UNIVERSITI PUTRA MALAYSIA

OCCURRENCE OF AFLATOXIN M1 IN URINE SAMPLES, MILK AND DAIRY PRODUCTS AND THEIR ASSOCIATED FACTORS AMONG RESIDENTS IN TERENGGANU, MALAYSIA

FARAH NADIRA BINTI AHMAD

FPSK(m) 2016 54
OCCURRENCE OF AFLATOXIN M₁ IN URINE SAMPLES, MILK AND DAIRY PRODUCTS AND THEIR ASSOCIATED FACTORS AMONG RESIDENTS IN TERENGGANU, MALAYSIA

By

FARAH NADIRA BINTI AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

May 2016
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfillment of the requirement for the degree of Master of Science

OCCURRENCE OF AFLATOXIN M₁ IN URINE SAMPLES, MILK AND DAIRY PRODUCTS AND THEIR ASSOCIATED FACTORS AMONG RESIDENTS IN TERENGGANU, MALAYSIA

By

FARAH NADIRA BINTI AHMAD

May 2016

Chairman : Rosita Binti Jamaluddin, PhD
Faculty : Medical and Health Sciences

Nowadays, in conjunction with dramatic growth of population, food safety matter is of concern. The exposure of fungi producing toxin named mycotoxins is one example of food contamination. Aflatoxin M₁ (AFM₁) is a major metabolite of aflatoxin B₁ (AFB₁) which is one of many naturally occurring mycotoxins. This cross-sectional comparative population (n=206) based study was comprised of two parts. The first part was to study the associations between socio-demographic, socio-economic statuses, the consumption of milk and dairy products and the level of awareness, knowledge, attitude and practice on aflatoxin with the occurrence of AFM₁ in urine sample among residents in Terengganu. The second part was to screen the occurrence of AFM₁ in commonly consumed milk and dairy products and to determine the relationship between the ingestion of AFM₁ through milk and dairy products with the level of urinary AFM₁. A set of questionnaire and a urine container were provided to each subject. Data collection was carried out from August 2013 to December 2013. The selection of subject and collection of milk products were based on systematic and purposive sampling respectively. The competitive enzyme-linked immunosorbent assay (ELISA) method was used to determine the level of AFM₁ in the samples of urine and milk products. Data was analyzed by using SPSS Software version 22.0

Bivariate analyses for the first part observed that urban and female subject were more aware, older and female subjects were more knowledgeable, urban and non-employed subjects had more attitude, rural, high educated, non-employed and subjects received monthly income RM1500 and above were practiced more toward aflatoxin matter. Besides, urban, high educated subjects and subjects with high knowledge and attitude tend to consume high amount of milk and dairy products. In the other hand, subjects below 30 years old and married subjects were observed to be more at risk to be exposed with AFM₁. In term of AFM₁ level, subjects below 30 years old, Chinese and non-employed subjects were exposed with higher level of AFM₁. This study also found significant associations between milk and dairy
products intake and the occurrence of urinary AFM$_1$. For the second part of the study, AFM$_1$ was detected in 39.6% of milk and dairy products tested. The level of contamination ranged from 0.9 to 119.1 ng/L. It was observable that 4 samples were above the European Commission limit and all of them were still below the Malaysian Food Regulation 1985 limit. All in all, both urban and rural subjects in Terengganu were slightly exposed with AFM$_1$ whereas for milk and dairy products commonly consumed by the residents in Terengganu, the exposure of AFM$_1$ was moderate. This study provided a pioneering data on the occurrence of AFM$_1$ in milk and dairy products in Malaysia.
KEJADIAN AFLATOKSIN M₁ DALAM SAMPEL AIR KENCING, SUSU DAN PRODUK TENUSU SERTA FAKTOR-FAKTOR MEMPENGARUHINYA DALAM KALANGAN PENDUDUK DI TERENGGANU, MALAYSIA

Oleh

FARAH NADIRA BINTI AHMAD

Mei 2016

Pengerusi : Rosita Binti Jamaluddin, PhD
Fakulti : Perubatan dan Sains Kesihatan

Analisis bivariat bagi bahagian pertama mendapati subjek wanita dan subjek bandar lebih tinggi tahap kesedaran mereka, subjek lebih tua dan wanita lebih berpegetahuan, subjek bandar dan subjek yang tidak bekerja lebih menunjukkan sikap yang baik serta subjek luar bandar, subjek berpendidikan tinggi, tidak bekerja dan menerima pendapatan bulan sebanyak RM1500 dan ke atas adalah lebih tinggi amalan mengenai aflatoksin. Selain itu, subjek bandar, subjek berpendidikan tinggi, subjek yang lebih berpegetahuan dan menunjukkan sikap yang baik terhadap isu aflatoksin adalah lebih cenderung untuk mengambil susu dan produk tenusu dalam kuantiti yang tinggi. Selain daripada itu, subjek yang berumur 30 tahun dan ke
ACKNOWLEDGEMENTS

Upon completion of this thesis, I would like to express my gratitude to ALLAH SWT because has given me opportunity to complete my research successfully likewise finish up my thesis. First and foremost, I would like to offer my sincerest gratitude to my beloved supervisor, Associate Prof. Dr. Rosita Binti Jamaluddin, who supported me throughout my whole journey with her patience and knowledge. I attribute my master degree to her encouragement and efforts.

Throughout the whole study, I have been aided in conducting the experiment and proposing the idea by my co-supervisor Associate Prof. Dr. Norhaizan Binti Mohd Esa and Dr. Mohd Redzwan Bin Sabran, enthusiastic academicians who kept me in diligent manner as a researcher to be. Moreover, without any doubt I also want to thank to my colleagues who are under the same supervision.

Last but not least, a warmth appreciation to my beloved parents (Ahmad Ngah & Nur Nadia Lim Abdullah), eldest brother (Mohd Qayyum), second younger brother (Mohamad Qayyim) and youngest brother (Muhammad Qawim) for their efforts in consoling me through thin or thick through up and down and through my best and my worst.

Thank you.
I certify that a Thesis Examination Committee has met on 30 May 2016 to conduct the final examination of Farah Nadira binti Ahmad on her thesis entitled "Occurrence of Aflatoxin M₁ in Urine Samples, Milk and Dairy Products, and Their Associated Factors Among Residents in Terengganu, Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Sokhini bin Abd Mutalib, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Jinap bt Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Bahruddin Saad, PhD
Professor
School of Chemical Sciences
Universiti Sains Malaysia
(External Examiner)

[Signature]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 July 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follow:

Rosita Binti Jamaluddin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Norhaizan Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice- Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________

Name and Matric No: Farah Nadira Binti Ahmad, GS35278
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee:

Signature: ____________________________
Name of Member of Supervisory Committee:

TABLE OF CONTENTS

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES x

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xviii

CHAPTER

1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem statement 3

1.3 Significance of the study 4

1.4 Study Objectives 4

1.4.1 General Objective 4

1.4.2 Specific objectives 5

1.5 Null Hypothesis 5

1.6 Conceptual Framework 6

2 LITERATURE REVIEW 8

2.1 Mycotoxin 8

2.1.1 Classification of mycotoxins 8

2.1.2 Dangerous effect of mycotoxin 8

2.2 Aflatoxin 9

2.2.1 History of aflatoxin 10

2.2.2 Dietary exposure of aflatoxin 10

2.2.3 Aflatoxin in food stuffs 11

2.3 Aflatoxin M1 in milk and dairy products 14

2.3.1 AFM1 in liquid milk 19

2.3.2 AFM1 in powdered milk 22

2.3.3 AFM1 in cheese 23

2.3.4 AFM1 in yogurt 25

2.3.5 AFM1 in other milk products 26

2.4 AFM1 in urine sample 28

2.5 Determinant of adults’ awareness, knowledge, attitude and practice on aflatoxin 31

3 METHODOLOGY 34

3.1 Study design 34

3.2 Study location 34

3.3 Sample size calculation 35

3.3.1 Inclusion criteria 37

3.3.2 Exclusion criteria 37

3.4 Sampling frame 38
3.5 Sampling method
3.5.1 Urban subjects 38
3.5.2 Rural subjects 39
3.6 Ethical approval 40
3.7 Research Instruments and Questionnaire 40
3.7.1 Part A: Socio-demographic and socio-economic statuses 41
3.7.2 Part B: Semi quantitative food frequency questionnaire (FFQ) 41
3.7.3 Part C: Awareness on AFM$_1$ in milk and dairy products 42
3.7.4 Part D: Knowledge on AFM$_1$ in milk and dairy products 43
3.7.5 Part E: Attitude on AFM$_1$ in milk and dairy products 44
3.7.6 Part F: Practice on AFM$_1$ in milk and dairy products 44
3.8 Pre-test Study 45
3.8.1 Internal consistency reliability result for awareness 46
3.8.2 Internal consistency reliability result for knowledge 46
3.8.3 Internal consistency reliability result for attitude 47
3.8.4 Internal consistency reliability result for practice 47
3.9 Data collection 48
3.10 Collection of morning urine samples 48
3.11 Quantification of urinary AFM$_1$ 48
3.12 Method validation
3.12.1 Linearity 49
3.12.2 Sensitivity 50
3.12.3 Recovery 50
3.13 Sampling of milk and dairy products 50
3.14 Screening of AFM$_1$ of milk and dairy products by ELISA 50
3.15 Validation method
3.15.1 Linearity 52
3.15.2 Sensitivity 52
3.15.3 Recovery 52
3.16 Data evaluation 52
3.17 Data analysis 53

4 RESULTS
4.1 Descriptive analysis
4.1.1 Socio-demographic and socio-economic statuses 55
4.1.2 Milk and dairy products intakes 57
4.1.3 Awareness, knowledge, attitude and practice on aflatoxin 58
4.1.4 Urinary AFM$_1$ 61
4.2 Association between study variables
4.2.1 Socio-demographic and socio-economic statuses with awareness, knowledge, attitude and practice 64
4.2.2 Socio-demographic, socio-economic statuses, score of awareness, knowledge, attitude and practice with milk intake

4.2.3 Socio-demographic, socio-economic statuses, the consumption of milk and dairy products, score of awareness, knowledge, attitude and practice on aflatoxin with urinary AFM$_1$

4.3 Multivariate analysis

4.3.1 The contribution of socio-demographic, socio-economic status, total score of awareness, knowledge, attitude and practice towards the consumption of milk and dairy products and the occurrence of urinary AFM$_1$

4.4 AFM$_1$ in milk products

4.4.1 Validation Method

4.4.2 Occurrence of AFM$_1$ in milk and dairy products sample

4.5 Relationship between AFM$_1$ in milk products and AFM$_1$ in urine

5 DISCUSSION

5.1 Socio-demographic and socio-economic statuses with awareness, knowledge, attitude and practice on aflatoxin

5.1.1 Socio-demographic and socio-economic statuses with awareness on aflatoxin

5.1.2 Socio-demographic and socio-economic statuses with knowledge on aflatoxin

5.1.3 Socio-demographic and socio-economic statuses with attitude on aflatoxin

5.1.4 Socio-demographic and socio-economic statuses with practice on aflatoxin

5.2 Awareness, knowledge, attitude and practice on aflatoxin with milk and dairy products intake

5.3 Socio-demographic and socio-economic statuses with milk and dairy products intake

5.4 Socio-demographic and socio-economic statuses with urinary AFM$_1$

5.5 Awareness, knowledge, attitude and practice on aflatoxin with urinary AFM$_1$

5.6 Milk and dairy products intakes with urinary AFM$_1$

5.7 AFM$_1$ in Milk and Dairy Products

5.7.1 Liquid milk

5.7.2 Powdered milk

5.7.3 Yogurt

5.7.4 Cheese

5.7.5 Other dairy products

5.8 Ingestion of AFM$_1$ through Milk Products with Urinary AFM$_1$
6 CONCLUSION, SUMMARY AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Summary</td>
<td>93</td>
</tr>
<tr>
<td>6.2 General conclusion</td>
<td>94</td>
</tr>
<tr>
<td>6.3 Limitations of study</td>
<td>95</td>
</tr>
<tr>
<td>6.4 Future recommendations</td>
<td>96</td>
</tr>
</tbody>
</table>

REFERENCES

APPENDICES

- BIOMATERIALS AND STANDARDS
- BIBLIOGRAPHY
- APPENDICES
- LIST OF PUBLICATIONS
- BIODATA OF STUDENT
- LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of mycotoxins based on their fungal origin</td>
</tr>
<tr>
<td>2.2</td>
<td>Human diseases implicate by mycotoxin involvement</td>
</tr>
<tr>
<td>2.3</td>
<td>Occurance of total aflatoxin in food commodities in different refereces</td>
</tr>
<tr>
<td>2.4</td>
<td>Occurance of aflatoxin in food commodities in Malaysia</td>
</tr>
<tr>
<td>2.5</td>
<td>Maximum limit for AFM\textsubscript{1} in milk and dairy products</td>
</tr>
<tr>
<td>2.6</td>
<td>The AFM\textsubscript{1} intake through milk consumption from different countries</td>
</tr>
<tr>
<td>2.7</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in liquid milk according to continents</td>
</tr>
<tr>
<td>2.8</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in raw milk according to continents</td>
</tr>
<tr>
<td>2.9</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in powdered milk according to continents</td>
</tr>
<tr>
<td>2.10</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in cheese according to continents</td>
</tr>
<tr>
<td>2.11</td>
<td>Maximum limit for AFM\textsubscript{1} in cheese</td>
</tr>
<tr>
<td>2.12</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in yogurt according to continents</td>
</tr>
<tr>
<td>2.13</td>
<td>Worldwide occurrence and levels of AFM\textsubscript{1} contamination in other dairy products according to continents</td>
</tr>
<tr>
<td>2.14</td>
<td>The occurrence of AFM\textsubscript{1} in urine samples in several countries</td>
</tr>
<tr>
<td>3.1</td>
<td>Study characteristic for urban sample size</td>
</tr>
<tr>
<td>3.2</td>
<td>Study characteristic for rural sample size</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution of socio-demographic and socio-economic statuses</td>
</tr>
<tr>
<td>3.4</td>
<td>The conversion factor used to estimate the food intake</td>
</tr>
<tr>
<td>3.5</td>
<td>Modified statements for awareness</td>
</tr>
</tbody>
</table>
3.6 Classification of awareness score 43
3.7 Modified statements of knowledge 43
3.8 Classification of knowledge score 43
3.9 Modified statements for attitude 44
3.10 Classification of attitude score 44
3.11 Modified statements for practice 45
3.12 Classification of practice score 45
3.13 Statements used in awareness part 46
3.14 Initial statements used in knowledge part 46
3.15 New tertile classification of knowledge score 47
3.16 Statements used in attitude part 47
3.17 Initial statements used in practice part 47
3.18 New tertile classification of practice score 48
4.1 Distribution of subjects according to socio-demographic and socio-economic statuses 56
4.2 Milk and dairy products consumption (g/day) 58
4.3 Validation data of the competitive ELISA for urinary AFM\textsubscript{1} 61
4.4 Urinary AFM\textsubscript{1} occurrence based on socio-demographic and socio-economic statuses \((n=206)\) 62
4.5 Positive urinary AFM\textsubscript{1} level based on socio-demographic and socio-economic statuses \((n=84)\) 63
4.6 Tabulation of total scores on awareness, knowledge, attitude and practice based on social-demographic and socio-economic statuses 65
4.7 Correlation between total score of determinants (AKAP) and milk intake 67
4.8 Associations of socio-demographic and socio-economic statuses with milk intake \((n=206)\) 69
4.9 Associations of socio-demographic and socio-economic statuses with occurrence of AFM\textsubscript{1} in urine samples \((n=206)\) 71
4.10 Associations of socio-demographic and socio-economic variables with level of positive AFM$_1$ in urine samples (n = 84) 72

4.11 Associations between AKAP score and urinary AFM$_1$ 73

4.12 Cross-tabulation of milk and dairy products consumption with occurrence of urinary AFM$_1$ (n = 206) 73

4.13 Assumption requirement for multi regression analysis (MRA) 74

4.14 Validation Data of the Competitive ELISA for AFM$_1$ in Fresh Milk 75

4.15 The occurrence of AFM$_1$ in milk and dairy products (n = 53) 76

4.16 Number of milk and dairy products exceeds the EC and Malaysia limit for AFM$_1$ 77

4.17 Correlation of total ingestion of AFM$_1$ from milk products with the level of urinary AFM$_1$ (n = 206) 78

5.1 Occurrence of AFM$_1$ in liquid milk in several countries 88

5.2 Occurrence of AFM$_1$ in powdered milk in several countries 89

5.3 Occurrence of AFM$_1$ in yogurt in several studies 90

5.4 Occurrence of AFM$_1$ in cheese in several studies 90
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conceptual framework of the study</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>The chemical structure of AFB₁</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>The chemical structure of AFM₁</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Metabolic pathway of AFB₁ to AFM₁</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification of biomarkers</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling region for subject’s selection</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling method of the study</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Sampling method for urban subjects</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Sampling study for rural subjects</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>ELISA procedures for quantification of AFM₁ in urine samples</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>ELISA procedures for quantification of AFM₁ in milk and dairy products</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Formula for % absorbance</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Flow chart of the study</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of subjects’ awareness</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of subjects’ knowledge</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of subjects’ attitude</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of subjects’ practice</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>An illustration of mediation</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM₁</td>
<td>Aflatoxin M₁</td>
</tr>
<tr>
<td>AFB₁</td>
<td>Aflatoxin B₁</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>AFs</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>AKAP</td>
<td>Awareness, Knowledge, Attitude and Practice</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immune sorbent Assay</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular Carcinoma</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of Quantification</td>
</tr>
<tr>
<td>rₛ</td>
<td>Spearman rho</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint Expert Committee on Food Additives</td>
</tr>
<tr>
<td>ISIRI</td>
<td>Institute of Standard and Industrial Research of Iran</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, globalisation does not only happen in term of technology, but increase of harmful exposure of food contamination is also a serious concern. Sustainable food supply becomes a challenging strategy in order to overcome shortage and contaminated food sources in the future. Moreover, Keesing et al. (2010) stated that since 1940 until today, more than 300 emerging diseases were discovered in humankind population all over the world and this issue significantly correlates with the diets (Newell et al., 2010). This situation becomes worse as the emergence of new disease towards human who are exposed to different chemicals including carcinogenic substances throughout their life increased vigorously (Afshar et al., 2013). Nevertheless, with a proper diet and controlled standard of food source in term of hygiene, contamination and safety, this global issue can be minimised or overcome successfully.

Food contamination can occur in many ways. One of them is through fungi producing toxin called mycotoxins where the ingestion of this nephrotoxic, immunotoxic, teratogenic and mutagenic toxin in grains by animals and human can cause bad impact towards the public health. Ironically, these toxins are capable of causing acute and chronic effects in human and animals in term of disorders of the central nervous, cardiovascular, pulmonary, intestinal tract systems and finally death (Makun et al., 2010). Aflatoxins (AFs) belong to a group of mycotoxins (O’Riordan & Wilkinson, 2008) where the four naturally occurring aflatoxins are aflatoxins B₁, aflatoxin B₂, aflatoxin G₁ and aflatoxin G₂. Among these four, the most commonly occurring and experiencing high carcinogenic effect is aflatoxin B₁ (AFB₁) (Polychronaki et al., 2008). Many cases of aflatoxin contamination had been reported by researchers all over the world including in Malaysia. In 1995, Lye et al. reported the occurrence of aflatoxin aroused since the outbreak of aflatoxicosis in Perak which resulted in acute hepatic encephalopathy among children originated from aflatoxin contamination. Although this phenomenon happened in the past, it does not mean that the same tragedy would not repeat in the future. As a prevention, many researchers around the world especially in Malaysia started to study food highly susceptible toward aflatoxin (Reddy et al., 2011), the exposure of the mycotoxins in human body (Leong et al., 2012a) and the effective ways (eg. diet) in reducing the level of aflatoxin exposure (Nasrabadi et al., 2013). From that continuous efforts, the exposure of aflatoxin in Malaysia so as other countries can be minimized and thus provide the community a safer food supply.

Ardic et al. (2009) explained that aflatoxin M₁ (AFM₁) is a major metabolite of AFB₁ and this metabolite can be found in milk and urine of humans, dairy cattle and other mammals that have consumed aflatoxin-contaminated food or feed. Secretion of AFM₁ in milk of dairy mammals then is continuously transferred into milk and
dairy products and reach human as the end consumer. On the global scale, the occurrence of AFM$_1$ in milk and dairy products is a serious concern as they are the main sources for introducing aflatoxins in the human diet (Muhammad et al., 2010). Located strategically in the equatorial area, Malaysia experienced tropical climate with humid and high temperature (Redzwan et al., 2013). These conditions are favorable for mycotoxin producing fungi to proliferate and cause contamination towards agricultural products. Later, the ingestion of AFB$_1$ contaminated feed by dairy livestock would transfer the AFM$_1$ into the animal’s milk and followed by the collection of milk from the mammals for milk and dairy products industry. Since AFM$_1$ is not destroyed through pasteurization of milk, it will continue to be present in the powdered milk, yoghurt and other milk-based products (Duarte et al., 2013). Contamination of AFM$_1$ in milk and dairy products does not have to be questionable since there were many discoveries documented by researchers from Europe (Cano Sancho, 2013), Asia (Zheng et al., 2013) and the Middle East countries (Akrami et al., 2013). Realizing this world phenomenon, the European Commission (EC) had highlighted that the maximum permissible level of AFM$_1$ in milk and dairy products must not be more than 0.5 ng/kg (Tekinsen & Eken, 2008a) in order to ensure over the limit samples are discarded before reaching the consumers.

Redzwan et al. (2013) mentioned the exposure of AFM$_1$ does not only appear in food source but can also be detected in human biological samples such as serum AFB$_1$-DNA adduct, AFB$_1$-lysine adduct, so as the other metabolites in urine and faeces through the isolation of aflatoxin biomarker as reported by Wang et al. (1999), Mykkänen et al. (2005) and Polychronaki et al. (2008). This method then becomes a powerful tool to determine the molecular epidemiology of aflatoxin exposure of each individual in the community (Redzwan et al., 2013). The variation of urinary level of AFM$_1$ is dependent on many factors such as lifestyle, environmental factors, genetic susceptibility and nutritional status (Sabran et al., 2012). Hence, with these parameters, the progressive steps should be taken to increase the understanding of AFM$_1$ exposure in the community. Apart from that, the consumption of milk and dairy products are also said to be interrelated with the variation of AFM$_1$ in the urine samples (Sabran et al., 2012). In fact, there was a good correlation between AFB$_1$ dietary intake and urinary excretion of AFM$_1$ in adults (Zhu et al., 1987). Hence it clearly showed that the starting point of AFB$_1$ ingestion by the dairy livestock would expose AFM$_1$ metabolites in human urine sample who consumed milk and dairy products.

Modern and advanced detection tool is not enough to minimize the human exposure of AFM$_1$ unless the population themselves have sufficient knowledge about the aflatoxin and the food that are contaminated by these toxins. Action to control the aflatoxin contamination on groundnut was actually associated with the knowledge which is linked with the socio-demographic and socio-economic status of the individuals (Redzwan et al., 2012a). Transmitting the information like knowledge becomes one of the mechanisms for health communication capable to change the common health habit (Meyerowitz & Chaiken, 1987). Through this effort, the consumers are able to prevent themselves from being contaminated by aflatoxin and thus achieve better health. The three determinants, which are awareness, attitude and practice, are also important to measure the behavioral factors of human toward the
food contamination like AFM$_1$ in milk and dairy products. Therefore, with the proper exposure on aflatoxin and their effects on human health, the populations are more educated and more prepared to face with the food contamination challenges after this.

1.2 Problem statement

Nowadays, food contamination issues have aroused significant public concern from all over the world. Rodricks and Stoloff (1977) reported since the first outbreak of aflatoxin tragedy in rye by ergot alkaloid, produced by *Claviceps purpurea* in the early 1960s, many scientific researches were carried out in term of etiology of mycotoxicosis and prevention strategies. Until today, research on aflatoxin has been studied extensively by many countries including Malaysia. An acute outbreak of aflatoxicosis in Malaysia has been reported by Lye et al. (1995) where 78.5% of the raw peanut kernel samples marketed in Malaysia were contaminated and of 78.5%, 10.71% exceeded the maximum tolerable limit of 15 ng/g. Interestingly, a study by Mohd Redzwan et al. (2012a) observed milk and dairy products consumption was positively associated with the level of AFM$_1$ in urine sample. Besides, respondents who consumed milk and dairy products above median (67.79 g/day) had high level of AFM$_1$ compared to their counterpart.

Although AFM$_1$ has been found to be less carcinogenic and mutagenic compared to AFB$_1$, it has the ability to exhibit a high level of genotoxic activity. This will cause health risk due to the possibilities to accumulate and damage DNA; particularly at guanine residues (Lafont et al., 1989; Wang & Groopman., 1999). Since in Malaysia many types of milk and dairy products are sold abundantly in the market, the consumers have high possibility to be contaminated by this harmful fungus. Considering this phenomenon of aflatoxin exposure in Malaysia had happened before, it is therefore important to study the association of milk and dairy products acceptability and their consumption pattern with the level of urinary AFM$_1$ and socio-demographic factors. A positive association was found between aflatoxin in nut and nut products intake with the socio-demographic and dietary status (Leong et al., 2011a). Unfortunately, till today no data had been presented in investigating the relationship between milk and dairy products intake in relation to aflatoxin exposure with different socio-demographic and socio-economic characteristics among urban and rural communities.

The Malaysian themselves are not exposed with the knowledge of aflatoxin in milk and dairy products. Redzwan et al. (2012a) reported that most of the non-academic staff in a faculty at Universiti Putra Malaysia knew about the presence of fungal infection in the foodstuffs, and yet they did not know about aflatoxin. From this data, it clearly shows that the people in Malaysia are still far behind in exploring the knowledge on aflatoxin. The knowledge, awareness, attitude and practice become four important tools to measure the understanding of individuals on food contamination and their implication toward global health. High intake of aflatoxin-contaminated foods among human actually resulted from low awareness and knowledge about fungal infection and aflatoxin contamination in food stuffs
(Redzwan et al., 2012a). Thus, the higher ingestion of AFB$_1$ and AFM$_1$ will cause higher detection of AFM$_1$ in urine samples. So with this explanation, determining the subjects’ knowledge, awareness, attitude and practice are crucial as one of the steps to reduce aflatoxin exposure in Malaysia.

1.3 Significance of the study

The result obtained from this research could provide clear guidelines for food supplier or importer to ensure the level of AFM$_1$ in milk and dairy products does not exceed the Malaysia permissible limit which is 500 ng/L (Food Safety Information System of Malaysia [FoSIM], 2012). Otherwise, the samples must be strictly discarded before entering the market. Many reports had been documented about the content of AFB$_1$ in agricultural crops like spices, cereals, and peanuts (Masoero et al., 2009). Considering these crops as the main food sources for livestock, the initial steps to ensure low or no aflatoxin contamination present in the feed is really important before the transmission of aflatoxin into milk products. Hence, the collected data could prepare a basic parameter for the Ministry of Domestic Trade, Cooperative and Consumerism to set up a new policy regarding the exposure of aflatoxin. The final results and summary drawn from this study will also be beneficial for policy makers in the central and local governments, extension agents to implement the strict regulation on AFB$_1$ in food and feed to reduce or avoid the contamination of AFM$_1$ in milk and dairy products (Iqbal et al., 2013).

Apart from that, by determining the factors affecting the higher level of AFM$_1$ in urine samples, the Ministry of Health, hospital, higher educational institution and private health related company can conduct an appropriate type of education or intervention programs that can increase the level of awareness among Malaysians. Thus, this can reduce the occurrence level of AFM$_1$ exposure within various populations. Besides, these results also provide new findings about the pattern of milk and dairy products intake between two different living areas. It is an initial step in understanding milk consumption patterns in detail which eventually leads to further analysis on the relationship between these eating patterns with the exposure of AFM$_1$.

1.4 Study Objectives

1.4.1 General Objective

To study the occurrence of AFM$_1$ in urine samples and their associated factors among residents in Terengganu.
1.4.2 Specific objectives

Part 1

1) To determine the associations between socio-demographic and socio-economic statuses with the total score of awareness, knowledge, attitude and practice on aflatoxin.

2) To determine the associations and relationships between socio-demographic, socio-economic statuses, the total score of awareness, knowledge, attitude and practice on aflatoxin with milk and dairy products consumption.

3) To determine the associations and relationships between socio-demographic, socio-economic statuses, milk and dairy products consumption, total score of awareness, knowledge, attitude and practice on aflatoxin with the occurrence of AFM1 in urine samples.

Part 2

4) To analyse the occurrence and level of AFM1 in commonly consumed types and brand of milk and dairy products.

5) To determine the relationship between the ingestion of AFM1 through milk and dairy products consumption and the level of urinary AFM1.

1.5 Null Hypothesis

Ho1 = There are no significant associations between socio-demographic and socio-economic statuses with the total score of awareness, knowledge, attitude and practice on aflatoxin.

Ho2 = There are no significant associations and relationships between socio-demographic, socio-economic statuses, the total score of awareness, knowledge, attitude and practice on aflatoxin with milk and dairy products consumption.

Ho3 = There are no significant associations and relationship between socio-demographic, socio-economic statuses, the consumption of milk and dairy products, total score of awareness, knowledge, attitude and practice on aflatoxin with the occurrence of AFM1 in urine sample.

Ho4 = There is no significant correlation between the ingestion of AFM1 through milk and dairy products and the level of urinary AFM1.
1.6 Conceptual Framework

The conceptual framework (Figure 1.1) showed this study was conducted to investigate the associations between all parameters in the socio-demographic statuses, socio-economic statuses, the consumption of milk and dairy products, score of subjects’ determinants (awareness, knowledge, attitude and practice) and the occurrence of urinary AFM$_1$.
Socio-demographic statuses
- Location
- Age
- Ethnicity
- Gender
- Marital Status
- Educational Level

Socio-economic statuses
- Employment Status
- Household Monthly Income

Milk and dairy products
- Milk and dairy products consumption (g/day)
- Ingestion of AFM₁ through milk and dairy products consumption (ng/ml)

Scoring of AKAP
- Awareness on aflatoxin
- Knowledge on aflatoxin
- Attitude on aflatoxin
- Practice on milk and dairy products consumption

AFM₁ occurrence and level
- Urine analysis

Figure 1.1: Conceptual Framework the Study
REFERENCES

Tekinsen, K. K., & Eken, H. S. (2008a). Aflatoxin M_1 levels in UHT milk and Kashar cheese consumed in Turkey. *Food and Chemical Toxicology*, 46, 3287-3289.

BIODATA OF STUDENT

Farah Nadira Binti Ahmad was born on 9th December 1990 at Kuala Terengganu, Terengganu. She obtained her primary education at Sekolah Kebangsaan Pusat Kuala Ibai from 1997 until 1999 and Sekolah Kebangsaan Wakaf Mempelam from 2000 until 2002. Then, she continued her secondary education at Sekolah Menengah Kebangsaan Sultan Sulaiman from 2003 until 2005 and Sekolah Menengah Kebangsaan Seri Nilam from 2006 until 2007. Upon completion of her secondary school, she had been offered to pursue her study in Foundation of Science at Centre of Foundation Science University of Malaya for one year. Later, she continued her first degree in Bachelor of Science (Biotechnology) for 3 years with sponsorship by Jabatan Perkhidmatan Awam (JPA).

High enthusiasm in nutritional field encourages her to continue her study in Master Degree of Community Nutrition at Faculty of Medical and Health Sciences, Universiti Putra Malaysia. Her study fees was sponsored by Graduate Research Fellow (GRF) scholarship and Ministry of Higher Education.
LIST OF PUBLICATIONS

Oral and poster presentations

Journal

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: ______________________

TITLE OF THESIS / PROJECT REPORT:

OCCURRENCE OF AFLATOXIN M1 IN URINE SAMPLES, MILK AND DAIRY PRODUCTS
AND THEIR ASSOCIATED FACTORS AMONG RESIDENTS IN TERENGGANU, MALAYSIA

NAME OF STUDENT: FARAH NADIRA BINTI AHMAD

I acknowledge that the copyright and other intellectual property in the thesis/project report
belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at
the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational
purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic
exchange.

I declare that this thesis is classified as:

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret
Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the
organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published
as hard copy or online open access.

This thesis is submitted for:

☐ PATENT Embargo from __________ until __________

(date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)
New IC No/ Passport No.: Name:
Date: Date:

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from
the organization/institution with period and reasons for confidentially or restricted.]