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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fu lfillment  of 

the requirement for the Degree of Master of Science  

 

MOLECULAR SIMULATION BETWEEN AMYLOID BETA (1-42), A 

PEPTIDE ASSOCIATED WITH ALZHEIMER DIS EAS E, AND ZINC(II) ION  

 

By  

NUR S YAFIQAH BINTI ABDUL GHANI 

 

June 2016 

 

Chairman : Roghayeh Abedi  Karjiban, PhD 

 

Faculty : Science 

 

Alzheimer’s disease (AD) is a brain disorder resulting from the accumulation of 

amyloid-forming (both as amyloid-β and tau). Aβ peptide is present in everyone’s 

brain, but the amyloid plaques found in AD’s patients are abnormal, as they can 

degenerate nerve endings. The number of Alzheimer’s patients is increasing rapidly 

while there are no specific solutions being reported yet to treat AD effect ively. 

Amylo id-β(1-42) is a major fragment from amylo id precursor protein (APP) which tends 

to aggregate into mature amylo id fibrils through a number of intermediate structural 

forms, also called the oligomers or protofibrils. They are toxic to neurons. The 

mechanis m by which Aβ aggregates in the brain is not fully understood, however there 

is increasing evidence that metal ions may play an important role in this aggregation 

process. In a healthy brain, the metal ion content is stringently regulated and the 

concentration of free metal ions is kept at a very low level.  

 

Researchers nowadays are trying to uncover the neurodegenerative role of transition 

metals and the oxidative stress in AD which has been found to be responsible for major 

cellu lar p roblems. There are a vast number o f experiment studies trying to shed some 

light on these processes but the lack of theoretical studies on this matter is quite visib le. 

Here, we investigated the effect of zinc ion on Aβ (1-42) and its aggregation water and its 

mixture with hexafluoroisopropanol (HFIP) using molecu lar dynamics calcu lations. 

From our results, the amylo id-β(1-42) fragment and its aggregated structure showed good 

stability in both conditions which were with and without zinc in water based on the root 

mean square deviation and radius of gyration calculations over 1 μs and 100 ns 

simulation time for aggregation process. Besides that, Aβ(1-42) with and without zinc 

tend to produce more helical structures in solvent mixture, but no α -helix was detected 

in both Aβ-H2O and Aβ-Zn-H2O models. 
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The flexibility of Aβ(1-42) in solvent mixture was lower than Aβ (1-42) in water due to the 

length of its helical structure. In contrast, the presence of metal ion increased the 

flexib ility of Aβ(1-42) when the peptide was placed in the solvent mixture, compared to 

its flexib ility in water. Our aggregation study showed that 6Aβ-6Zn-HFIP-H2O model 

had significant changes in secondary structures, compared to 6Aβ -6Zn-H2O system. 

There was also a good correlation with the low flexib ility  of peptide in water. In  

addition, Aβ(1-42) with zinc in water produced less helical structure compared to Aβ (1-42) 

with zinc in mixed solvent. As shown in secondary structure analysis, the aggregation 

process occurred rapidly in water after 20 ns compared to solvent mixture where the 

fully spherical structure was not shown in the mixed solvent. 
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SIMULAS I MOLEKUL DIANTARA AMILOID BETA (1-42), PEPTIDA YANG 

BERKAITAN DENGAN PENYAKIT ALZHEIMER DAN ION ZINK(II)  

 

Oleh  

NUR S YAFIQAH BINTI ABDUL GHANI 

 

Jun 2016 

 

Pengerusi : Roghayeh Abedi  Karjiban, PhD 

 

Fakulti  : Sains 
 

Penyakit Alzheimer merupakan penyakit gangguan otak yang disebabkan oleh 

pengumpulan amiloid yang terdiri daripada kedua-dua protein luar sel, amiloid beta 

(Aβ) dan intrasel (tau). Set iap manusia mempunyai peptida Aβ di dalam otak tetapi 

kandungan plak-plak amiloid yang ditemui pada pesakit Alzheimer adalah luar b iasa 

kerana mereka boleh menyebabkan kemerosotan hujung saraf. Kuantiti pesakit  

Alzheimer semakin meningkat dengan mendadak sedangkan tiada penyelesaian yang 

spesifik d ilaporkan untuk merawat AD secara efektif. Aβ(1-42) merupakan pecahan 

utama yang terhasil daripada amiloid pelopor protein (APP) yang tercenderung untuk 

berkumpul (agregat) kepada gentian amilo id matang melalu i sebilangan bentuk struktur 

pertengahan yang juga dikenali sebagai oligomer atau protofibril. Ia merupakan racun 

kepada neurons.  

 

Mekanisme untuk Aβ bergumpal di dalam otak masih belum difahami sepenuhnya, 

walaubagaimanapun, terdapat banyak bukti ion-ion logam yang juga memainkan  

peranan dalam proses agregat ini. Otak yang sihat mempunyai kandungan ion logam 

yang spesifik dan kepekatan bagi ion logam yang bebas berada pada tahap yang sangat 

rendah. Para penyelidik pada masa kini sedang mencuba membongkar peranan 

neurodegeratif logam peralihan dan tekanan oksidatif yang merupakan punca bagi 

masalah selular secara keseluruhan. Pelbagai ujikaji telah d ilakukan untuk mencari 

sinar dalam proses ini tetapi kekurangan ilmu dalam b idang teori dalam kajian ini 

kelihatan jelas. Di dalam penyelidikan ini, kami mengkaji tentang kesan ion zink 

terhadap Aβ(1-42) dan penggumpalannya dalam air serta larutan bercampur yang 

mengandungi air dan larutan hexafluoroisopropanol (HFIP) dengan menggunakan 

kaedah pengiraan dinamik moleku l.  
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Keputusan kami menunjukkan bahawa struktur amyloid-β dan pengumpulan Aβ(1-42) 

menunjukkan kestabilan yang baik untuk semua keadaan iaitu dengan zink dan tanpa 

zink di dalam air berdasarkan varians sisihan punca min kuasa dua (RMSD) dan jejari 

legaran (Rg) untuk 1 μs and 100 ns untuk proses penggumpalan masa simulasi. Selain  

itu, Aβ(1-42) dengan zink dan tanpa zink menghasilkan kuantiti alfa -helik yang banyak 

di dalam larutan bercampur tetapi t idak kelihatan alfa-helik langsung pada model Aβ-

H2O dan Aβ-Zn-H2O. Fleksibiliti Aβ(1-42) di dalam larutan bercampur adalah rendah 

berbanding dengan Aβ(1-42) dalam air disebabkan oleh alfa-helik yang panjang. 

Sebaliknya, kehadiran ion logam meningkatkan fleksibilit i Aβ (1-42) apabila peptida itu 

diletakkan dalam larutan bercampur berbanding dengan fleksibilit inya di dalam air.  

 

Kajian kami dalam proses pengumpulan telah menunjukkan bahawa model 6Aβ-6Zn-

HFIP-H2O mempunyai perubahan yang ketara dalam struktur sekunder berbanding 

dengan sistem 6Aβ-6Zn-H2O. Terdapat korelasi yang baik dengan peptida yang 

mempunyai fleksibiliti rendah dalam air. Tambahan pula, Aβ (1-42) dalam larutan 

bercampur dengan zink ion dalam air menghasilkan struktur helik yang rendah 

berbanding dengan Aβ(1-42) dan zink ion di dalam larutan bercampur. Proses 

penggumpalan berlaku dengan pantas di dalam air iaitu selepas 20 ns tetapi 

pembentukan sfera tidak dapat ditunjukkan sepenuhnya di dalam larutan bercampur.  
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CHAPTER 1 

INTRODUCTION 

The most regular basis of dementia in aging individuals all over the world is 

Alzheimer’s disease (AD). As a person gets older, AD becomes a more crit ical and 

ever-growing public health problem. AD is known as a type of prion-related illness that 

shows up in various diseases, for example Creutzfeldt-Jakob, bovine spongiform 

encephalopathy and Mad Cow. Statistically, in 2010, 5.1% of the US community was 

older than 65 years and about 454,000 AD cases were recognized, followed by a 10% 

boost up to 2,000 numbers each year (Abbott, 2011). There are no medicine, efficient 

approaches or powerful precautionary part for AD but younger generations may take 

some drugs to improve the cholinergic system, such as galantamine (Razadyne), 

donepezil (Aricept), tacrine (Cognex) and rivastigmine (Exelon) to avoid the risk of 

developing AD (Mancuso et al., 2011). The AD consequences on the mind are widely  

manifested over the failure  of cholinergic neurons. 

 

AD causes around 66.67% of extensive crisis of dementia (Pasture and Onkia, 1994). 

There are two well-known groups which analyse the risk factors of AD; the European 

Community Concerted Action on Epidemiology and Prevention of Dementia 

(EURODEM), and the Canadian Study of Health and Aging (CSHA) association. The 

EURODEM stated that smoking might raise the danger of AD (Launer et al., 1999), 

but there were no specific studies to observe the relationship between smoking and the 

onset of AD (Hebert et al., 1992, Wang et al., 1999; Dol et al., 2000). 

 

EURODEM also reported that sex and low educational level were highly associated 

with the AD cases. However, they were not considered as possible aspects that 

triggered AD in other researches (Cobb et al., 1995; Yoshitake et al., 1995). On the 

other hand, the CSHA performed an enormous study of dementia towards aging people 

by concentrating on its popularity (Posture and Onkia, 1994), incidence (McDowell et  

al., 1994) and risk factors (McDowell et al., 1994; Lindsay et al., 1997; Hébert et al., 

2000). It was found that, either the amyloid-β precursor protein (AβPP) or some 

enzymes for example, presenilin-1 from the metabolism process had contributed about 

5% of the AD cases. 

 

Both neural oxidative stress and neuroinflammatory events are crucial factors in the 

neurodegenerative landscape of AD. AD is regularly defined and distinguished by the 

existence of both Aβ-rich plaques (neuritic) and neurofibrillary tangles (NFTs) in the 

range of the entorhinal cortex, hippocampus and isocortex, that combined with synapse 

loss and clinical dementia (Duyckaerts et al., 2009). Aβ plaques have been effectively 

investigated for almost three decades and have been carefully analyzed. The 40-42 

amino acids of Aβ peptides  which are produced from a classic single-pass type 1 

transmembrane protein called the amylo id precursor protein (APP) can form neurotoxic 

oligomers, to be ultimately restored in the hightly hydrophobic extracellu lar deposits , 

also known as plaques. 
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These plaques tend to concentrate over time and eventually, they become a dense core 

or neuritic structures in the advanced stages of disease (D’Alton et al., 2011; Karran et 

al., 2011). The pathological modification of amyloid precursor protein towards the 

uncontrolled quantity of Aβ in numerous forms (monomers. oligomers, protofibrils and 

fibrils) will lead to precipitation in the downstream processes, including the 

neuroinflammatory activation of microglia and neuritic pathology. Then, it will induce 

tangles’ formation and cell death. Aβ has also been linked to the initiation of other AD 

pathophenomena. In addition, some studies propose that the oligomeric Aβ is more 

toxic than the Aβ fibrils themselves (Glabe et al., 2005). The NFTs are usually found in  

the neocortical grey matter parenchyma. They are produced from proteins (MAPs) and 

many other components that have been identified using immunohistochemistry, 

immunoprecip itation and laser capture microdissection-mass spectrometry methods 

(Wang et al., 2005; Duyckaerts et al., 2009). 
 

The tau protein functions as a stabilizer by attaching the mict rotubules (MTs) to 

increase its rigidity along the length of axons (Obulesu et al., 2011). Even though AD 

diagnosis generally needs a burden of plaques plus tangles, their mere presence do not 

always coincide with neuron loss or clinical dementia prior to death and autopsy 

(Green et al., 2000; Price et al., 2009). The human brain appears particularly  

vulnerable to oxidative stress . This necessitates the elaboration of complex antioxidant 

defenses in order to maintain oxidative balance. Vitamin A, C and E, glutathione and a 

several number of enzymes are the antioxidants that facilitate electron transfer to a 

nontoxic species such as catalase, superoxide dismutase and glutathione peroxidase . 

Each of them has been proven to decrease with age. Hence, the vulnerability of brain  to 

oxidative stress originates from a number o f various mechanisms.  

 

In a healthy brain, the amount of metal ion is strictly standardized and the metal 

concentrations are kept at a very low level. The metal ions which are necessary for 

biological function and metal-binding of proteins (i.e. metalloproteins) constitute 

around one third of the proteome. The transition metals have a growing role of 

interactions on brain-related diseases because of their participation in biochemical 

reactions, forming free radicals. It is well known that oxidative stress is responsible for 

major cellu lar problems. The relationship between the AD disease and metals has been 

mostly studied by focusing on local accumulat ions of plaques in brain areas at high risk 

for AD (Squitti et al., 2013). The hypothesis of Aβ-induced oxidative stress in AD 

patients (Markesbery et al., 1997;  Butterfield et al., 2009) has been supported by Aβ-

induced elevation of oxidative stress marker in b rain and the subsequent neuronal 

degeneration (Frautschy et al., 1991). 
 

The research interest on the metal ions’ position, specifically zinc, copper, alumin ium, 

and iron in the neurobiological processes is growing rapid ly. There are increasing 

evidences which demonstrate the interactions of zinc (II) and copper (II) ions with Aβ 

peptides and their effects towards fibrilization and toxicity. A lot of Zn
2+

 and Cu
2+

 ions 

are present in the synaptic area of the brain. It is possible that the age-related 

dyshomeostasis of these biometals are associated with the AD pathology. The assembly  

of Aβ into tinctoral aggregates as induced by Zn
2+

 ion  was first reported by Bush and 

colleagues in 1994 where the aggregation was caused by sub-stoichiometric 

concentrations of Zn
2+

 (Bush et al., 1994).  
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Tougu et al. (2011) also stated that Aβ40 can aggregate in the presence of Zn
2+

 ions in a 

millisecond period (Noy et al., 2008). Previous studies reported two possible ways. 

First, the metal ions will attach to amyloid monomers and accumulate in the brain to 

form oligomers through the aggregation of metallated monomers. Next, they will 

connect the pre-formed apo-oligomers. Due to the various arrangements and 

distributions of the monomer and oligomer ensembles, these two pathways may 

eventually show different binding abilities of the metal ions that are connected to 

oligomers (Miller et al., 2012). The Alzheimer’s cases are increasing rap idly in number 

worldwide, yet there is no exact medicine for AD to date. Several evidences have 

shown that the interaction of Aβ with transition metal ions can lead to the aggregation 

and toxicity (Bolognin et al., 2011). The mechanis m of its action has been explained by 

a few experimental works but the data obtained are still limited (Nilsson, 2004;  

Takano, 2008; Vivekanandan et al., 2011). 

 

The experimental results could not identify the necessary approach to figure out the 

direct protein-metal interactions at the single-molecular level. The problem faced in 

most experimental approaches is the direct observation of protein-protein and protein-

metal interactions which require  the proteins to be soluble and analyzed using several 

forqualitatic methods such as electrophoresis, mass spectrometry, and chromatography. 

Without a doubt, this will pose considerable challenges for those who adopt insoluble 

amyloid configuration in the direct analysis. In addition, X-ray crystallography and 

other related procedures depend upon protein crystallizat ion in the first place which is 

not effective in describing heterogeneously sized oligomers, polymers and amorphous 

aggregates or insoluble amyloid proteins (Pedersen & Heegard, 2013). Nowadays, the 

amount of molecular biological data is  increasing rapidly, thus the computer-based 

analysis of molecular interactions has become more  and more practical. 

 

Molecular modeling involves all theoretical methods and computational skills to 

model, predict or even mimic the routine of molecules. In this study, they were applied 

on Aβ peptide by treating the protein as the monomer to produce mechanistic and 

structural informat ion of its aggregation processes , because Aβ peptide can aggregate 

very fast in water. However, using all-atom force field for full length MD simulations 

of Aβ40 and Aβ42 in aqueous solution is very challenging. Therefore, limited findings 

from MD have been reported. For example, Santini et al. (2004) and Rodziewicz-

Motowidlo et al. (2008) simulated the hydrophobic core of Aβ16-22 only, using implicit  

solvent model (Santini et al., 2004; Rodziewicz-Motowidło et al. 2008), while others  

used the coarse-grained MD approaches. 

 

The combination of coarse-grained atomic representations and the enhanced 

computational power, has allowed us to perform the simulations of biological complex 

systems within microsecond or millisecond time frame (Tozzin i, 2005). Moreover, the 

timescales accessible to simulation coincide with the particular that is reachable using 

high advanced spectroscopic techniques . Therefore, it is possible to directly compare 

MD observations with the experimental results, for example, the complex aggregation 

of soluble proteins into fibrillar species (Wu and Shea, 2011). The coupling of 

powerful computers and molecular modeling approaches such as molecular docking 

and MD makes computational chemistry an exciting area for groundbreaking 

researches with lots of capabilit ies  (Karplus and Kuriyan, 2005).  
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1.1 Objectives 

The main object ives of this study were to identify the amyloid-β(1-42) peptide interaction 

with zinc ion in water and its mixture with hexafluoroisopropanol (HFIP) fo llowed by 

exploring the aggregation process of this peptide in the presence of metal by using MD 

simulation technique. Therefore, these specific objectives were selected: 

 

 

 To simulate the interaction of Aβ(1-42) peptide with zinc ion in different solvent 

conditions. 

 

 To model the aggregation process of Aβ (1-42) peptide in the presence of zinc 

ion in different solvent conditions. 

 

 To determine the dynamics, flexib ility and structural changes of both model 

systems after interacting with metal.  
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