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NUMERICAL SOLUTIONS OF LINEAR FREDHOLM
INTEGRO-DIFFERENTIAL EQUATIONS OF THE SECOND KIND USING

QUADRATURE-DIFFERENCE METHODS

By

CHRISCELLA BINTI JALIUS

December 2016

Chairman:Zanariah binti Abdul Majid, PhD
Faculty: Institute for Mathematical Research

Fredholm integro-differential equation (FIDE) is an equation which is the unknown
functions appears under the sign of derivative and also integral sign. Therefore, the
formulation of numerical quadrature rules and finite difference method are applied
for solving first-order and second-order linear FIDE of the second kind. The finite
difference method is used for ordinary differential equations part, while composite
quadrature rules are applied for the integral part of FIDE. Numerical solutions of
linear FIDE by using quadrature-difference methods are proposed in this thesis.

There are four types of formulation proposed in this thesis which are composite
Simpsons 3/8 rule with first derivative of 5-point finite difference, composite Simp-
sons 3/8 rule with second derivative of 5-point finite difference, composite Booles
rule with first derivative of 7-point finite difference and composite Booles rule with
second derivative of 7-point finite difference. These formulations will be used to
produce an approximation equations in order to discretize the FIDE into a system of
linear algebraic equation. The system of linear algebraic equation will be solved by
using Gauss elimination method. An algorithm and a coding of the proposed meth-
ods are developed in this thesis. The source of the coding for solving linear FIDE is
developed by using C programming with constant step size.

The four types of formulation which based on quadrature rules and finite difference
method are implemented for solving Type 1 and Type 2 of first-order and second-
order linear FIDE. In this thesis, the boundary condition will be considered in solv-
ing the second-order linear FIDE. Moreover, the order of accuracy of the proposed
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method are studied in this thesis.

Finally, the numerical experiments were carried out in order to examine the accuracy
of the proposed method. The results indicated that the proposed methods are suitable
for solving first-order and second-order linear FIDE of the second kind.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk Ijazah Sarjana Sains

PENYELESAIAN BERANGKA BAGI PERSAMAAN
PEMBEZAAN-KAMIRAN FREDHOLM LINEAR JENIS KEDUA

MENGGUNAKAN KAEDAH BEZA-KUADRATUR

Oleh

CHRISCELLA BINTI JALIUS

Disember 2016

Pengerusi: Zanariah binti Abdul Majid, PhD
Fakulti: Institut Penyelidikan Matematik

Persamaaan pembezaan-kamiran Fredholm (PPKF) adalah persamaan yang mem-
punyai fungsi yang tidak diketahui muncul di dalam bentuk pembezaan dan dalam
bentuk pengamiran. Oleh itu, formulasi aturan kuadratur berangka dan kaedah beza
terhingga digunakan untuk menyelesaikan peringkat pertama dan kedua bagi PPKF
linear jenis kedua. Kaedah beza terhingga digunakan untuk menyelesaikan baha-
gian persamaan pembezaan biasa, manakala aturan kuadratur gubahan digunakan
untuk menyelesaikan bahagian kamiran pada PPKF. Penyelesaian berangka bagi lin-
ear PPKF dengan menggunakan kaedah beza-kuadratur yang dicadangkan di dalam
tesis ini.

Terdapat empat jenis formulasi yang diusulkan di dalam tesis ini iaitu aturan Simp-
son 3/8 gubahan dengan kaedah beza terhingga 5-titik terbitan pertama, aturan Simp-
son 3/8 gubahan dengan kaedah beza terhingga 5-titik terbitan kedua, aturan Boole
gubahan dengan kaedah beza terhingga 7-titik terbitan pertama dan aturan Boole
gubahan dengan kaedah beza terhingga 7-titik terbitan kedua. Formulasi-formulasi
itu digunakan untuk mendapatkan persamaan hampiran bagi tujuan mendiskritkan
PPKF kepada sistem persamaan aljabar linear. Sistem persamaan aljabar linear akan
dapat diselesaikan dengan menggunakan kaedah penghapusan Gauss. Algoritma dan
kod bagi kaedah yang diusulkan dibina di dalam tesis ini. Sumber kod bagi menye-
lesaikan PPKF linear dibina dengan menggunakan pengaturcaraan C dengan saiz
langkah yang malar.

Keempat-empat jenis formulasi itu adalah berdasarkan peraturan kuadratur dan
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kaedah beza terhingga yang dilaksanakan untuk menyelesaikan Jenis 1 dan Jenis
2 bagi PPKF linear peringkat pertama dan peringkat kedua. Dalam tesis ini, syarat
sempadan akan dipertimbangkan bagi menyelesaikan PPKF linear peringkat kedua.
Seterusnya, peringkat bagi kejituan kaedah yang dicadangkan adalah turut dikaji di
dalam tesis ini.

Akhir sekali, ujikaji bagi masalah berangka telah dijalankan untuk mengkaji kejituan
kaedah yang dicadangkan. Hasil kajian menunjukkan bahawa kaedah yang dicadan-
gkan adalah sesuai untuk menyelesaikan PPKF linear bagi peringkat pertama dan
kedua.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The area of integral equations has attracted many researchers. There are various of
research works that have been done by the researchers which contributed towards the
development of the field. An integral equation is an equation in which the unknown
function appears under one or more integral signs (Wazwaz, 2011). The general type
of integral equation is given in the following form

y(x) = f (x)+λ

∫ b

a
K(x, t)y(t)dt, (1.1)

where a and b are the limits of integration, λ is the constant parameter and K(x, t)
is called the kernel of the integral equation. The function y is the unknown function
which will be determined and it appears inside the integral sign and also outside the
integral sign. While, the functions f (x) and K(x, t) are given in advance. The limits
of integration a and b may be both fixed or at least one of the limit is variable. If
at least one of the limits of integration are variable, then the equation will be called
Volterra equation, whereas when the limits of integration is fixed, it is called Fred-
holm equation. Therefore, we can say that, this is one significant different between
Fredholm equation and Volterra equation. In addition, this type of integral equations
can be divided into two groups which is first kind and the second kind.

Nowadays, integro-differential equations has been emerged in many scientific and
engineering applications which mostly appeared in an electrical circuit analysis.
An integro-differential equations appeared especially when the initial value problem
(IVP) or boundary value problem (BVP) are converted to integral equations. Both
differential and integral operators appeared together in integro-differential equations
and the differential operator may appear in any order depending on the problems
studied. Thus, the general equation of integro-differential equation appear in the
form of

y(n)(x) = f (x)+λ

∫ b

a
K(x, t)y(t)dt, (1.2)

where n is represent the order of the derivative of the unknown function. There are
three types of integro-differential equation which are regularly studied by many re-
searchers such as Fredholm, Volterra and Fredholm-Volterra because of its various
used either in practical or in real life applications. Fredholm-Volterra is a com-
bination of Fredholm and Volterra where the general form will have two integral
operators.
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Integral equations or integro-differential equations are usually difficult to solve an-
alytically. Thus, by choosing numerical techniques, it is much easier to obtain an
approximation to the solution of the problem. In addition, the numerical approaches
can obtain accurate approximation solution and the algorithm can be developed
which will be used in the computation of the approximation solution.

1.2 Fredholm Integro-Differential Equations

The Fredholm Integro-Differential Equation (FIDE) contains both differential and
integral operators in the same equation (Delves and Mohamed, 1985). FIDE appear
when the differential equations were converted into integral equations. Thus, FIDE
is given in the following form

y(n)(x) = f (x)+λ

∫ b

a
K(x, t)y(t)dt, (1.3)

where y(n) is the nth derivative of y(x). The value of n refer to the order of the equa-
tion. In addition, this general equation for linear FIDE is for second kind problem.
Thus, first-order FIDE and second-order FIDE are focused in this study.

It is important to understand the concept of linearity in FIDE. The FIDE is classify as
nonlinear if the unknown function of y(t) contains nonlinear function such as y2(t),
sin(y(t)) and ey(t). In this thesis only linear problems will be solved. FIDE can be
classified into two types for first-order linear FIDE and four types for second-order
linear FIDE.

1. First-order linear FIDE of the second kind

y′(x) = p(x)y(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.4)

with the initial condition

y(a) = ya

(i) Type 1 [ p(x) = 0 ]

y′(x) = g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.5)

(ii) Type 2 [ p(x) 6= 0 ]

y′(x) = p(x)y(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.6)

2
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2. Second-order linear FIDE of the second kind

y′′(x) = q(x)y′(x)+ p(x)y(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.7)

with the boundary condition

y(a) = ya and y(b) = yb

(i) Type 1 [ p(x) = 0 and q(x) = 0 ]

y′′(x) = g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.8)

(ii) Type 2 [ p(x) 6= 0 and q(x) = 0 ]

y′′(x) = p(x)y(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.9)

(iii) Type 3 [ p(x) = 0 and q(x) 6= 0 ]

y′′(x) = q(x)y′(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.10)

(iv) Type 4 [ p(x) 6= 0 and q(x) 6= 0 ]

y′′(x) = q(x)y′(x)+ p(x)y(x)+g(x)+λ

∫ b

a
K(x, t)y(t)dt, (1.11)

In this thesis, Type 1 and Type 2 of the first-order linear FIDE and second-order
linear FIDE will be solved. In addition, the inital conditions will be used in solving
first-order linear FIDE, while boundary conditions will be used for second-order
linear FIDE. In this thesis, it is important to know the type of FIDE before solve the
problem in order to choose the right method that will be applied. The FIDE of the
second kind appear in a various of scientific applications such as the theory of signal
processing and neural networks (Wazwaz, 2011).

During this several decades, there are many researches that introduced variety of
efficient numerical methods and analytical methods for solving FIDE. In order to
solve the integral term in (1.4) - (1.11), numerical quadrature rules will be used.
Therefore, in this thesis direct quadrature method will be considered for solving
the integral term in FIDE problems. The examples of direct quadrature method are
Newton-Cotes quadrature rule, Gregory rule and Gaussian quadrature formula. In
this thesis, the Newton-Cotes quadrature rule will be considered to solve the integral
part.
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1.3 Objective of the Thesis

The main objective of this thesis is to solve Type 1 and Type 2 for first-order and
second-order linear FIDE of second kind by using quadrature-difference method.
Therefore, the main objective of this thesis can be achieved by

1. Constructing the formulation of the first derivative of 5-point finite difference
together with composite Simpson’s 3

8 rule to generate a system of linear alge-
braic equations for solving first-order linear FIDE.

2. Constructing the formulation of the second derivative of 5-point finite differ-
ence together with composite Simpson’s 3

8 rule to generate a system of linear
algebraic equations for solving second-order linear FIDE.

3. Constructing the formulation of the first derivative of 7-point finite difference
together with composite Boole’s rule to generate a system of linear algebraic
equations for solving first-order linear FIDE.

4. Constructing the formulation of the second derivative of 7-point finite differ-
ence together with composite Boole’s rules to generate a system of linear al-
gebraic equations for solving second-order linear FIDE.

5. Solving the system of linear algebraic equations using Gauss elimination
method in C programming.

1.4 Scope of the Study

This research will focused on solving Type 1 and Type 2 of first-order and second-
order linear FIDE of the second kind. In solving second-order linear FIDE, the
boundary condition will be considered. The quadrature-difference methods are im-
plemented for solving linear FIDE. The quadrature rules that used in this research are
composite Simpson’s 3

8 rule and composite Boole’s rule, while for finite difference
method, forward, central and backward difference of the 5-point finite difference and
7-point finite difference will be applied. The quadrature rules and finite difference
method were discretized and a system of linear algebraic equation are generated.
The Gauss Elimination method will be used to solve the system of linear algebraic
equation.

1.5 Outline of the Thesis

This thesis will cover five chapters such in the following contents:

Chapter 1 is a brief introduction of this thesis. FIDE is introduced in this chapter
together with the objective of the thesis and the scope of the study. In Chapter 2, the
reviews of previous work done by other researchers which related to FIDE are given.

4
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Besides that, the mathematical concepts on FIDE are included. The basis definitions
and properties of quadrature rules and finite-difference method are presented.

In Chapter 3, the first-order and second-order linear FIDE of the second kind are
solved by using quadrature-difference methods which are formulation of composite
Simpson’s 3

8 rule together with first derivative and second derivative of 5-point finite
difference method. Firstly, the derivation of composite Simpson’s 3

8 rule and the
derivation of 5-point finite difference method for first derivative and second deriva-
tive are shown. The order of accuracy for the proposed methods are investigated.
Next, the formulation of composite Simpson’s 3

8 rule with 5-point finite difference
method for first-order and second-order linear FIDE together with the algorithms are
given. Several numerical problems for first-order and second-order linear FIDE are
tested and the numerical results are presented in order to show the accuracy of the
proposed method. Lastly, the discussion on numerical results are presented.

In the next chapter, the quadrature-difference methods which based on the formu-
lation of composite Boole’s rule together with first derivative and second derivative
of 7-point finite difference method are presented for solving first-order and second-
order linear FIDE of the second kind. First, the methods are derived and the order
of accuracy of the methods are determined. Next, the proposed methods for solving
first-order and second-order linear FIDE are formulated in order to produce the ap-
proximation equations. The algorithms of the proposed methods are presented. In
order to show the accuracy of the proposed method, some numerical experiments are
carried out.

Lastly, Chapter 5 contains the summary of the thesis and the future work that can be
suggested or extended from this research.

5
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