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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the Degree of Doctor of Philosophy 

 
 

HIGHLY SENSITIVE METAMATERIAL BIOSENSOR OPERATING IN THE 
TERAHERTZ REGIME 

 
 

By 
 
 

NADEEM NAEEM 
 

September 2016 
 
 
Chairman : Associate Professor Alyani binti Ismail, PhD 
Faculty  : Engineering  
 
 
Four metamaterial structures are presented in this thesis, which are designed to 
operate in terahertz frequency regime. The main objective of this study is to 
design terahertz metamaterial sensors that can be used as highly sensitive 
biosensors. Since every substance or material has its dielectric characteristics; 
these biosensors are designed to sense small changes appeared at the minute 
amount of samples called analytes when they are poured on the surface of the 
metamaterial structures. There is a change in transmission appeared at 
metamaterial structures which is due to the change in surface electric field 
localized in split gap areas.  
 
The first two planar metamaterial Spiral ring resonators were designed operating 
in terahertz frequency band. These subwavelength structures were categorized 
as Type-I and Type-II (two-turn and three-turn Spiral resonators). They are 
designed for use as sensitive metamaterial terahertz sensors. The unloaded 
fundamental frequency of was observed around 3.69 THz and 3.93 THz 
respectively. The two-turn and three-turn Spiral resonators based biosensors 
exhibit very high values of unloaded Q factor of 159 and 689.  
 
The other two terahertz sensors composed of split ring resoantors are also 
demonstrated as negative index metamaterials operating in terahertz regime. The 
Square and Hexagon spilt resonators are introduced as terahertz biosensors. The 
unloaded Q factor calculated for the Hexagon and Square split ring biosensors 
were observed at the operating frequencies of 3.2 THz and 3.31 THz are 33.64 
and 42.1 respectively. There is significant shift in the transmission coeeficients 
were observed under loading conditions when the dielectric material as a 
biological sample of varrying permittivity and different material thickness were 
deposited on the surface of proposed  biosensors. Such biosensors can be used 
in label free sensing of minute biological substances like protein, bacteria without 
harming their characteristics and the valuable indformation present in the cells 
due to the non ionizing characterisitcs of terahertz frequency.   
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BIOSENSOR METAMATERIAL BERKEPEKAAN TINGGI BEROPERASI 
DALAM REJIM TERAHERTZ 

 
 

Oleh 
 
 

NADEEM NAEEM 
 

September 2016 
 
 
Pengerusi : Profesor Madya Alyani binti Ismail, PhD 
Fakulti  : Kejuruteraan 
 
 
Empat struktur metamaterial dibentangkan dalam tesis ini. Semuanya direka 
untuk beroperasi dalam rejim frekuensi terahertz. Objektif utama kajian ini adalah 
untuk mereka sensor metamaterial terahertz yang boleh digunakan sebagai 
biosensor berkepekaan tinggi. Oleh sebab semua bahan atau material 
mempunyai ciri-ciri dielektrik, biosensor ini direka untuk mengesan perubahan 
kecil dalam amaun sampel kumin yang dipanggil analit apabila ia dituang ke atas 
permukaan struktur metamaterial. Perubahan dalam penghantaran akan dilihat 
pada struktur metamaterial ini disebabkan perubahan medan elektrik permukaan 
setempat di kawasan celah terpisah.  
 
Dua alat resonan metamaterial gelang berpilin menyatah yang pertama direka 
untuk operasi dalam jalur frekuensi terahertz. Struktur sub-panjang gelombang ini 
dikategorikan sebagai Jenis-I dan Jenis-II (alat resonan berpilin dua dan tiga 
putaran). Alat resonan ini direka sebagai sensor terahertz metamaterial yang 
sensitif. Frekuensi asas tanpa beban dilihat pada 3.69 THs dan 3.93 Hz, masing-
masing. Biosensor berasaskan alat resonan berpilin dua putaran dan tiga putaran 
menunjukkan nilai faktor Q tanpa beban yang sangat tinggi (159 dan 689, masing-
masing).  
 
Dua sensor terahertz seterusnya yang terdiri daripada alat resonan gelang 
terpisah turut terbukti sebagai metamaterial indeks negatif yang beroperasi dalam 
rejim terahertz. Alat resonan Segi empat dan Heksagon terpisah turut 
diperkenalkan sebagai biosensor terahertz dalam kajian ini. Faktor Q tanpa beban 
dikira untuk biosensor gelang terpisah bentuk Heksagon dan Segi empat dan 
diperhatikan di frekuensi operasi 3.20 THz dan 3.31 THz dengan nilai 33.64 dan 
42.10, masing-masing. Anjakan signifikan dalam pekali penghantaran dapat 
dilihat dalam keadaan dengan beban apabila material dielektrik, sebuah sampel 
biologi yang mempunyai ketelusan dan ketebalan material berbeza, diletakkan 
pada permukaan biosensor yang dicadangkan dalam kajian ini. Biosensor ini 
boleh digunakan dalam pengesanan bebas-label bahan biologi kumin seperti 
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protein dan bakteria tanpa membahayakan ciri-ciri bahan dan maklumat penting 
yang terdapat dalam sel. Hal ini disebabkan oleh ciri-ciri bukan-pengion radiasi 
terahertz yang tak berbahaya. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Background 
 
The term metamaterial, coined by Walser (2001), is defined as a 3-D periodic non-
natural composite, which is based on the combination of two or more 
electromagnetic responses. Presently, metamaterials are known as innovative 
synthetic materials that can surprisingly manipulate beams of light. The 
metamaterial structure is mainly based on sub-wavelength metallic resonators 
that remain in a dielectric. These resonating elements provide electromagnetic 
properties to metamaterials by ignoring conventional materials including atoms or 
molecules from these resonating elements (Pendry, 2006).  
 
 
Recently, interest in the research and development of new materials with 
characteristics that may not be found in nature has increased. These materials 
include metamaterials (MTMs), left-handed (LH), and negative index materials 
(NIM). These materials can be applied not only in scientific areas but also in 
industrial areas. These applications include artificial dielectrics, lens, absorbers, 
antenna structures, optical and microwave components, frequency-selective 
surfaces, sensing devices for gas, chemical- and water- based substances 
(Drexler et al. 2014; Miyamaru et al. 2014; Balamati et al. 2014), and vapor 
sensors (Salvatore, 2015). 
 
 
Metamaterial science has achieved a high degree of sophistication due to the 
continuous progress in design and fabrication on the submicron and nanometer 
scales to create novel properties of metamaterials. The interdisciplinary 
integration between metamaterial science and terahertz sensing technology has 
paved the way for new scientific and technological development including 
research into terahertz sensors based on metamaterials, which has led to the 
development of various metamaterial-based components for detecting 
information on substance and circumstance. 
 
 
The present advances in terahertz metamaterials have extended to include optical 
nanostructures and other related fields including communication, microscopy, and 
defense. Similarly, the terahertz (THz) spectrum dealing with distinctive properties 
and associated with terahertz frequencies is also known as a major research area 
involving metamaterials and favorable applications are currently associated with 
human exposure including medical diagnoses and security screening.   

 

 
Terahertz biosensors based on metamaterials, due to the non-ionizing properties 
of terahertz radiation, are suitable for biomedical sensing applications (Fitzgerald 
2002; Bogomazova 2015; Ergün and Sönmez, 2015), e.g. sensing of thin layers 
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of bio molecules without harming the cells. In metamaterials, the split ring 
resonators have shown promising potential in terms of their simple structures and 
easy implementation. Split rings exhibit left-handed properties, which are of great 
importance in constructing new types of metamaterials. 
 
 
1.2 Statement of Research Problem  
 
It is difficult for scientists to detect very thin and small amounts of biological and 
biochemical substances using conventional sensors without damaging cell 
structure. Labeling is the most common method used to detect the minute amount 
of biomolecules. Metamaterial-based sensors have been reported in the literature 
as a reliable solution for increasing the sensitivity of conventional sensors.  
 
 
In recent years, there have been reports on metamaterial sensors designed for 
sensing thin dielectric layers of biological and chemical substances but most of 
them have suffered from low quality factor values due to their shallow 
transmission characteristics (Fedotov et al. 2010; Singh et al. 2014; Yang et al. 
2014; Chowdhury et al. 2014). Low quality (Q) factors limit the sensing capabilities 
of metamaterial biosensors (Miyamaru et al. 2010; Moser et al. 2005; Chen et al. 
2008; Tao et al. 2009; O'Hara et al. 2008; Jansen et al. 2011).  
 
 
High Q factors are desirable in sensing applications. The Q factor of a sensor is 
generally determined by the energy loss per cycle as opposed to the stored 
energy. High Q metamaterial resonators for terahertz frequencies are difficult to 
design and characterize since the radiation loss in these structures increases 
inversely with resonator size. Several sensor designs have been reported to 
achieve higher Q factors and low losses particularly the design of terahertz 
metamaterials with new geometries and electrical coupling between resonating 
elements (Gu et al. 2010; Chen et al. 2010; Singh et al. 2008; Singh et al. 2010). 
However, these designs have achieved limited success in terms of sensitivity.    
 
 
1.3 Motivation  
 
Terahertz (THz) electromagnetic (EM) radiation falls between the microwave and 
infrared frequency bands and shares some common properties of each of these 
frequency bands. Materials like plastic, glass, paper, cloths, and ceramics are 
transparent to terahertz radiation (Fitzgerald et al. 2002). Such transparency 
facilitates high resolution non-invasive sensing that is useful in applications 
related to security and quality control. The low photonic energy of terahertz waves 
and their tremendous sensitivity to water absorption is the main motivation for 
research in the field of terahertz sensing, especially in the study of living 
organisms and imaging systems (Mittra et al. 1988; Pendry et al. 1996; Genet, 
2007; Yan et al. 2014).  
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The opportunities for safe and harmless direct communication are boundless with 
the use of comparatively short wavelength and broad frequency bandwidth 
(Comparatively short wavelength along with broad frequency bandwidth creates 
chances for safe and harmless direct communication). High data rates can be 
achieved with THz frequency. Recently, the detection of biological samples and 
explosives with unique spectral signatures (i.e. difference in the 
reflectance/emittance characteristics with respect to wavelengths) has become 
an emerging research area (Pendry et al. 1999; Powell et al. 2008).  
 
 
Terahertz biosensors have persistently been developed in terms of parallel 
improvement of ultrafast lasers; turnkey systems can be obtained commercially 
for overall spectroscopy and imaging (Pendry, 2000; Soukoulis et al. 2007; Dolling 
et al. 2007). These developments in terahertz systems are, however, associated 
with some design limitations.  
 
 
The sensing and categorization of actual minute amounts of biological analyte has 
stimulated a rapidly increasing branch of terahertz research. However, thin 
biological samples induce small and immeasurable changes via relatively 
inadequate interaction with terahertz waves. The main focus of this thesis, 
therefore, is to overcome this problem by suggesting the use of a novel 
metamaterial based on terahertz biosensors that could detect thin layers of 
biological analytes with different dielectric constants and layer thickness.  
 
 
1.4 Challenges in Terahertz Biosensing  
 
Terahertz biosensing systems must be specified, so as to facilitate accurate 
measurable sensing. This is because traditional THz sensing techniques have 
yielded limited success in detecting minute amounts of biological samples and 
chemicals (Withayachumnankul 2009). Developed analytes in the form of a 
dielectric layer have different terahertz properties than its bulk counterparts due 
to the size of these analytes and surface roughness, which changes during the 
fabrication process.  
 
 
Micro devices are designed with low adaptations toward planar substrates, which 
include sub-atomic implantation, chemical vapor deposition, and surface 
treatment with the help of chemicals. Moreover, biosensing techniques have 
helped develop a series of beneficial terahertz science and applications. 
 
 
Terahertz biosensing offers several practical and fundamental challenges 
involving electromagnetic sensing. In order to get measurable readouts, under-
test materials must have a strong interaction with the applied field. This interaction 
is associated with frequency-dependent constitutive material parameters and the 
amount of material to be tested. In spectroscopy devices, insufficient interaction 
between the biological samples and the applied EM field can lead to partial or 
incomplete information being obtained.  
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1.5 Research Aim and Objectives 
 
The objective of this research work is to design and analyze metamaterial 
terahertz biosensors for sensing minute and thin biological samples. These 
terahertz sensors consist of planar metamaterial designs. The proposed terahertz 
biosensors are targeted for sensing thin layers of DNA samples with different 
dielectric constants and varying thickness. In order to achieve this aim, the 
following objectives have been set: 
 

1. To design planar split rings and Spiral resonators based on metamaterial 
biosensors.  

2. To scale down the metamaterial structures so that they will be able to 
operate in a terahertz regime.  

3. To evaluate the effectiveness of the developed terahertz sensors in terms 
of their quality factors (Q) and surface electric field distributions.  

4. To evaluate the performance of the proposed metamaterial biosensors 
and analyze the effect of thin dielectric material deposition that mimics 
the bio samples, which includes different thickness and dielectric 
constants. 

 
 

1.6 Scope of Research 
 
The scope of this research is to design metamaterial-based biosensors that 
operate in the terahertz regime, so as to sense any dielectric changes that appear 
under the loading conditions of biological samples. The performance of the 
proposed design is to be tested using the commercially available CST design 
studio version 2011 software. The sensing performance of terahertz biosensors 
is evaluated by measuring external quality factor, surface electric field distribution, 
and transmission spectra. The scope of research work is outlined in Figure. 1.1.  
 

 
 

Figure 1.1 : Scope of Research 
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1.7 Research Methodology 
 
The performance of metamaterial-based terahertz biosensors is tested through 
software simulation and Scattering parameters are extracted to observe their 
resonant behavior. The effective parameters are calculated in order to observe 
the left-handedness of the proposed biosensors in the THz frequency band.  
 
 
The terahertz biosensors are modeled and simulated with depositions (loadings) 
of different thin layers of the biological sample with varying sample permittivity. 
The obtained results will then be compared with the frequency responses of 
reported biosensors to validate the novelty of the proposed metamaterial 
resonators as a terahertz biosensor. Figure 1.2 illustrates the flow chart for this 
study in which the procedural steps for the proposed design methodology are 
depicted. 
 

 
Figure 1.2 : Methodology 
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1.8 Organization of Thesis 
 
This thesis is organized into six chapters. The summary of each chapter is given 
below: 
 
 
Chapter 1 provides a general introduction to the research area and identifies the 
current problems in designing metamaterial-based terahertz sensors, which are 
the main motivation for this research. This chapter also introduces the goals, 
objectives, methodology, and scope of research as well as the organization of this 
thesis. 
 
 
Chapter 2 presents a thorough literature review and theoretical background about 
metamaterial structures, which covers sensors operating in the terahertz 
frequency band. It also provides a background and history of metamaterials 
before detailing the salient electromagnetic features of these materials as well as 
their recent applications, especially as terahertz biosensors.  
 
 
Chapter 3 provides an introduction on terahertz waves and its applications in the 
field of biosensing and imaging.  
 
 
Chapter 4 and 5 describe the design aspects of Spiral, Hexagon, and Square ring 
resonators in the terahertz frequency region.  
 
 
The testing results of the terahertz biosensors are presented in Chapter 6 and the 
conclusion to this study is presented in Chapter 7.   
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