UNIVERSITI PUTRA MALAYSIA

ANTHROPOGENIC ACTIVITIES IMPACT ON WATER QUALITY, FISH COMMUNITY AND BACTERIA PRESENCE IN DISTURBED AND UNDISTURBED NORTH SELANGOR PEAT SWAMP FOREST, MALAYSIA

SULE HUSSEIN ALIU

FS 2016 78
ANTHROPOGENIC ACTIVITIES IMPACT ON WATER QUALITY, FISH COMMUNITY AND BACTERIA PRESENCE IN DISTURBED AND UNDISTURBED NORTH SELANGOR PEAT SWAMP FOREST, MALAYSIA

By

SULE HUSSEIN ALIU

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirement for the degree of Master of Science

December 2016
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
To my loving parents, for their immense support
To my beloved wife Rabiat Aliu, for her love, patience and wholehearted support
&
To my beautiful daughters Aqeelah Aliu & Hafeezah Aliu, for making everything worthwhile
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANTHROPOGENIC ACTIVITIES IMPACT ON WATER QUALITY, FISH COMMUNITY AND BACTERIA PRESENCE IN DISTURBED AND UNDISTURBED NORTH SELANGOR PEAT SWAMP FOREST

By

SULE HUSSEIN ALIU

December 2016

Chairman: Ahmad Ismail, PhD
Faculty: Science

This study is concerned with the impact of anthropogenic activities on the water quality, the fish community and the bacteria presence in disturbed and undisturbed north Selangor peat swamp forest (NSPSF). Field sampling and analyses were conducted during the months of June and October 2015, and January 2016. Environmental conditions, and water physicochemical data were measured in peat swamp, paddy field and oil palm plantation. Fish was collected and bacterial isolation and identification from fish, water and sediment using standard microbiological techniques. Statistical analyses employed include ANOVA and Turkey LSD, Kruskal-Wallis and Mann-Whitney tests, Principal Component Analysis (PCA) and Canonical Correspondence Analysis (CCA). In addition, fish community structure was calculated using Shannon-Weaver diversity, Pielou’s evenness and Margalef’s richness indexes.

Peat swamp recorded a significantly (p < 0.05) higher phosphate (1.937 ± 0.196 mg L⁻¹), sulphate (28.917 ± 20.398 mg L⁻¹) and chlorine (0.915 ± 0.361 mg L⁻¹), while low for pH (3.684 ± 0.251), dissolved oxygen (0.590 ± 0.169 mg L⁻¹) and ammonia-nitrogen (0.346 ± 0.081 mg L⁻¹) when compared to paddy field and oil palm plantation areas. However, there was no significant (p > 0.05) difference observed for water electrical conductivity, total dissolved solids, salinity and nitrite for at least two of the sampling habitats, and for all of the sampling habitats for water temperature. The phosphate and chlorine levels of all sites, the pH of peat swamp (3.684 ± 0.251) and paddy field (4.962 ± 0.462), and the dissolved oxygen level in peat swamps were above the standard level for support of aquatic life and fall into class V of the National Water Quality Standard (NWQS) of Malaysia.

Paddy field recorded a significantly (p < 0.05) lower score of accessibility (1.50 ± 0.548) and deforestation level (1.00 ± 0.000), while oil palm recorded the lowest score of pollution level (2.00 ± 0.000). There was no significant (p > 0.05) difference on level of human development, water depth and pollution in at least two of the sampling habitats, and for all of the sampling habitats in terms of the distance from human settlement. With the exception of water depth, all of the measured environmental conditions showed their importance in determining the water quality of the NSPSF.
Statistical analyses revealed that pollution level is the most important environmental factor determining water quality in the NSPSF.

A total of 1382 individual fish belonging to 20 species were collected during this study. Of this, only 15 species were collected from peat swamp, compared to 19 and 20 species from paddy field and oil palm plantation respectively. In the same vein, peat swamp recorded the lowest species diversity (2.4243) and richness (2.4768), compared to paddy field and oil palm plantation. Family Cyprinidae has the highest number of representative species. A notable concern however is the absence of several endangered species such as *Betta livida* and *Parosphromenus harveyi*, which were previously recorded from the NSPSF, highlighting the need for a reassessment of their conservation status. Multivariate statistics reveal that the water physicochemical parameters such as water temperature, conductivity, ammonia, sulphate, chlorine and dissolved oxygen influence fish community.

A total of 3,421 isolates from 39 species of bacteria were obtained during this study. The most dominant bacterial species were *Escherichia coli*, *Salmonella* spp., and *Streptococcus agalactiae*. Paddy field and oil palm plantation had the highest number of isolates and species, due to higher anthropogenic inputs in these areas. Among the species isolated were several pathogens such as *Aeromonas hydrophila*, *Edwardsiella tarda*, *Staphylococcus* spp., and *S. agalactiae*. Water physicochemical parameters such as water temperature, conductivity, ammonia, sulphate, chlorine and dissolved oxygen were important in influencing bacterial composition.

This study identifies peat land conversion to agriculture, anthropogenic inputs such as domestic and industrial effluents discharge as the greatest threats to the resident biological communities in the NSPSF. Among others, the importance of inclusion of water quality improvement strategies in peatland conservation was highlighted.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERKAITAN ANTARA AKTIVITI ANTROPOGENIK, KUALITI AIR, STRUKTUR KOMUNITI IKAN DAN KEHADIRAN BAKTERIA DI HUTAN PAYA GAMBUT UTARA SELANGOR.

Oleh

SULE HUSSEIN ALIU

Disember 2016

Pengerusi: Ahmad Ismail, PhD
Fakulti: Sains

Paya gambut merekodkan jumlah fosfat yang signifikan (1.937 ± 0.196 mg L⁻¹), sulfat (28.917 ± 20.398 mg L⁻¹) dan klorin (0.915 ± 0.361 mg L⁻¹), manakala bagi nilai pH yang paling rendah (3.684 ± 0.251), oksigen terlarut (0.590 ± 0.169 mg L⁻¹) dan amonia-nitrogen (0.346 ± 0.081 mg L⁻¹) apabila dibandingkan dengan sawah padi dan juga ladang kelapa sawit. Pelbagai spesies ikan dikutip serta pengasingan dan pengenalpastian bakteria daripada ikan, air, dan juga sedimen menggunakan teknik mikrobiologi piawai. Analisis statistik juga telah dijalankan menggunakan ANOVA dan Turkey LSD, Kruskal-Wallis dan ujian Mann-Whitney, Analisis Komponen Utama (PCA) dan Analisis Menyurat Canonical (CCA). Tambahan pula, struktur komuniti ikan telah dikira menggunakan kelpelbagaia Shannon-Weaver, kesamarataan Pielou dan indeks kekayaan Margalef.

Sawah padi merekodkan jumlah signifikan skor yang lebih rendah bagi kebolehcapaian (1.50 ± 0.548) dan tahap pembasman hutan (1.00 ± 0.000), manakala ladang kelapa sawit mencatatkan skor paling rendah bagi tahap pencemaran (2.00 ± 0.000). Terdapat tiada perbezaan yang signifikan bagi tahap pembangunan manusia, kedalaman air, serta pencemaran sekurang-kurangnya pada dua kawasan habitat persampelan, serta bagi semua habitat persampelan dalam erti kata lebih jauh dari pada kawasan kediaman manusia. Dengan keberkecualian bagi kedalaman air, kesemua keadaan yang telah
diukur menunjukkan kepentingan dalam mengenalpasti tahap kualiti air bagi NSPSF. Analisis statistik memaparkan tahap pencemaran adalah faktor alam sekitar yang terpenting untuk mengenalpasti kualiti air didalam NSPSF.

Kajian ini mengenalpasti kawasan paya bertukar kepada pertanian, input antropogenik seperti baju, domestik serta pembuangan kumbahan industri sebagai ancaman terbesar kepada komuniti biologi didalam NSPSF. Selain itu, kajian ini juga mengangkat kepentingan penglibatan strategi perbaikan kualiti air dalam memelihara paya gambut.
ACKNOWLEDGEMENTS

My gratitude to almighty Allah for His blessings, protection, strength, good health and abilities He showered on me to enable me get to this point in my life. My heart deep appreciation goes to my supervisory committee Prof. Dr. Ahmad Ismail, Dr. Mohammad Noor Amal Azmai and Dr. Syaizwan Zahmir Zulkifli, who have given me individual help and support. I thank them for their invaluable guidance, ideas, patience, and encouragement.

My heartfelt gratitude to the management of Kogi State College of Education Ankpa, Nigeria for giving me the opportunity for this program. Special thanks to the Tertiary Education Trust Fund (TETFund), Abuja, Nigeria for the grant to undergo this program. In a very special way, I thank Dr. Drisu J. Okai, the Registrar, Kogi State College of Education Ankpa, Nigeria, for his immeasurable and unrivalled support throughout my life. Thank you for being there for me, Dad.

My deepest appreciation to my beautiful family, my loving and caring wife Mrs Rabiat Aliu, my dearest children Aqeelah Aliu and Hafeezah Aliu who has been my inspirations. I cannot quantify your patience, sacrifices and support throughout my studies. Your understanding with daddy for leaving you for this long is deeply appreciated. I also thank my parents, Mr. Hussein F. Sule and Mrs. Haishat A. Sule for their prayers and love. Not forgetting my siblings, I thank all of you for your prayers.

To my friends and colleagues at University Putra Malaysia, thank you for your support and time. Finally, I thank my colleagues in Kogi State College of Education who have assisted me in one way or the other.
I certify that a Thesis Examination Committee has met on 19 December 2016 to conduct the final examination of Sule Hussein Aliu on his thesis entitled "Anthropogenic Activities Impact on Water Quality, Fish Community and Bacteria Presence in Disturbed and Undisturbed North Selangor Peat Swamp Forest, Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Hishamuddin bin Omar, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Zamri bin Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Wan Maznah binti Wan Omar, PhD
Professor
University Sains Malaysia
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 January 2017
This thesis submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ahmad Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohammad Noor Amal Azmai, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Syaizwan Zahmir Zulkifli, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice – chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________ Date: ___________________

Name and Matric No: Sule Hussein Aliu, GS41922
Declaration by Members of Supervisory committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________ Signature: ____________________
Name of Chairman of Supervisory Committee: ____________________
Member of Supervisory Committee: ____________________

Signature: ____________________
Name of Member of Supervisory Committee: ____________________

ix
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Overview 1
1.2 Objectives of the study 3
1.3 Approach of study 3

2 LITERATURE REVIEW 5

2.1 Peat swamp forest 5
2.2 North Selangor peat swamp forest 5
2.3 Fish diversity of north Selangor peat swamp forest 7
2.4 Bacterial communities in north Selangor peat swamp forest 14
2.5 Bacterial flora of fish 14
2.6 Degradation of peat swamp forests (PSFs) 16
2.7 Importance of peat swamp forests conservation 19

3 MATERIALS AND METHODS 22

3.1 Study area 22
3.2 Sampling sites 22
3.2.1 Peat swamp sites 25
3.2.2 Paddy field sites 25
3.2.3 Oil palm plantation sites 26
3.3 Environmental conditions measurement 27
3.4 Water physicochemical analyses 29
3.5 Fish collection and identification 29
3.6 Bacteriological examination 29
3.6.1 Water and sediment samples for bacteriological analyses 29
3.6.2 Fish samples for bacteriological analyses 30
3.6.3 Bacterial isolation from water and sediment 30
3.6.4 Bacterial isolation from fish 30
3.6.5 Bacterial identification from water, sediment and fish 31
3.7 Statistical analyses 31
4 RESULTS
4.1 Environmental factors 32
4.2 Physicochemical water parameters 34
4.3 Principal component analysis of water physicochemical parameters 36
4.4 Principal component analysis of environmental factors 37
4.5 Canonical correspondence analysis of environmental factors 37
4.6 Effects of environmental factors on water physicochemical parameters 38
4.7 Taxonomic outline of fish collected (Appendix 1) 39
4.8 Fish community structure 47
4.9 Canonical correspondence analysis of water physicochemical parameters contribution to the CCA ordination axes influencing fish occurrence 47
4.10 Relationship between water physicochemical parameters and fish occurrence 49
4.11 Bacteria count from water, sediment and fish 52
4.12 Taxonomic composition of bacteria 52
4.13 Canonical correspondence analysis of water physicochemical parameters contribution to the CCA ordination axes influencing fish occurrence 60
4.14 Relationship between water physicochemical parameters and bacterial composition 62

5 DISCUSSION
5.1 Influence of anthropogenic activities on the water quality in NSPSF 65
5.2 Fish diversity and the influence of water quality on their occurrence in the NSPSF 70
5.3 Bacteria composition and the influence of water quality on their presence in the NSPSF 73

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS 76

BIBLIOGRAPHY 78
APPENDICES 94
BIO DATA OF STUDENT 129
LIST OF PUBLICATIONS 130
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Forest Reserves and area in the NSPSF</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Fish species recorded in north Selangor Peat Swamp Forest</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Aspects of environmental factors and human activities</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of environmental factors score between the three habitats investigated</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of water quality parameters between the three habitats investigated</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Principal component loadings from principal component analysis of water quality parameters from peat swamp, paddy field and oil palm of north Selangor peat swamp forest</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Eigenvalues, percentage variance explained and component loadings from principal component analysis of environmental variables</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Canonical correspondence analysis summary statistics for environmental variables</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>List of family, fish species, IUCN status, number and percentages of collected from peat swamp, paddy field, and oil palm plantation</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Fish community structure in peat swamp, paddy field and oil palm expressed as diversity, evenness and richness indexes</td>
<td>47</td>
</tr>
<tr>
<td>4.8</td>
<td>Canonical correspondence analysis summary statistics of physicochemical parameters of water</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Bacterial abundance (mean ± standard deviation of 10^8 cfu g$^{-1}$, cfu mL$^{-1}$ or cfu cm$^{-2}$) in sediment, water, gill, surface and intestine of fish</td>
<td>52</td>
</tr>
<tr>
<td>4.10</td>
<td>List of bacteria, abbreviation used, number and percentage of isolate from peat swamp, paddy field and oil palm of north Selangor peat swamp forest</td>
<td>53</td>
</tr>
<tr>
<td>4.11</td>
<td>List of bacteria, abbreviation used, number and percentage of isolate in sediment, water, gill, surface and intestine in peat swamp</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>List of bacteria, abbreviation, number and percentage of isolate in sediment, water, gill, surface and intestine in paddy field</td>
<td>56</td>
</tr>
<tr>
<td>4.13</td>
<td>List of bacteria, abbreviation, number and percentage of isolate from sediment, water, gill, surface and intestine in oil palm plantation</td>
<td>58</td>
</tr>
<tr>
<td>4.14</td>
<td>Canonical correspondence analysis summary statistics of physicochemical parameters of water</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of water quality parameters in peats swamps from studies conducted between 1989 to current observation</td>
<td>66</td>
</tr>
<tr>
<td>A2</td>
<td>Normality tests, Kruskal-Wallis and Wilkoxon-Mann-Whitney U-test of environmental factors</td>
<td>97</td>
</tr>
<tr>
<td>A3</td>
<td>Normality tests, ANOVA and LSD pairwise comparison of water physicochemical parameters</td>
<td>101</td>
</tr>
<tr>
<td>A4</td>
<td>Test of normality, ANOVA and pairwise comparison of bacterial colony forming unit</td>
<td>106</td>
</tr>
<tr>
<td>A5</td>
<td>Shannon-Weaver, Pielou and Margalef indexes</td>
<td>110</td>
</tr>
<tr>
<td>A6</td>
<td>Principal Component Analysis (PCA) of environmental factors</td>
<td>113</td>
</tr>
</tbody>
</table>
A7 PCA of water physicochemical parameters 115
A8 Canonical Component Analyses (CCA) 118
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart of the study</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Pesticide application in the agricultural zones of NSPSF</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Eutrophication at a peat swamp of NSPSF</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Waste disposal at NSPSF</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Waste disposal at NSPSF</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Logs stacked by excavators cutting through the deep peatland in Sumatra, Indonesia</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Logging truck loaded with rainforest logs in Sumatra, Indonesia, May 2010</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Recently drained and drying peatland in NSPSF</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Peat swamp forest in Indonesia is burned to make way for palm oil plantations</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Burning peat swamps in Kalimantan, Borneo</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Burning peat swamps forest of Tripa, Aceh, Sumatra</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>Illustration showing degradation of tropical peatlands</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Map of Peninsular Malaysia with enlarged view of NSPSF and study sites</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Peat swamp site 1</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Peat swamp site 2</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Peat swamp site 3</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Peat swamp site 4</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>Paddy field site 1</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Paddy field site 2</td>
<td>25</td>
</tr>
<tr>
<td>3.8</td>
<td>Oil palm plantation site 1</td>
<td>25</td>
</tr>
<tr>
<td>3.9</td>
<td>Oil palm plantation site 2</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Canonical correspondence analysis ordination diagram showing the effects of environmental factors on water physicochemical parameters</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of physicochemical water parameters on fish occurrence in peat swamp</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of physicochemical water parameters on fish occurrence in paddy field</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of physicochemical water parameters on fish occurrence in oil palm plantation</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of water physicochemical parameters on bacteria presence in peat swamp</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of water physicochemical parameters on bacteria presence in paddy field</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Canonical correspondence analysis ordination diagram showing the effect of water physicochemical parameters on bacteria presence in oil palm plantation</td>
<td>64</td>
</tr>
<tr>
<td>A1</td>
<td>Fish species collected</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Peat swamps are biotopes of great ecological importance. Like most brackish water habitats, there have a unique characteristic of being associated with a particular ecological community, with high biological diversity and trophic migrations, which could be in peril without appropriate management (Cognetti and Maltagliati 2000). Over the last decades, peat swamps in particular and aquatic systems in general have been globally impacted by a wide array of human factors (Allard et al. 1991; Dynesius and Nilsson 1994; Rahel 2000). Anthropogenic activities modify the physical, chemical and biological processes of water resources, which results in modification of the resident biological community. This modification could be in the form of reduced richness, diversity and extinction, or a replacement of the community with more resilient ones (Giam et al. 2012; Kuklina et al. 2013). As a result of the imperative biological response of communities to environmental changes, they serve as precise indicators of the status of the aquatic system as they are subject to the full range of chemical and physical influences, with additive and synergistic effects included (Adams et al. 1999; Schiemer 2000; Wolska et al. 2007).

In a delicate semi-closed ecosystem such as peat swamps, environmental and ecological factors clout organisms’ response to environmental stressors (Adams et al. 1989; Adams et al. 1999). Ellis (1999) mentioned that such stressors predisposes organisms, especially fish to chronic immune suppression, thus stimulating bacterial invasion. Generally, fish are continuously exposed to the microorganisms present in water and in sediment (El-Shafai et al. 2004). These organisms change the microbial flora on external surfaces of the fish, including the gills, with high accumulation at sites of damage, such as missing scales or abrasions (Austin and Austin 2012). Similarly, food and water populated with microorganisms are delivered to the digestive tract via ingestion (Olafsen 2001), and they eventually colonise the digestive tract (Austin and Austin 2012).

Fisheries represent an important sector in a country’s national income structure. According to Huq et al. (1983), swamps serve as natural water bodies for various fish species of deferring sizes, and an important source of income for small scale farmers. Swamp fish provides the cheapest protein, and involves small investment and little or no monitoring as the fish can grow easily without care. Peat swamps with its unique characteristics does not just provide fish for consumption or ornamental values but also serve as a reservoir of bio-indicator organisms of great research importance (United Nations Development Programme (UNDP) 2006; Yule 2010). Therefore, unregulated alteration to natural swamps, including peat swamps, can have its toll on a nation’s economy.

The biological responses of animals and plants to environmental stressors have been well researched (Pounds et al. 2006; Whitfield et al. 2007; Dong et al. 2010). Also the bacterial community of several cultured and wild fishes (both freshwater and marine) have been well studied and documented (Austin and Austin 1999; Olafsen 2001;
Moustafa et al. 2010; Khan and Ghosh 2012; Saad 2013). But, only few studies have been conducted on the response of swamp fishes to human induced environmental stress, and on the bacterial communities of swamps. Such studies on peat swamp forest is completely fragmented, incomplete and mostly without a major focus on the response of biological communities (Mishra et al. 2014). In Malaysia especially, such studies on peat swamps and associated habitats are completely lacking.

The north Selangor Peat Swamp Forest (NSPSF), located on a plain coast in the northern part of the state of Selangor is home to diverse fish species, some of which are stenotopic to the peat swamp of the forest (Ng et al. 1994; Beamish et al. 2003). The desire for agricultural development and expansion in recent times, had resulted in destruction of a large part of the forest and its subsequent conversion to paddy fields and oil palm plantations (Giam et al. 2012). Consequently, the agricultural parts of the NSPSF is now characterized with intense anthropogenic activities (Posa et al. 2011). This has led to further deterioration of the environment, a scenario that can make it inhabitable to native fish species especially (Stoeckl et al. 2015), hence reducing their chance of survival, their richness and diversity.

As a result of the low pH and other unique water attributes, fish species that can survive and breed in peat swamps are limited (Ng et al. 1994). Many species found in peat swamps are not found in any other habitat. Thus fish resources in the NSPSF are exploited for the aquarium trade and consumption (Zakaria et al., 1999). A review of fish surveys reveal that 114 fish species belonging to 23 families have been recorded from the NSPSF (Davies and Abdullah 1989; IPT-AWB 1993; Ng et al. 1994; Beamish et al. 2003; Giam et al. 2012; Ahmad et al. 2013; Ismail et al. 2013; Siow et al. 2013). Some recent surveys had reported a decline in the fish community structure resulting from their displacement following peatland conversions in NSPSF (Beamish et al. 2003; Giam et al. 2012). Some of the fish species listed as endangered by the IUCN Red List of Threatened Species have been rarely sighted during recent surveys (Giam et al. 2012; Ahmad et al. 2013; Ismail et al. 2013; Siow et al. 2013). This trend of peatland conversion which has continued despite the associated risks could result in the extinction of already endangered species in the near future.

Water from the peat swamps is used in irrigating the paddy fields and oil palm plantations, and occasional overflow occurs especially during high rainfall. Hence, fish is suspected to migrate from the adjacent paddy fields and oil palm plantations into the peat swamps of the NSPSF and vice versa, especially during seasons of high rainfall (Irvine et al. 2013). By implication therefore, there is the possibility of bacteria being introduced from the highly impacted anthropogenic agricultural areas into the peat swamps, especially through trophic migrations of fish. This could increase the incidence of bacterial infections, which are one of the causative agents of fish diseases, and the primary cause of mortality in wild and cultured fishes (Posa et al. 2011; Coll et al. 2016). It could also lead to or increase the risk of infection of humans by human pathogenic bacteria in and around fish. Such scenario of intense human activities, deterioration of the environment and migrations of fish, could pose a risk to the brackish water environment without appropriate management and risk assessment.
1.2 Objectives of the study

This study has three principal objectives, summarized as follows:

1. To determine the influence of anthropogenic activities on the water physicochemical parameters in peat swamp, paddy field and oil palm plantation of the NSPSF.
2. To determine the fish community structure in peat swamp, paddy field and oil palm plantations of NSPSF, and their relationship to the water physicochemical parameters.
3. To determine the bacterial presence in fishes, water and sediments of peat swamps, paddy fields and oil palm plantations of NSPSF, and their relationship to the water physicochemical parameters.

1.3 Approach of study

The approach in implementing this study involved a focused preliminary observation, identification of human activities and resultant environmental conditions, study sites selection, physicochemical analyses of water, fish sampling for fish identification and community structure, bacteriological examination of water, sediment and fish samples (Fig. 1.1). The methods adopted in selection of sampling sites, the duration and period of sampling, collection of fish, water and sediment, techniques in isolation and identification of bacteria, and the statistical methods in analysing data obtained are based on the insights and experiences derived from review of literatures and a careful scrutiny of the strengths and weaknesses of various available techniques. In addition, a preliminary study was conducted in the study area prior to the actual research to identify habitat characteristics, inhomogeneity in space or time, and possible complications to aid in stratification of sampling sites, and selection of best-fit sampling techniques.
Figure 1.1: Flowchart of the study

- Measure environmental conditions
- On site water physicochemical analyses
- Collect water and sediment samples
- Collect fish

- Water physicochemical data
- Bacterial isolation
- Colony count
- Isolate pure strains
- Biochemical identification

- Laboratory water physicochemical analyses
- Enumerate individual fish, identify species, and determine diversity, evenness and richness

- Data analyses

- Human/anthropogenic activities
 - Peat swamp
 - Oil palm plantation
 - Paddy field

- Human/anthropogenic activities
BIBLIOGRAPHY

Austin B, Austin DA (2012) Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, Fifth Ed. Springer Science & Business Media

Austin B, Austin DA (1999) Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, Third ed. Springer Science & Business Media

Bleeker P (1846a) Siluroideorum bataviensium conspectus diagnosticus [Overzigt der Siluroiden, welke te Batavia voorkomen]. Typis Societatis Artium et Scientiarum Bataviensis, Batavia

Bleeker P (1851b) Vijfde bijdrage tot de kennis der ichthyologische fauna van Borneo met beschrijving van eenige nieuwe soorten van zoetwatervisschen.
Natuurkundig Tijdschr voor Ned Indië 2:415–442.
Bloch ME (1792) Naturgeschichte der Ausländischen Fische. Sechster Theil, Morino, Berlin
Brett JR (1972) The metabolic demand for oxygen in fish, particularly salmonids and a comparison with other vertebrates. Respir Physiol 14:151–170.
Cuvier G (1829) Le règne animal distribué d’après so organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Tome II. Déterville, Paris

82

Food and Agriculture Organization of the United Nations. 223–224.

84
Mohsin AKM, Ambak MA (1983) Freshwater fishes of Peninsular Malaysia. Penerbit Universiti Pertanian Malaysia, Malaysia
Ng TP, Shamsudin I (2001) Common trees in peat swamp forests of Peninsular Malaysia. 97.
Pallas PS (1769) Spicilegia zoologica quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Fasciculus septimus. Lange, Berlin
Pallas PS (1770) Spicilegia zoologica quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Fasciculus octavus. Lange, Berlin
Popta CML (1904) Descriptions préliminaires des nouvelles espèces de poissons

Popta CML (1906) Résultats ichthyologique des voyages scientifiques de M. le professeur Dr. A. W. Nieuwenhuis dans le centre de Bornéo (1898 et 1900). Notes from Leyden Museum 27:1–304, pls. 1–10.

Sugita H, Miyajima C, Deguchi Y (1991) The vitamin B12-producing ability of the
species isolated from freshwater fish with the microplate hybridization method.
factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol
Tan HH, Kottelef M (2009) The fishes of Batang Hari drainage, Sumatra, with
improvement techniques, with special emphasis on the Nakdong River. J Environ
and diseased turbot (*Scophthalmus maximus*) from three farms in northwest
treanation (2012) Highlight a fact about peat swamp forest. http://www.tree-
Jan 2016
Trust TJ (1975) Bacteria Associated with the Gills of Salmonid Fishes in Freshwater. J
Forests: Conservation and Sustainable Use. United Nations Development
Programme, Kuala Lumpur, Malaysia
Vaillant L (1902) Résultats zoologiques de l’expédition scientifique néerlandaise au
statistical techniques: a case study of Behrimaz Stream, Turkey. Environ Monit
randomized trials with non-normally distributed data. BMC Med Res Methodol

BIODATA OF STUDENT

The student was born on 12th September 1987 in Igalamela/Odolu Local Government Area of Kogi State, Nigeria. He attended his primary education at Ayegba LGEA Primary School II, from 1992 to 1998, where he obtained his Certificate of Primary Education. He later continued his secondary education at St. Peter’s College, Idah, Kogi State, Nigeria, from 1998 to 2004, where he sat for the West African Senior Secondary School Certificate (WASSC) examination, and obtained three distinctions and five credits. He then proceeded to Ahmadu Bello University Zaria, Nigeria from 2005 to 2010, where he obtained a Bachelor of Science degree, with honours, in Biology.

He has been involved in intensive research since 2008, when he was engaged as a Laboratory Assistant at Garki Hospital Abuja, Nigeria, during a six months Students’ Industrial Work Experience Scheme (SIWES), where he obtained invaluable skills and experience working with professionals in the field of epidemiology and pathology. His undergraduate research under the supervision of Prof. Dr. Audu Patrick Alidu, highlighted human epidemiology, in the area of prevalence and transmission of malaria.

After his undergraduate studies, the student completed a one-year compulsory National Youth Service Corps (NYSC) program, where he was posted to Auchi, Edo State, Nigeria, to teach biology and execute other community service projects. The student joined Kogi State College of Education, Ankpa, Nigeria, as an Assistant lecturer in 2012 where he had lectured courses in biology, provided supervisory support to final year students, and carried out collaborative researches published in peer-reviewed journals, before proceeding to Universiti Putra Malaysia in 2014 for a Master of Science degree in Ecology. With a research focused on biological conservation, fish and bacterial ecology, migration and ecosystem health, the student completed his Master of Science program with a thesis entitled “Anthropogenic activities impact on water quality, fish communities and bacterial presence in disturbed and undisturbed Selangor peat swamp forest, Malaysia”.
LIST OF PUBLICATIONS

Journal

Proceeding

Sule HA, Ismail A, Amal MNA, Syaizwan ZZ, Siti-Suhaiba M (2016) The influence of water physicochemical parameters on bacterial composition in peat swamps, paddy field and oil palm plantations in vicinity of north Selangor peat swamp forest, Selangor, Malaysia. Abstract presented at Fundamental Science Congress ’16 held in Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia, 9–10th August 2016

130

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: ________________

TITLE OF THESIS / PROJECT REPORT:

ANTHROPOGENIC ACTIVITIES IMPACT ON WATER QUALITY, FISH COMMUNITY AND BACTERIA PRESENCE IN DISTURBED AND UNDISTURBED NORTH SELANGOR PEAT SWAMP FOREST, MALAYSIA

NAME OF STUDENT: SULE HUSSEIN ALIU

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

☐ PATENT Embargo from ______________ until ______________

(date) (date)

Approved by:

(Signature of Student) __________________________ (Signature of Chairman of Supervisory Committee) __________________________

New IC No/ Passport No.: __________________________ Name: __________________________

Date : ____________________ Date : ____________________

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]