 Energy absorption in natural reinforced composite tubes 21
2.4.1 Effect of geometry on peak load 23
2.4.2 Effect of triggered and non-triggered on specific energy and average load 25
2.4.3 Shape and geometry 26
2.5 Industrial application 28
2.6 Failure mode 30
2.7 Fabrication Process of Composite Shells. 32
2.7.1 Hand Lay-up Process 33
2.7.2 Filament winding process 35
2.8 Failure Modes, and Crushing Behaviour of Thin Shells 38
2.8.1 Catastrophic Failure Mode 40
2.8.2 Progressive Failure Mode 42
2.9 Failure Modes in Natural Fibre Tubes 43
2.9.1 Failure Mechanisms 43
2.10 Conclusion 49
References 49
3 METHODOLOGY
3.1 Experimental work
 3.1.1 Material and fibre preparation
 3.1.2 Fabrication Process
 3.1.3 The Experimental Procedure
3.2 Uncertainties Affects the Experimental Results
 3.2.1 Void content
 3.2.2 Calibration of the testing machine
 3.2.3 Mixing up the mixture and adhesion Between layers
References

4 THE EFFECT OF FIBRE CONTENT ON THE CRASHWORTHINESS PARAMETERS OF NATURAL KENAF FIBRE-REINFORCED HEXAGONAL COMPOSITE TUBES
Article 1
Acceptance Letter 94
Copyright Permission 95

5 EXPERIMENTAL QUASI-STATIC AXIAL CRUSHING OF NON-WOVEN KENAF FIBRE/EPOXY HEXAGONAL COMPOSITE TUBES
Article 2
Acceptance Letter 106
Copyright Permission 107

6 EFFECT OF GEOMETRY ON CRASHWORTHINESS PARAMETERS OF NATURAL KENAF FIBRE REINFORCED COMPOSITE TUBES
Article 3
Acceptance Letter 128
Copyright Permission 129

7 LATERAL CRUSHING PROPERTIES OF NON-WOVEN KENAF (MAT) –REINFORCED EPOXY COMPOSITE HEXAGONAL TUBES
Article 4
Acceptance Letter 152
Copyright Permission 153

8 QUASI-STATIC LATERAL CRUSHING OF NON-WOVEN KENAF FIBRE REINFORCED COMPOSITE HEXAGONAL TUBES
Article 5
Acceptance Letter 161
Copyright Permission 162
CONCLUSION AND FUTURE WORK

9.1 New contribution. 165
 9.1.1 Catastrophic failure mode indicator (CFMI) 165
 9.1.2 Tube resistant indicator (TRI) 165

9.2 Failure mode 166

9.3 Recommendation for future work 167

BIODATA OF STUDENT 168
LIST OF PUBLICATIONS 169
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and disadvantages of natural fibres</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanical and physical properties of natural fibres</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Energy absorption capability and crash force efficiency of various natural fibres</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Mechanical properties of natural kenaf fibre</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>The properties of the epoxy resin used (D.E.R.™ 331™)</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>The mechanical properties of natural kenaf fibre</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>The relationship between the crashing parameters (C_e, P_m, SE and E_t) and the fibre content</td>
<td>87</td>
</tr>
<tr>
<td>5.1</td>
<td>The dimension of the tubes</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Crashworthiness parameters</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Crashworthiness parameters for non-woven kenaf fibre/epoxy composite hexagonal tubes with various angles</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>Type of crushing failure modes in per-crushing stage</td>
<td>121</td>
</tr>
<tr>
<td>7.1</td>
<td>Mechanical properties of natural kenaf fiber</td>
<td>133</td>
</tr>
<tr>
<td>7.2</td>
<td>Description of the of non-woven, natural kenaf mat/epoxy hexagonal tubes of each configuration</td>
<td>137</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagram of the rotating sample stand used during gelling and curing</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of fibre content on tensile properties</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of tensile strength of kenaf/PP–MAPP composites to other natural fibre composites</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of specific modulus of various fibres</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of flexural strength of kenaf/PP–MAPP composites to other natural fibre composites</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Scanning electron microscopy tensile fractured specimen</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Classifications of natural and synthetic fibres</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Various variables that affect the crashworthiness parameters of composite materials</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of criteria affecting the selection of natural fibre composite materials</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Flax FRP hollow tube (b) Typical cone under investigation (c) Square silk/epoxy tube (d) Silk/epoxy rectangular composite</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Typical load–displacement response</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Peak and average load characteristics for composite square tubes</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Relationship between crashworthiness parameters and the number of layers for empty flax/epoxy tubes</td>
<td>24</td>
</tr>
<tr>
<td>2.14</td>
<td>Plug trigger and (b) four rectangular metallic piece trigger located on the flat plate</td>
<td>25</td>
</tr>
<tr>
<td>2.15</td>
<td>Flax/epoxy composite tubes with different configurations.</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>The effect of the number of plies on the SAE of the specimens</td>
<td>27</td>
</tr>
<tr>
<td>2.17</td>
<td>Specific crushing energy data for natural fibres and shells</td>
<td>29</td>
</tr>
<tr>
<td>2.18</td>
<td>Crushing force efficiency, energy data for natural fibres and shells</td>
<td>30</td>
</tr>
<tr>
<td>2.19</td>
<td>Progressive crushing of specimens</td>
<td>31</td>
</tr>
<tr>
<td>2.20</td>
<td>Local buckling or mid-length buckling</td>
<td>32</td>
</tr>
<tr>
<td>2.21</td>
<td>Delamination, tear and buckling</td>
<td>33</td>
</tr>
<tr>
<td>2.22</td>
<td>Mold for composite fabrication and composites configuration using hand-lay-up method</td>
<td>34</td>
</tr>
<tr>
<td>2.23</td>
<td>Details of triggering. Different geometrical shapes</td>
<td>35</td>
</tr>
<tr>
<td>2.24</td>
<td>Photograph and Schematic illustration of carbon/aramid</td>
<td>36</td>
</tr>
<tr>
<td>2.25</td>
<td>Impregnated fibres in filament winding process</td>
<td>37</td>
</tr>
<tr>
<td>2.26</td>
<td>Kenaf composite shafts without aluminum (left) and with aluminum (right)</td>
<td>37</td>
</tr>
<tr>
<td>2.27</td>
<td>The principle of a drum-type impregnation unit.</td>
<td>38</td>
</tr>
<tr>
<td>2.28</td>
<td>Hemp mat</td>
<td>39</td>
</tr>
<tr>
<td>2.29</td>
<td>Macroscopic detail for each fibre type</td>
<td>40</td>
</tr>
<tr>
<td>2.30</td>
<td>Non-woven (mat) natural kenaf fibre</td>
<td>40</td>
</tr>
<tr>
<td>2.31</td>
<td>Deformation patterns and the crushing performance of the square cross sectional composite tubes</td>
<td>41</td>
</tr>
<tr>
<td>2.32</td>
<td>Load–displacement curves and deformation history of RCSCT specimen under lateral crushing load</td>
<td>42</td>
</tr>
<tr>
<td>2.33</td>
<td>Deformation patterns and the crushing performance of the circular cross section composite tubes</td>
<td>44</td>
</tr>
</tbody>
</table>
2.34 photographs of different steps of compression test 44
2.35 Examples of NFC tubes with four reinforcement arrangements 45
2.36 Comparative between same to configuration tubes and different material 47
2.37 Crushing of specimens 48
3.1 Energy absorption parameters 61
3.2 Flow chart of the steps used in this work 62
3.3 Non-woven (mat) natural kenaf fibre 63
3.4 Fabrication steps 63
3.5 Instron 3382 universal testing system with a full load range of 100 kN 64
3.6 Microscopic photos of the typical voids inside laminate 66
3.7 Demonstration of how the cutting point and length measuring affected the test results 67
4.1 The growth outlook for natural fibres in the USA from 2000 to 2005 by application 70
4.2 The effect of the fibre content on the tensile strength and modulus 72
4.3 Non-woven kenaf fibre 73
4.4 The hand and electric cutting machines 74
4.5 A schematic diagram of the specimen 76
4.6 The Instron 3382 universal testing system 77
4.7 A schematic of the load-displacement relationship for composite tubes 78
4.8 Load-displacement curves for hexagonal composite tubes with fibre contents of 25% 80
4.9 Load-displacement curves for hexagonal composite tubes with fibre contents of 30% 81
4.10 Load-displacement curves for hexagonal composite tubes with fibre contents of 35% 83
4.11 Load-displacement curves for hexagonal composite tubes with fibre contents of 40% 84
4.12 The average crash load (Pm) for the non-woven kenaf (mat)/epoxy hexagonal tubes 85
4.13 The energy absorbed (E_t) by non-woven kenaf (mat)/epoxy hexagonal tube specimen 86
4.14 A micrograph of the surface of the wall and the failure modes of the tube 88
5.1 Photographs of (b) non-woven kenaf fibre and (b) geometry 98
5.2 Load – displacement curve and deformation history of (H.100) specimen under axial load 100
5.3 Load – displacement curve and deformation history of (H.100) specimen under axial load 101
5.4 Load – displacement curve and deformation history of (H.150) specimen under axial load 102
6.1 Typical load displacement curve 111
6.2 Non-woven (mat) natural kenaf fibre 112
6.3 Fabrication steps 113
6.4 Universal Testing Machine 114
6.5 Load - displacement curve and deformation history of β.40° specimen under axial load 116
6.6 Load–displacement curve and deformation history of β.45° specimen under axial load
6.7 Load–displacement curve and deformation history of β.50° specimen under axial load
6.8 Load–displacement curve and deformation history of β.55° specimen under axial load
6.9 Load–displacement curve and deformation history of β.60° specimen under axial load
6.10 Energy absorption characteristics for non-woven kenaf fibre/epoxy composite hexagonal tubes with various angles
6.11 Comparative specific energy absorption characteristics for 24 layers non-triggered and triggered composite square tubes
6.12 Catastrophic failure mode
7.1 Non-woven kenaf fiber (mat)
7.2 Sketch of a typical design of the experiment set-up
7.3 Load-displacement plots at the pre-crushing stage
7.4 Peak load characteristics for composite hexagonal tubes at different angles for supported and non-supported tube
7.5 Experimental set-up
7.6 Load-displacement curve with crushing stages
7.7 Load-displacement curves of supporting non-woven natural kenaf/epoxy hexagonal
7.8 Load-displacement curves of empty non-woven natural kenaf/epoxy composite hexagonal
7.9 Tube resistant indicator for the lateral compression test
7.10 Deformation history of supported hexagonal
7.11 Comparison between the crushing modes of the supporting plate inside a non-woven Kenaf/epoxy composite tube and empty tubes
7.12 (A, B, C and D) Fracture in the fiber surface of the non-woven kenaf fiber/epoxy packing walls
7.13 Damage mechanism of carbon/epoxy packing
7.14 Percentage of absorbed energy by the two configurations of hexagonal tubes
8.1 Load–displacement curve of β40°, β50° and β60° for lateral crushing load
8.2 The failure mode of the non-woven natural kenaf epoxy composite hexagonal tube: summarized as longitudinal fracture failure mode
8.3 Optical micrographs showing (a) Fiber fracture, and fiber breakage
8.4 The energy absorbed by the hexagonal composite tubes subjected to lateral crushing load
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Hexagonal angle (°)</td>
</tr>
<tr>
<td>SEA</td>
<td>Specific energy absorption (J/Kg)</td>
</tr>
<tr>
<td>S.H.T.β</td>
<td>Hexagonal tube with a supporting plate</td>
</tr>
<tr>
<td>E.H.T.β</td>
<td>An empty hexagonal tube</td>
</tr>
<tr>
<td>Pi</td>
<td>Peak load kN</td>
</tr>
<tr>
<td>TRI</td>
<td>Tube resistant indicator</td>
</tr>
<tr>
<td>m</td>
<td>The specimen mass kg</td>
</tr>
<tr>
<td>S and Si</td>
<td>Crushing distances (mm)</td>
</tr>
<tr>
<td>CFE</td>
<td>Crush Force Efficiency (–)</td>
</tr>
<tr>
<td>E_S</td>
<td>Specific energy absorption (J/g)</td>
</tr>
<tr>
<td>IFI</td>
<td>Initial failure indicator</td>
</tr>
<tr>
<td>M</td>
<td>Weight of the specimens (kg)</td>
</tr>
<tr>
<td>CFMI</td>
<td>Catastrophic failure mode indicator (%)</td>
</tr>
<tr>
<td>P_c</td>
<td>Critical crushing load (kN)</td>
</tr>
<tr>
<td>NFR</td>
<td>Natural fiber reinforcement</td>
</tr>
<tr>
<td>Pm</td>
<td>Mean crash load kN</td>
</tr>
<tr>
<td>(E_t):</td>
<td>Total energy absorbed kJ</td>
</tr>
<tr>
<td>S_E</td>
<td>Stroke efficiency %</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Fibre reinforced polymers (FRP) are composite materials comprised of a polymer matrix combined with high-strength fibres such as glass, aramid and carbon. Although these composite materials exhibit excellent mechanical properties, they also give rise to environmental pollution due to their non-degradability [1, 2]. Currently, traditional reinforcement materials such as glass and carbon fibres are increasingly being replaced by advanced composite materials, e.g, natural fibre-reinforced polymers (NFRP). It is expected that use of fibre/polymer composites will expand in the near future due to the many advantages offered by these materials such as high strength, low weight and corrosion resistance [3].

Several natural fibres such as hemp, flax, sisal, kenaf, and jute have been used in different industrial applications. Recently, natural fibres have drawn the interest of researchers, engineers and scientists as substitute reinforcements for fibre reinforced polymer (FRP) composites tubes. Due to their fairly good mechanical properties, low cost, high specific strength, environmentally-friendly and bio-degradability, ease of fabrication, and good structural rigidity, these materials can be used in an extensive range of applications, including aerospace and the automotive industry. Previous studies focused on how to introduce the natural fibres into industrial applications and the replacement of synthetic fibres with natural fibre materials. The tensile properties of natural fibre reinforce polymers are mainly influenced by Mechanical properties such as tensile properties, flexural properties, and impact strength is strongly affected by fiber content.

In particular, crashworthiness has attracted much attention, especially for the evaluation of crushing behavior and the energy absorbing capability of various composite shapes. In automotive engineering, crashworthiness is defined as the capability of a vehicle to protect its occupants and passengers from serious injury and harm or death in case of accidents or sudden impacts of a specified magnitude. Crashworthiness is related to energy absorption through controlled failure modes that enable the maintenance of a gradual decay in the load profile during energy absorption [4, 5].

Studies of natural fibre-reinforced plastic (NFRP) have been carried out for special geometric shapes of composite tubes that are mainly intended for automobile crashworthy applications due to their favourable strength, weight and corrosion resistance [6-9]. Several researchers reported that a well-designed NFRP composite can exhibit better energy absorption than metals; natural composite materials such as kenaf, silk and hemp fibre-reinforced composite tubes subjected to axial crushing will undergo a fracture to obtain energy absorption rather than the fibre deformation exhibited in metal
tubing [10-12]. As reported previously [13], delamination, local buckling, and bending failure modes make the largest contributions to energy absorption.

In recent eras, most studies globally wide were concerned with the difference methods of incorporating natural fibres, such as hemp, flax, kenaf or bagasse into various types of polymer compositions, in order to modify their properties and to decrease their costs and increasing environmental concern and requirement for developing sustainable materials in engineering application [14-17]. Commonly, the method of processing produce the composite structure for both of fibres were Filament winding process, Hand Lay-up Process followed by curing stage to gain the final product to be ready for test [18-20]. The synthetic fibre used as a fibre part not only for increased tensile strength, the flexural rigidity and crashworthiness properties of the final product, however additionally, helped to ligament the natural fibres together and aided to mold for desired final shape [21, 22].

1.2 Significance of study

1. Several reasons, including weight saving, low density, corrosion resistance, availability, being renewable, environmentally friendly and ease of handling make natural fibers superiors to syntheses fibers in the automobile manufacturing sector.

2. Kenaf fibre was used as reinforcement due to fabricate hexagonal campsite tubes. Due to its low cost, high specific strength, environmentally-friendly and bio-degradability, ease of fabrication, and good structural rigidity, these materials can be used in an extensive range of applications, including aerospace and the automotive industry.

3. Kenaf Natural fibre composites-epoxy, are particularly attractive in automotive applications because of lower cost and lower density. Compared to the Glass fibres and carbon fibres Problem Statements

4. Catastrophic failure modes in composite structure cause less energy absorption capability and instability in failure.

5. The successful development of natural fibres such as kenaf (mat) and yarn would provide opportunities to improve the energy absorption capability and crushing behavior of automobile accidents.

6. The findings from the current study are expected to enhance the knowledge in developing high performance of the industrial sector.

1.3 Scope of study

In this work, The kenaf yarn and (mat) fibres were supplied by (IPSB) Innovative Pultrusion Sdn.Bhd., Seremban, Malaysia. The kenaf (mat) originally comes in a mat
form. This research is limited to experiments to study the potential of using kenaf natural fibres reinforced hexagonal composite tubes. In the industrial application.

In this study, the fabrication process involved the wet wrapping process by hand lay-up was used to fabricate the specimens of non-woven kenaf fibre/epoxy composite hexagonal tubes.

Before fabricate the specimens composite, the kenaf fibre must be processed first to find the different size of kenaf fibre. Then, the axial and lateral tests are carried out on this composite. The microstructure of this composite will be observed by using the Scanning Electron Microscope (SEM). In order to achieve the objective, the scope of research was to make a feasibility study on fibre contents for fibre reinforced hexagonal composite tube, fibre loading is used with value of 20% to 40% to get the best composition for the composite. To considered properties of crashworthiness hexagonal composite tubes in this study to Initial peak Load (Pi), Mean-Crushing Load (Pm), Crush Force Efficiency (CFE), Initial Failure Indictor (IFI) and Specific Energy Absorption (Es). At this stage, two new parameters of crashworthiness were introduced from compression test the first one is indicated for the catastrophic failure mode. It presents a criterion for determining withers the tubes crash in catastrophic or otherwise and Tube resistant indicator (TRI). The tube resistant indicator can be defined as the peak load value per average load value. To protect passengers from shock loads, the tube resistant indicator should be kept in unity. Finally, This work limited to investigate few effects of crushing behaviour and failure modes of composite hexagonal tubes such as, the effect of fibre content, effect of length, The effect of geometry, effect of the fibre reinforcement type.

1.4 Problem Statements

Many issues are associated with car bodies, such as using a metal, which leads to a corrosion point in the car body, to obtain better design. Roads and airplanes are designed to absorb crushing energy for passenger safety. This research is allocated to investigate the effect of structural geometry of crushing behavior, failure mechanism, and failure mode and energy absorption capability.

Failure of a structure component defined as the. Inability of the component to carry load. Generally, failure occurs when a component of the structure has no more ability to carry the load, in other words, when the component is no longer capable of satisfactory fulfilling its service function either because of fractures, excessive deformation, deterioration, or any other mechanisms of failure. When failure occurs, it causes a permanent deformation, load redistribution within the structure, and may cause large reductions in laminate stiffness and strength and any of these or all together cause the damage to grow. Some studies have used a filler tube to absorb the energy, but the weight of such tubes is too high. Natural and synthetic fibers are known for their low density, easier fabrication than metallic, and their structural rigidity are high, and can be used for wide applications, such as. Aerospace applications and automotive industry sector. Owing to this, in depth studies had been conducted to evaluate its failure modes and
process of fabrication for axial and lateral crushing behavior to replace metallic materials. In this thesis, Failure modes and geometrical designs such as shapes, triggering, geometry and effect have been studied where these factors affected on crashworthiness parameters.

Furthermore, the current work used a supporting plate inside hexagonal tubes for the following reasons. The main purpose was to improve of the energy absorbed by tubes. The improvements, including the use on energy absorbing materials and structures in the plate inside the tubes, ensure more favorable decelerations during a crash/accident, resulting in fewer injuries for the car occupants. Furthermore, using the supporting plate inside hexagonal tubes can control the load distribution during the crushing period and can diminish the structure weight.

1.5 Objectives

The objective of this research work to

- To find out the best value of fibre content that effect on the crashworthiness parameters and the failure modes of non-woven kenaf fibre (mat) reinforced hexagonal composite tubes.
- To examine the influence of response of hexagonal light to quasi-static axial compressive load of non-woven kenaf fibre/epoxy hexagonal composite tubes.
- To investigate the effect of geometry on energy absorption capability and load-carrying capacity of natural kenaf fibre reinforced composite hexagonal tubes.
- To determine the effect of supporting plates inside the hexagonal tubes with variable side hexagonal angles in terms of the improvement of crashworthiness.
- To investigate experimentally the effect of hexagonal angles on the failure modes and specific energy absorption capability of hexagonal composite tubes.

To achieve these objectives, the following tools were either designed, fabricated or conducted:

1. Design and fabrication of novel mandrels with different Hexagonal angles.
2. Renovate a filament winding machine.
3. Fabrication of hexagonal composite specimens with different tube lengths and different hexagonal angles.
4. Conduct quasi static (axial and lateral) crushing tests.
5. Conduct microscopic investigation to characterize the failure modes.

1.6 Thesis Outline

The layout of this thesis is in accordance with Universiti Putra Malaysia alternative thesis format based on publications, in which each research chapter (3 – 9) represent a separate
study that has its own introduction, Materials and methods, Results and discussion, and Conclusion. The details of the thesis structure are presented beneath.

Chapter 1

The problems and the research objectives were clearly highlighted in this chapter. In addition, the significant contribution and scope of this study were also elucidated within the chapter.

Chapter 2

Literature review, which presents an overview of the developments made in the area of natural fibres reinforced composites, in terms of their physical and mechanical properties, and crashworthiness properties and Failure modes.

Chapter 3

The methodologies by which the current work was approached are in the details in this chapter. Uncertainties affecting the experimental results such as, Void content, Calibration of the testing machine, Reading error and Maxing up the mixture and adhesion between layers were discussed in this chapter.

Chapter 4

This chapter presents the article entitled. The effect of fibre content on the crashworthiness parameters of natural kenaf fibre-reinforced hexagonal composite tubes. Studies an experimentally the effect of the fibre content on the crashworthiness parameters and the failure modes of non-woven kenaf fibre (mat) reinforced hexagonal composite tubes. Various fibre contents were considered, including 25%, 30%, 35% and 40%.

Chapter 5

Presents the behavior of composite hexagonal tubes under constant axial load, article two entitled Experimental quasi – static axial crushing of non-woven kenaf fibre/epoxy hexagonal composite tubes. Three lengths of hexagonal composite tubes were tested 50, 100, and 150 mm. It also addresses experimentally the effect of length on energy absorption capability and load - carrying capacity of non-woven kenaf/epoxy wrapped hexagonal composite tubes under quasi-static axial compressive load.
Chapter 6

This chapter presents the third objective with article four entitled. Effect of geometry on crashworthiness parameters of natural fibre reinforced hexagonal tubes. The inclusive experimental work implements to study the response of non-woven kenaf fibre/epoxy composite hexagonal tubes to quasi-static axial compressive load. A series of experiments carried out for composite hexagonal tubes with different angles from a range of 40\(^\circ\)– 60\(^\circ\) in 5\(^\circ\) steps. This range is suitable for obtaining a regular hexagonal shape.

Chapter 7 and 8

In this chapter, two articles entitled. Lateral crushing properties of non-woven kenaf (mat)–reinforced epoxy composite hexagonal tubes and Quasi-static lateral crushing of non-woven kenaf fibre reinforced composite Hexagonal tube.

Three configurations of \(\beta=40\,^\circ\), \(\beta=50\,^\circ\) and \(\beta=60\,^\circ\) of natural non-woven kenaf (mat)/epoxy laminate. The effects of hexagonal angles, supporting plate inside the tubes, and failure modes, were studied by a lateral compression test. The crashworthiness of the tubes was evaluated by analysis of the specific energy absorption in quasi-static lateral compression. Specific energy absorption was obtained from the load–displacement curve during testing. The failure mode of the tubes was analyzed from high resolution photographs.

Chapter 9

Finally, the overall conclusions of the various research articles as well as relevant suggestions for future research were presented in this chapter.

References

2.10 Conclusion

From the previous literature review, the following can be concluded:

- Many research works are administrated on thin walled synthetic composite shells and only a few studies carried out on natural fibre reinforced composite tubes as well as. Most of them have focused on investigation the effect of different parameters the geometry cross section area, loading conditions, length, thickness, diameter, etc, fibre orientation, composite constituents, laminate sequence, etc. on crushing behavior, crashworthiness parameters, and failure modes.
- Most of these studies and investigations are experimentally carried out where the Effect factors were studied by developing, creating a relation between load applied -displacement were done under axial and lateral compression test.
- The failure modes and crushing behavior in composite tubes depend on the type of material reinforced composite tubes and structure.

The manners in which composite materials absorb energy are a lot of complicated and wildly differ from the same conventional material structures. From a crashworthiness point of view, the problem with failure mode of structure is that when the failure happens the main of the load-carrying capacity is lost, resulting in catastrophic non-crashworthy failure, the instability behavior of composite structures under crushing load and their uncontrolled failure mode are some problems that need more attention. The instability should be avoided to maximize the energy absorption capability and load carrying capacity.

References

[38] A.K. Bledzki, P. Franciszczak, Z. Osman, M. Elbadawi, Polypropylene

4.10 Conclusion

In this study, the effects of different fibre contents on crashing modes and the energy absorbed by nonwoven kenaf (mat) composite hexagonal tubes were investigated under axial compression loads. It was shown that the resin outflow from a composite usually leads to an undesirable void content during the fabrication process, an irregular arrangement of fibres and uneven resin distribution. Various fibre contents, including 25%, 30%, 35% and 40% by mass, were axially compression tested using an the Instron 3382 system at a fixed speed of 15 m/min. Based on the test data, the following conclusions are possible:

1. The total amount of energy absorbed decreases as the fibre content increases. This is also the case for the stroke efficiency.
2. Axial crashing results in decreasing stroke efficiency, crash efficiency, tensile strain and mean crashing load as the fibre content increases.
3. A few distinct failure modes were identified during the experimental tests of the hexagonal composite tubes:
 • A progressive failure mode in which the failure starts at the top of the tube.
 • A transverse crack failure mode is associated with the buckling failure mode.
 • After the crash, the top or bottom end of the hexagonal tubes starts to break and is fragmented into small pieces.
4. Kenaf fibre content of 25% to 30% results in optimum values of the crashworthiness parameters.

References

References

Acknowledgement

Financial support from Universiti Putra Malaysia through Research, University Grant Scheme vote no. 9301200 is highly appreciated.

References

3. Specimens with non-supported tubes exhibited the lower peak and average crushing loads.

References

8.6 Conclusion

This work is a sequel to a series of previous works which published in material & design journal 2014 [3]. In demand to investigate experimentally the effect of hexagonal angles on the failure modes and specific energy absorption capability of the hexagonal composite tubes. The variety of hexagonal tubes with different angles were subjected to quasi-static lateral compression test load upon the results gained, the main conclusion are listed as follows:

1. The hexagonal tubes for lateral compression load have exhibited a slight difference of SEA

2. The formation of the fracture longitudinal failure mode was observed for all causes.

3. Composite hexagonal tube with β 40° exhibited high energy absorption capability under in the lateral crushing.

References

LIST OF PUBLICATIONS

As an outcome of this study several publication were published in peer reviewed journals and conferences/ Seminar as follows

M.F.M. Alkbir, S. M. Sapuan, Nuraini A.A. And M. R. Ishak Quasi-Static lateral crushing of Non-Woven Kenaf fibre reinforced composite hexagonal tubes, Advanced material research – volume 1119 March 2015, Scopus

M.F.M. Alkbir, S.M. Sapuan, A.A. Nuraini, M.R. Ishak , Effect of Material Type on Crashworthiness Parameters And Failure Modes of natural kenaf fibre Reinforced Composite Hexagonal Tubes . Accepted for a book to be published in CRC press in USA .

M.F.M. Alkbir, S.M. Sapuan, A.A. Nuraini, M.R. Ishak Comparative Investigation on the Failure Modes of Natural Kenaf/Epoxy Reinforced Composite Hexagonal Tube Key Engineering Materials (Volume 709), September 2016 Page 7-10 (Impact factor = 0.39 (Q4)
Conferences and Symposium Proceedings

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ________________

TITLE OF THESIS / PROJECT REPORT :

CRUSHING BEHAVIOR AND FAILURE MODES OF KENAF FIBRE-REINFORCED COMPOSITE HEXAGONAL TUBES

NAME OF STUDENT: MUNIR FARAJ ALMABROUK ALKBIR

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from _______ until _______

(date) (date)

Approved by:

(Signature of Student) ________________ (Signature of Chairman of Supervisory Committee) ________________

New IC No/ Passport No.: ________________ Name: ________________

Date : ________________ Date : ________________

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]