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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the Master of Science

EXPONENTIAL SUMS FOR SOME nth DEGREE POLYNOMIAL

By

SURIANA BINTI LASARAIYA

October 2016

Chairman:   Siti Hasana Binti Sapar, PhD 
Institute   :  Mathematical Research

Let f (x,y) be a polynomial in Zp[x,y] and p be a prime. For α > 1, the expo-
nential sums associated with f (x,y) modulo a prime pα is defined as S( f ; pα) =
epα ( f (x,y)), where the sum is taken over a complete set of residues modulo pα . It
has been shown that the exponential sums is depends on the cardinality of the set
of solutions to the congruence equation associated with the polynomial f (x,y). The
objective of this research is to find an estimation of the exponential sums for some
nth degree polynomial at any point (x− x0,y− y0). There are two conditions being
considered, that is for ordpb2 6= ordpac and ordpb2 = ordpac.

The p-adic methods and Newton polyhedron technique is used to estimate the p-adic
sizes of common zeros of partial derivative polynomials associated with nth degree
polynomial, where n≥ 3. Then, construct the combination of indicator diagram as-
sociated with some nth degree polynomial. The indicator diagram is then examined
and analyzed.

The information of p-adic sizes of common zeros that obtained is applied to estimate
the cardinality of the set V ( fx, fy; pα). The results of the cardinality is then used to
estimate the estimation of exponential sums associated to nth degree polynomial,
where n≥ 3.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk Ijazah Sarjana Sains

HASIL TAMBAH EKSPONEN BAGI BEBERAPA POLINOMIAL
BERDARJAH n

Oleh

SURIANA BINTI LASARAIYA

Oktober 2016

Pengerusi : Siti Hasana Binti Sapar, PhD 
Institut    : Penyelidikan Matematik

Katakan f (x,y) suatu polinomial dalam Zp[x,y] dan p adalah suatu nombor perdana.
Untuk α > 1, hasil tambah eksponen yang disekutukan dengan f (x,y) modulo suatu
perdana pα ditakrifkan sebagai S( f ; pα) = epα ( f (x,y)), dengan hasil yang dini-
laikan di dalam set reja lengkap modulo pα . Ditunjukkan bahawa penganggaran
hasil tambah eksponen adalah bersandarkan kepada kekardinalan set penyelesaian
persamaan kongruen yang disekutukan dengan polinomial f (x,y). Objektif kajian
ini adalah untuk mendapatkan penganggaran hasil tambah eksponen bagi beberapa
polinomial yang berdarjah ke-n pada sebarang titik (x− x0,y− y0). Terdapat dua
keadaan yang dipertimbangkan iaitu untuk ordpb2 6= ordpac dan ordpb2 = ordpac.

Kaedah p-adic dan teknik polihedron Newton digunakan untuk menganggarkan saiz
p-adic pensifar sepunya polinomial terbitan separa yang disekutukan dengan beber-
apa polinomial yang berdarjah ke-n, dengan n≥ 3. Kemudian, bina kombinasi gam-
bar rajah penunjuk yang disekutukan dengan beberapa polinomial yang berdarjah
ke-n. Gambar rajah penunjuk kemudiannya diperiksa dan dianalisis.

Maklumat anggaran saiz p-adic pensifar sepunya yang diperoleh akan digunakan
untuk mendapatkan anggaran kekardinalan bagi set V ( fx, fy; pα). Keputusan kekar-
dinalan ini kemudiannya digunakan untuk mendapatkan penganggaran hasil tambah
eksponen yang disekutukan dengan beberapa polinomial yang berdarjah ke-n, den-
gan n≥ 3.
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CHAPTER 1

INTRODUCTION

1.1 Background

The exponential sums is defined as

S(P) = ∑
x

e2πi f (x) (1.1.1)

where x runs all over integer from certain interval P, and f (x) is a polynomial taking
on real values under integer x. It is well known that bounds for such sums imply the
corresponding estimates for the number of solutions of certain congruences.

Estimation of exponential sums is related in analytic number theory especially in
solving the Waring’s problems (Korobov (1992)) and also in cryptographic research
especially related to communication theory (Paterson (1999)).

Koblitz (1977) discussed the Newton polygon method for polynomials and power
series in Ωp[x] where Ωp denotes the completion of the algebraic closure of the field
of p-adic numbers Qp. This studies is basically to develop some basic ideas of p-
adic analysis and presenting some applications that is related to this field, which in
turn has stimulating an interest in this field.

Deligne (1974) showed that for a prime p,

|S( f ; p)| ≤ (m−1)n p
n
2 (1.1.2)

where m denotes the total degree of polynomial f , n is the number of variables such
that n > 1. However, equation 1.1.2 is not really clear at presenting on how large
the class of polynomials that can satisfy the equation. Estimation of |S( f ; p)| has
become more precise by using Deligne’s results.

Then, Loxton and Smith (1982) upgrading the results of Deligne and shows that for
a prime p and non-linear polynomial f in Z[x] of degree m+ 1, the estimation of
exponential sums is defined as

|SF (pα)| ≤ mn p
nα
2 (D(OF)5, pα)

n
2 (1.1.3)

such that D(OF) 6= 0 and α > 1.

Later, Mohd Atan (1984) demonstrates the application of Newton polyhedron
method in estimating the exponential sums associated with certain polynomials in
Zp(x,y), where Zp denotes the ring of p-adic integers. The polynomial that has been
analyzed is

f (x,y) = ax3 +bxy2 + cx+dy+ e.

1



© C
OPYRIG

HT U
PM

It is found that if δ = max{ordp3a, 3
2 ordpb}, then

|S( f ; pα)| ≤ 4pmin{2α,3α+2δ+1}.

Then, Mohd Atan (1986a) considered in extending the Newton polygon idea in the
p-adic case of polynomials in two-variables and it is called as Newton Polyhedron
method. He proved that for a prime p and a polynomial f in Ωp, if (ξ ,η) is a zero of
f , then (ordpξ ,ordpη ,1) is a normal to an edge in N f and falls between the upward-
pointing normals to the faces of N f adjacent to this edges. He also proved that if
n̂ = (λ ,µ,1) is a normal to E (non-vertical edge of N f common to adjacent faces F1
and F2) and lies between the upward-pointing normals to F1 and F2, then there exist
ξ and η such that ordpξ = λ , ordpη = µ and f (ξ ,η) = 0.

Mohd Atan (1986b) examined the combination of the indicator diagram that gen-
erated from both polynomials and proved that the p-adic sizes of both polynomials
gives the coordinates of certain intersection points of segment of the indicator di-
agram. Besides, the author also proved a converse of an assertion in his previous
studies in Mohd Atan (1986a) and written the following conjecture :

Conjecture 1.1.1 Mohd Atan (1986b) Let f and g be a polynomials in Qp[x,y] and
let (λ ,µ) be a point of intersection of their indicator diagram and suppose the edges
through (λ ,µ) do not coincide. Then, there are ξ and η in Qp satisfying f (ξ ,η) =
g(ξ ,η) = 0 and ordpξ = λ and ordpη = µ .

Mohd Atan (1988) focused in the use of Newton Polyhedron method to arrive at the
estimates of cardinality. By considering the polynomials of f (x,y) = 3ax2+by2+c,
it is showed that the cardinality are as follows :

card Vi( f ;g; pα)≤ pα+δ .

Mohd Atan (1990) discussed a method to estimate the exponential sums of a given
polynomials. It is found that the exponential sums is depending on the cardinality

of the set of solutions to the congruences equations modulo p
α
2 for α > 0. The

estimation is obtained by using the newton polyhedron methods when α is an even.
The exponential sums is as follows

|S( f ;q)| ≤ pnθ+n(γ−θ)N( f ; pθ ).

However,

|S( f ;q)| ≤

{
p

nα
2 N( f ; p α

2 ) if α = even,
pnα Σu(mod pα )|G(u)| if α = odd.

where |G(u)| is the Gaussian Sums of quadratic form.

Mohd Atan and Abdullah (1993) used Newton polyhedron method to find the solu-

2
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tion of f (x,y) = ax3 +bx2y+ cxy2 +dy3 + kx+my+n in Zp[x,y]. The polynomial
is differentiated with respect to x and y. It is found that the intersection point on the
indicator diagram is at the point (1

2 ordp(3a+bα),∞) for α > 0.

By referring to the study of Deligne (1974) and Loxton and Smith (1982),
Mohd Atan (1995) deduced that if α is even, let α = 2θ then

|S( f ; pα)| ≤ p2(α−θ)min{p2θ ,4pθ+δ}.

While if α is an odd, let α = 2θ +1, then

|S( f ; pα)| ≤ pα+1
2 min{p2θ ,4pθ+δ}

for a polynomial of f (x,y) = ax3 +bx2y+ cxy2 +dy3ex+my+n.

Heng and Mohd Atan (1999) found that the cardinality of the set of solutions asso-
ciated with a polynomial of cubic form f (x,y) = ax3 +bxy2 + cx+dy+ e is

N( fx, fy; pα) =

{
p2α if α ≤ δ

2pα+δ if α > δ

with p > 3, α > 1 and δ = min{ordp3a, 3
2 ordpb}.

Sapar and Mohd Atan (2002) continue the study on estimation of the cardinality
of the set of solutions to congruences equations for some polynomials. The chosen
cases is on the overlaping occurs on the vertices and the line segments in the indicator
diagram associated with the second and third degree polynomials.

Sapar and Mohd Atan (2006) considering a polynomial of the form

f (x,y) = ax5 +bx4y+ cx3y3 +dx2y3 + exy4 +mx+ ty+ k

such that ordpb2 > ordpac and ordp(10cm−2de)2 > ordp(10dm−4e2)(2ce−d2),
then p-adic sizes of common zeros of partial derivatives of this polynomial is

ordpξ ≥ 1
4
(α−δ ) , ordpη ≥ 1

4
(α−δ )

with ξ = max{ordpa,ordpb,ordpc,ordpd,ordpe,ordpm} and ordp fx(0,0),ordp
fy(0,0)≥ α > ξ .

Later, Sapar and Mohd Atan (2007) investigated a polynomial of degree six by using
the same technique. It is found that the p-adic sizes of common zeros are

ordpξ = ordpx0 ≥
1
5
(α−δ ) , ordpη = ordpy0 ≥

1
5
(α−δ )

for a polynomial

f (x,y) = ax6 +bx5y+ cx4y2 +dx3y3 + ex2y4 +mxy5 +ny6 + sx+ ty+ k.

3
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Then, Sapar and Mohd Atan (2009) found that if p is a prime, p > 5, f (x,y) =
ax5 + bx4y + cx3y2 + sx + ty + k a polynomial in Zp[x,y], α > δ with δ =

max{ordpa,ordpb,ordpc} and ordpb2 > ordpac, then subject to certain conditions,
the p-adic sizes of a common zeros (ξ ,η) of partial derivatives of this polynomial is

ordpξ ≥ 1
4
(α−δ )

and
ordpη ≥ 1

4
(α−δ )

or
ordpη ≥ 1

4
(α−δ − ε)

for some ε ≥ 0.

Yap (2010) focus is given on cases where the p-adic orders of common zeros occur
on the overlapping segments of the indicator diagram. It is found that for the case
involving one and two overlapping segment of the indicator diagram associated with
the polynomial, the estimate of the associated multiple exponential sums is

|S( f ; pα)| ≤min{p2α ,4p
3
2 α+δ}

and
|S( f ; pα)| ≤min{p2α ,4p

3
2 α+δ+ε}

respectively for some ε > 0.

Yap et al. (2011) showed that p-adic sizes of such common zeros can be found ex-
plicitly on the overlapping segment of the indicator diagram associated with the poly-
nomial. In this case, they considered a polynomial in a cubic form.

Recently, Sapar et al. (2013) investigated polynomial of degree nine. By using New-
ton polyhedron method, they found that there exist ξ and η such that fx(ξ ,η) = 0
and fy(ξ ,η) = 0. Sapar et al. (2014b) consider a polynomial of f (x,y) = ax3 +

bx2y+ cxy2 +dy3 + 3
2 ax2 +bxy+ 1

2 cy2 + sx+ ty+ k such that ordpb2 6= ordpac. By
using Newton polyhedron technique, if ordp fx(0,0),ordp fy(0,0) ≥ 2δ , then there
exist (ξ ,η) in Ω2

p such that fx(ξ ,η) = 0, fy(ξ ,η) = 0 and

ordpξ ≥ α−δ or ordpξ ≥ α−δ − 1
2

ε and ordpη ≥ α−δ or

ordpη ≥ α−δ − 1
2

ε or ordpη ≥ α−2δ or ordpη ≥ α−2δ − 1
2

ε

for some ε ≥ 0, α > 0, δ = max{ordpa,ordpb,ordpc,ordpd} and ordpbc > ordpad.

Then, Sapar et al. (2014c) consider all cases from the results above and found that
the cardinality are as follow :

4



© C
OPYRIG

HT U
PM

N( fx, fy; pα) =

{
p2α if α ≤ δ

4p4δ+ε if α > δ

for some ε ≥ 0 as asserted.

1.2 Research Objectives

This study is to find the estimations of the exponential sums associated with poly-
nomial in two variables, f (x,y). The polynomial that we consider are of the form
f (x,y) = axn +bxn−1y+ cxn−2y2 + sx+ ty+ k where n≥ 3. Firstly, we have to find
the p-adic sizes of common zeros of partial derivatives polynomials by examining
the two following conditions :

• ordpb2 6= ordpac.

• ordpb2 = ordpac.

The estimation of the cardinality of the sets of solutions to congruence equations as-
sociated to nth degree polynomial will depends on the p-adic sizes that we obtained.
Then, we can proceed to estimate the exponential sums of the polynomials by using
the results of cardinality.

1.3 Research Methodology

The objective of this research is to find the estimation of exponential sums associated
with some nth degree polynomial. Newton polyhedron technique is the method used
in finding the p-adic sizes of the polynomials. Then, indicator diagram is constructed
and analyzed. After that, we estimate the cardinality of the polynomial that will be
in turn used to estimate the exponential sums.

1.4 Outline of Thesis

This thesis covers six chapters as follows :

Chapter 1 gives a brief introduction of this study. The previous work done by many
researchers also been mentioned in this chapter as well as the problem statement and
the objectives of the research.

Chapter 2 focused on the method that is used in this research. A brief explanation
on Newton polyhedron and indicator diagram will be discussed in this chapter. In
order to understand the Newton polyhedron technique easily, one example of the

5
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polynomial is given.

Then, Chapter 3 will give the finding of the results of p-adic sizes of polynomials that
we consider by using Newton polyhedron technique. We consider two conditions in
this research, that are ordpb2 6= ordpac and ordpb2 = ordpac. Both conditions will
give different estimation of the p-adic sizes.

Chapter 4 will give the estimating of the cardinality associated with the polynomials.
The result of p-adic sizes of common zeros from Chapter 3 are being used in order
to estimate the cardinality of the associated polynomials.

By using the result of the cardinality in Chapter 4, we will estimate the exponential
sums of the associated polynomials in Chapter 5. There are two conditions that
needed to be considered, that are when α is an even, and α is an odd.

Last but not least, Chapter 6 will discuss an application of exponential sums, briefly
on BCH Codes in cryptography. Then, we come up with summary of the research
and finally suggestion for future research.
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