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ABSTRACT

Numerical analysis is a way to do higher mathematical problems 
on a computer, a technique widely used by scientists and engineers 
to solve their problems. A major advantage of numerical analysis 
is that a numerical answer can be obtained even when a problem 
has no “analytical” solution. Results from numerical analysis are 
an approximation, which can be made as accurate as desired.  The 
analysis of errors in numerical methods is a critically important 
part of the study of numerical analysis. Hence, we will see in this 
research that computation of the error is a must as it is a way to 
measure the efficiency of the numerical methods developed 

Numerical methods require highly tedious and repetitive 
computations that can only be done using the computer. Hence 
in this research, it is shown that computer programs must be 
written for the implementation of numerical methods. In the early 
part of related research the computer language used was Fortran.  
Subsequently more and more computer programs used the C 
programming language. Additionally, now computations can also 
be carried out using softwares like MATLAB, MATHEMATICA 
and MAPLE.

Many physical problems that arise from ordinary differential 
equations (ODEs) have magnitudes of eigenvalues which vary 
greatly, and such systems are commonly known as stiff systems.  
Stiff systems usually consist of a transient solution, that is, a 
solution which varies rapidly at the beginning of the integration. 
This phase is referred to as the transient phase and during this phase, 
accuracy rather than stability restricts the stepsize of the numerical 
methods used. Thus the generally the structure of the solutions 
suggests  application of specific methods for non-stiff equations in 
the transient phase and specific methods for stiff equations during 
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the steady-state phase in a manner whereby computational costs 
can be reduced.

Consequently, in this research we developed embedded Runge-
Kutta methods for solving stiff differential equations so that variable 
stepsize codes can be used in its implementation. We have also 
included intervalwise partitioning, whereby the system is considered 
as non-stiff first, and solved using the method with simple iterations, 
and once stiffness is detected, the system is solved using the same 
method, but with Newton iterations. By using variable stepsize 
code and intervalwise partitioning, we have been able to reduce 
the computational costs. 

With the aim of increasing the computational efficiency of the 
Runge-Kutta methods, we have also developed methods of higher 
order with less number of stages or function evaluations. The method 
used is an extension of the classical Runge-Kutta method and the 
approximation at the current point is based on the information at 
the current internal stage as well as the previous internal stage. This 
is the idea underlying the construction of Improved Runge-Kutta 
methods, so that the resulting method will give better accuracy.

Usually higher order ordinary differential equations are solved 
by converting them into a system of first order ODEs and using 
numerical methods suitable for first order ODEs. However it is more 
efficient, in terms of accuracy, number of function evaluations as 
well as computational time, if the higher order ODEs can be solved 
directly (without being converted to a system of first order ODEs), 
using numerical methods. In this research we developed numerical 
methods, particularly Runge-Kutta type methods, which can directly 
solve special third order and fourth order ODEs.

Special second order ODE is an ODE which does not depend on 
the first derivative. The solution from this type of ODE often exhibits 
a pronounced oscillatory character. It is well known that it is difficult 
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to obtain accurate numerical results if the ODEs are oscillatory in 
nature. In order to address this problem a lot of research has been 
focused on developing methods which have high algebraic order, 
reduced phase-lag or dispersion and reduced dissipation. Phase-
lag is the angle between the true and approximate solution, while 
dissipation is the difference between the approximate solution 
and the standard cyclic solution. If a method has high algebraic 
order, high order of dispersion and dissipation, then the numerical 
solutions obtained will be very accurate. Hence in this research we 
have developed numerical methods, specifically hybrid methods 
which have all the abovementioned properties. 

If the solutions are oscillatory in nature, it means that the 
solutions will have components which are  trigonometric functions, 
that is, sine and cosine functions. In order to get accurate numerical 
solutions we thus phase-fitted the methods using trigonometric 
functions. In this research, it is proven that trigonometrically-fitting 
the hybrid methods and applying them to solve oscillatory delay 
differential equations result in better numerical results.

These are the highlights of my research journey, though a 
lot of work has also been done in developing numerical methods 
which are multistep in nature, for solving higher order ODEs, as 
well as implementation of methods developed for solving fuzzy 
differential equations and partial differential equations, which are 
not  covered here.
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INTRODUCTION

This research is basically to find numerical solutions to differential 
equations. Hence, here we give a brief introduction to differential 
equations and the numerical methods used to solve them.

Introduction to Differential Equations

A differential equation is a mathematical equation that relates some 
function with its derivatives. In applications, the functions usually 
represent physical quantities while the derivatives represent their 
rates of change, and the equation defines the relationship between 
the two. Since such relations are extremely common, differential 
equations play a prominent role in many disciplines, including 
engineering, physics, economics and biology. In  mathematics, 
differential equations are studied from several different perspectives, 
but mostly concerned with their solutions. 

Ordinary Differential Equations

The Ordinary Differential Equation (ODE) is a differential equation 
that contains only ordinary derivatives of one or more unknown 
functions with respect to a single independent variable. We have 
listed some of the applications of ODEs below.

Population Models

One of the most basic examples of differential equations is the 
Malthusian Law of population growth !"!" ! !"!! which shows how 
the population !!!! changes with respect to time.  The constant ! 
will change depending on the species.  This law is used to predict 
how a species would grow over time.
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Logistic Growth

In many situations where there is growth of a population, the growth 
is bound by some maximum. This kind of growth is called logistic 
growth, where the growth of a population is proportional to both 
the size of the population and the difference between the size of 
the population and the maximum. 

Let! ! !!represent the size of the population at time t, and 
suppose ! ! ! ! ! !!. That is !!is always bound between zero 
and L, then the resulting differential equation can be written as 
!"
!" ! !"!! ! !!!

.

 

Predator-prey Models

More complicated differential equations can be used to model the 
relationship between predators and prey.  For example, as predators 
increase the prey will decrease as more get eaten. However then the 

Figure 1 The graphs of Exponential Growth and Logistic Growth
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predators will have less to eat and start to die out, which allows more 
prey to survive.  The interactions between these two populations 
are connected by differential equations. 

Consider two populations whose sizes at a reference time t are 
denoted by x(t) and y(t), respectively. The functions x and y might 
denote population numbers or concentrations (number per area) or 
some other scaled measure of the population sizes, but are taken 
to be continuous functions. Changes in population size with time 
are then described by the system of two autonomous differential 
equations:

!"
!" ! !"!!! !!!

!"
!" ! !" !! ! !

The functions f and g denote the respective per capita growth rates 
of the two species. 

Figure 2 Periodic activity generated by the Predator-Prey model
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The graph above shows the predator and prey population and it 
is very dependent on the prey.  This particular relationship generates 
a population boom and crash – the predator rapidly eats the prey 
population and grows rapidly before it runs out of prey to eat and 
then it has no other food and thus starts to die off again. 

Some other uses of differential equations include:-

1.	 In medicine, for modelling cancer growth or the spread of 
disease.

2.	 In engineering, for describing the movement of electricity.
3.	 In chemistry, for modelling chemical reactions.
4.	 In economics, to find optimum investment strategies.
5.	 In physics, to describe the motion of waves, pendulums or 

chaotic systems.

Delay Differential Equations 

Delay differential equations (DDEs) are a type of differential 
equation in which the derivative of the unknown function at a certain 
time is given in terms of the values of the function at previous 
times. DDE is a model which incorporates past history. A more 
realistic model must include some of the past history of the system 
to determine future behavior. 

It can include for example, population dynamics, epidemiology 
and reforestation. In the latter the replanting process will take at 
least 20 years before reaching maturity. Hence, time delay must 
be applied in the mathematical model for forest harvesting and 
regeneration.

The Nicholas Blowfly Equation: 
!"
!" ! !" ! ! ! !"#

!!!! ! !!
! ! !"!!!!

!"
!" ! !" ! ! ! !"#

!!!! ! !!
! ! !"!!!! where β is the birth rate, δ is the death rate, τ 
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is the age at which adult flies emerge from their pupal cases and К 
the population’s carrying capacity (See Brillinger, 2011). 

A vector disease model: 
!"
!" ! !" ! ! ! ! ! ! ! ! !" ! ! where 

y(t) is the infected host population. The disease is transmitted to 
the host by an insect vector, assumed to have a large and constant 
population. Within the vector there is an incubation period

 
τ , before 

a disease agent can infect the host while c is the recovery rate and 
b is the contact rate (See Cooke, 1978).

Stiff Differential Equations

Stiffness is a subtle, difficult and important concept in the 
numerical solution of ordinary differential equations. It depends 
on the differential equation, the initial conditions and the 
numerical method. An ordinary differential equation problem 
is stiff if the solution being sought is varying slowly, but there 
are nearby solutions that vary rapidly, so the numerical method 
used must take small steps to obtain satisfactory results. A stiff 
differential equation is numerically unstable unless the step size 
is extremely small.

Numerical Methods for Ordinary Differential 
Equations 

Many differential equations cannot be solved analytically. For 
practical purposes however, such as in engineering, a numeric 
approximation to the solution is often sufficient.  Numerical methods 
for ODEs are methods used to find numerical approximations to 
the solutions of ODEs. 
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Computer Software

The most popular programming language for implementing 
numerical methods is Fortran, a language developed in the 1950s 
that continues to be updated to meet changing needs. Other 
languages, such as, C and C++, are also used for the implementation 
of numerical methods. MATLAB, is a commercial package that 
is arguably the most popular to do numerical computing. Two 
other popular computer programs for handling algebraic-analytic 
mathematics (manipulating and displaying formulas) are MAPLE 
and MATHEMATICA.

Methods

Conceptually, a numerical method starts from an initial point and 
then takes a short step forward in time to find the next solution 
point. First let us introduce the following equation

!! ! ! !! ! !!! !! ! !!!, !! ! ! ! !    	 (1.1)

ODE together with the initial condition is called the initial value 
problem (IVP). Numerical methods for solving first-order IVPs 
often fall into one of two large categories: 

i.	 Single-step methods (such as Euler’s method) which refer 
to only one previous point and its derivative to determine the 
current value. Methods such as Runge-Kutta (RK) take some 
intermediate steps (for example, a half-step) to obtain a higher 
order method, but then discard all previous information before 
taking a second step. 

Single step method

xnx0 xn + 1 X
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A further division can be realized by dividing methods into those 
that are explicit and those that are implicit. Implicit RK methods  
include the diagonally implicit RK (DIRK), singly diagonally 
implicit RK (SDIRK) and the Gauss-Radau method, and any RK 
method with a lower diagonal Butcher tableau is explicit.

ii.	 Multistep methods which attempt to gain efficiency by 
keeping and using the information from previous steps rather 
than discarding it. Consequently, multistep methods refer to 
several previous points and derivative values. In the case of linear 
multistep methods, a linear combination of the previous points 
and derivative values are used.

xnx0 xn + 1xn – 2 xn – 1 X

Multistep Method

For example, implicit linear multistep methods include Adams-
Moulton methods and backward differentiation methods (BDF). 
Explicit methods include the Adams-Bashforth methods, and the 
so-called general linear methods (GLMs) which are a generalization 
of the earlier mentioned two large classes of methods.

Analysis

Numerical analysis involves not only the design of numerical 
methods but also their analysis. Three central concepts in this 
analysis are: convergence: whether the method approximates 
the solution; order: how well it approximates the solution; and 
stability: whether errors are damped out.
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Convergence

A numerical method is said to be convergent if the numerical 
solution approaches the exact solution as the step size h goes 
to 0. In fact, a numerical scheme has to be convergent to be of  
any use.

Consistency and Order

Suppose the numerical method is:!!!! ! ! !!!!!!!!! !!!!!! ! !!!!!!! ! !!!

 The local (truncation) error of the method is the error committed 
by one step of the method. That is, it is the difference between the 
result given by the method, assuming that no error was made in 
earlier steps, and the exact solution:

!!!!! ! ! !!!!! ! !! ! ! !!!! !! !! !!!!!! ! ! ! !!!!!!!!

The method is said to be consistent if : !"#
!!!

!!!!!

! ! !!     

The method has order !!!! if : !!!!! ! !!!!!!! as ! ! !! 

Hence a method is consistent if it has an order greater than 
0. Most methods being used in practice attain a higher order. 
Consistency is a necessary condition for convergence, but 
not sufficient. For a method to be convergent, it must be both 
consistent and zero-stable.

DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS 
FOR STIFF DIFFERENTIAL EQUATIONS

The initial value problems with stiff ordinary differential equations 
arise in fluid mechanics, elasticity, electrical networks, chemical 
reactions and many other areas of physical importance. The stiffness 
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arises due to the large difference in time scales exhibited in the 
physical models. These time scales are usually responsible for the 
decaying rates of the model.  

!! ! ! ! !! ! !! ! !! ! !! !, !! ! !!!	 (2.1)

Several schemes have been developed for the numerical solution 
of stiff initial value problems for  ordinary differential equations, 
and among them we note Gear’s method (1969) and the method 
of Bulirsch and Stoer (1996). While these schemes work well for 
moderately stiff systems, however, as the stiffness increases they 
all require the use of very small mesh spacing over portions of 
the domain of integration. Thus, computational cost increases and 
accuracy decreases as the stiffness increases.

In line with this, there has been recent interest in integrating 
stiff systems of first order ODEs numerically, using the diagonally 
implicit RK method. The method was introduced to overcome 
some of the limitations of the fully implicit and explicit RK 
method. This is due to the fact that computational effort involved 
in using the DIRK method is generally less compared to that  
for the fully implicit RK methods.  Such methods can be written as

!! ! ! !! ! !!!!!! ! ! !!"
!

!!!

!! !,  ! ! !! ! ! !!          	 (2.2a)
                                         

!!!! ! !! ! ! !!!!

!

!!!

!		  (2.2b)  

If we assume that all the diagonal elements of the method are equal, 

!=iia !, thus all the eigenvalues of the method will be equal, hence 
the method is called a singly diagonally implicit Runge-Kutta 
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(SDIRK) method. Next, suppose (2.2a) is solved successively using 
Newton-type iterations, where the linear system with a coefficient 
matrix of the form    

     ! !!!! !.   

is solved at each stage, then the stored LU-factorization of the 
matrix may be used repeatedly, thereby making the method 
computationally more efficient. Such formulae were first 
suggested by Norsett (1974) and studied further by Alexander 
(1977) and Cash (1979). The embedded SDIRK formulae have 
a built-in local truncation error estimate, and as a result, the 
stepsize can be controlled at virtually no extra cost. Norsett and 
Thompson (1984) continued the work using the semi-implicit 
RK method, where they developed a SDIRK method of order two 
embedded in the method of order three. Further, Al-Rabeh (1987) 
derived a SDIRK method of third order embedded in the fourth 
order. Preliminary experiments have shown that these methods 
are suitable for solving stiff ODEs.

Here, we derive a SDIRK method of fourth-order five-stage 
embedded in method of fifth-order six- stage, where we define the 
embedding method to equation (2.2) as 

!! ! ! !! ! !!!! !! ! ! !!"
!

!!!

!! !, ! ! !! ! ! ! ! !!	 (2.3a)

!!!! ! !! ! ! !!!!

!!!

!!!

!
		

(2.3b)
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Then the local truncation error could be estimated using the 
higher order method and the lower order method. The derivation 
can be also seen in Ismail et al. (1998) and work related to stiff 
ODEs can be referred to in Suleiman et. al. (1996). 

Derivation of Embedded Singly Diagonally Implicit 
Runge-Kutta Method

For the RK method, ,
1
!
=

=
i

j
iji ac ! ib is for the lower order method and ib !

is for the higher order method, and !=iia !are the diagonal elements 
of the method. Butcher (1987) has listed the expressions for the 
elementary differentials for up to order 8. Table 1 contains the 
required equations up to order 5.

Table 1  Equations of Conditions for order 1 to 5

	Graph of t	
)(
1)(
t

t = !	 	

	 	 ! =
i

iicb 2
1

 =1	 (2.2.1)

	 	 ! =
i

iicb 2
1 	 (2.2.2)

	 	 ! =
i

iicb 3
12 !	 (2.2.3)

	 	 ! =
ij

jiji cab
6
1 !		  (2.2.4)

	 	 ! =
i

iicb 4
13 !		  (2.2.5)
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	 	 ! =
ij

jijii cacb
8
1 !		 (2.2.6)

	    	   	       	             
	 	

12
12 =!

ij
jiji cab !		  (2.2.7)

	 	 ! =
ijk

kjkiji caab
24
1 !	 (2.2.8)

	 	 ! =
i

iicb 5
14 !	 (2.2.9)

	 	
10
12 =!

ij
jijii cacb 	 (2.2.10)

	 	 ! =
ij

jijii cacb
15
12 !	 (2.2.11)

	 	 ! =
ijk

kjkijii caacb
30
1 !	 (2.2.12)

	 	 ! =
ij

jiji cab
20
13 !	 (2.2.13)

	 	 ! =
ijk

kikjiji cacab
20
1 !	 (2.2.14)

	 	 ! =
ijk

kjkjiji cacab
40
1 !	 (2.2.15)

	 	 ! =
ijk

kjkiji caab
60
12 !	 (2.2.16)

	 	 ! =
ijkl

lkljkiji caaab
120
1 !	 (2.2.17)
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Using the Simplifying Assumption !!"!!
!"

!= 
!
! !!
! !, which holds 

for all i = 1,..,6.   	
Butcher (1987) referred to the equation as the row-simplifying 

assumption. Meanwhile, equation

   !!"
!

!! ! !! ! ! !! !, ! ! !!! !!!

is referred to as a column simplifying assumption. 
Using the order conditions and the simplifying assumptions we 

derived two embedded SDIRK methods (4,5) in (5,6).

Table 2  SDIRK Method (4, 5) Embedded in (5, 6) with !  = 0.27805384 

! 	 !

2!  + ! √2	 a21	
!

-0.7	 a31	 1.06004330	 !

0.25653741	 a41	 -0.03682839	 0.00789379	 !

0.82839417	 a51	 -0.03380531	 0.00608165	 0.53925854	 !

1–! 	 a61	 -0.63238912	 -0.04238439	 0.55765932	 0.75299105	 ! 	

	 0	 -0.06318768	 0.00318654	 0.56747397	 0.57361772	 -0.810905

	 0	 -0.02185092	 0.00356539	 0.56010910	 0.45817642
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Table 3  SDIRK Method (4,5) Embedded in (5,6) with ! !
!
!"!

	
! 	 !

2!  + ! √2	 a21	
!

-0.7	 a31	 1.07091464	 !

0.25109432	 a41	 -0.03707993	 0.00766549	 !

0.56536452	 a51	 -0.07272339	 0.00883329	 0.97869993	 !

1 – ! 	 a61	 -0.02745363	 0.00216163	 0.91306419	 -0.05734425	 !

	 0	 -0.11018458	 0.00277906	 0.57280038	 - 0.16289019	 0.4771267

	 0	 0.26135316	 0.006320993	 0.46956348	 0.26277236

Stability of the Method

When the SDIRK method is applied to the test equation yy = !, the 
following equations are obtained : uyAhIbhyy n

T
nn

1
1 )(+ += !

or nn yhRy )(1 !=+ ! with ,)(1)( 1uAhIbhhR T !!+=  !hh = ! and 
).,...,( 1 q

T bbb = ! )(hR !is called the stability polynomial of the 
method. The stability region is the region enclosed by the set of 
points for which 1)( =hR . By replacing 1 with !! sincos i+ , we 
can determine this boundary by solving the equation for values of 

]2,0[ !.
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Problems Tested

In this section, we present some problems which will be tested using 
the new method. Initially the system is considered as non-stiff, 
hence we do simple iteration. Once there is an indication of stiffness 
through step failure and trace of the Jacobian is negative, the whole 
system is considered stiff and solved using Newton iterations.

Figure 3  Stability region of F1(A) method lies outside the circle

Figure 4  Stability region of F1(B) method lies outside the circle
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Problem 1.	 !!!!!! ! !! ! !! !! ! !"!! !, 	 !! ! ! !!

	 !!! ! !!! !! ! !! !!	 !! ! ! !!

	 !!! ! !!!!! !,  !!!!! ! !!, 	 ! ! ! ! !"!  

Problem 2:	 211 310 yyy += ,   212 103 yyy =
	
	 33 4yy = ,  44 yy = 	 )6)1(1(,1)0( == iyi !	
		
	 55 5.0 yy = , 66 1.0 yy = 	 .200 x !			

Problem 3:	 2
4

2
3

2
211 yyyyy +++= !   

	 )(1010 2
4

2
322 yyyy ++= !

	
2
433 4040 yyy += !	 )4)1(1(,1)0( == iyi !

	 2100 44 += yy !	 .200 x !

Problem 4: 	 211 9001800 yyy += !   

	 ,2 11 ++= iiii yyyy !(i=2(1)8)	 )9)1(1(,1)0( == iyi !

	 100020001000 989 += yyy !	 .200 x !
	

Numerical Results and Discussions

The results obtained from the new method are compared with the 
results obtained when the same problems are solved using the 
SDIRK method (3,3) embedded in (4,4), which was derived by 
Rabeh (1987). The numerical results are given in Tables 4 – 7. The 
notations used are as follows: 
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TOL ~ the chosen tolerance; FCN ~ the number of function 
evaluations;
STEP ~ the number of successful steps; FSTEP ~ the number 
of failure steps; and
JACO ~ the number of Jacobian evaluations. 

The methods used are:

F1(A): SDIRK method (4, 5) in (5, 6) with ! ! !!!"#$%&#'!, 
in this section. 
F1(B): SDIRK method (4, 5) in (5, 6) with ! !

!
!"!, in this 

section. 
R1: SDIRK method (3, 3) in (4, 4) with ! ! !!!"#$%%#&!, in 
Rabeh (1987).

Table 4  Numerical Results for Problem 1, Using Tolerances 10-2,  
10-4, 10-6, 10-8

		  Tol 10-2  					     Tol 10-4 	

	

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 221	 16	 1	 2	 689	 52	 1	 2

	 F1(B)	 221	 16	 1	 2	 637	 48	 1	 2

	 R1	 153	 16	 1	 1	 557	 61	 1	 2

				  
		  Tol 10-6  					     Tol 10-8 

		

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 3288	 251	 1	 3	 10630	 815	 1	 3

	 F1(B)	 3106	 237	 1	 3	 10032	 769	 1	 3

	 R1	 3347	 370	 1	 3	 17413	 911	 1	 3
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Table 5  Numerical Results for Problem 2, Using Tolerances 10-2,  
10-4, 10-6, 10-8

		  Tol 10-2  					     Tol 10-4 	

	

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 261	 19	 1	 1	 598	 44	 1	 2

	 F1(B)	 261	 19	 1	 1	 572	 42	 1	 2

	 R1	 291	 31	 1	 1	 875	 95	 1	 2

		  Tol 10-6  					     Tol 10-8   

		

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 1391	 105	 1	 2	 3406	 260	 1	 2

	 F1(B)	 1352	 102	 1	 2	 3302	 252	 1	 2

	 R1	 2667	 295	 1	 2	 14618	 1622	 1	 2

Table 6  Numerical Results for Problem 3, Using Tolerances 10-2,  
10-4, 10-6, 10-8

		  Tol 10-2					     Tol 10-4  

		

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 337	 25	 1	 1	 750	 56	 1	 2

	 F1(B)	 337	 25	 1	 1	 731	 55	 1	 2

	 R1	 370	 40	 1	 1	 1063	 117	 1	 1

		  Tol 10-6  					     Tol 10-8  

		

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 1770	 134	 1	 3	 4375	 333	 1	 5

	 F1(B)	 1710	 130	 1	 3	 4235	 323	 1	 5

	 R1	 1312	 336	 1	 2	 17319	 1917	 2	 9
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Table 7  Numerical Results for Problem 4, Using Tolerances 10-2,  
10-4, 10-6, 10-8

		  Tol 10-2					     Tol 10-4   

		

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 305	 22	 1	 2	 578	 43	 1	 2

	 F1(B)	 292	 21	 1	 2	 603	 44	 1	 3

	 R1	 294	 31	 1	 1	 806	 87	 1	 2

		  Tol 10-6					     Tol 10-8	

	

	Method 	 FCN	 STEP	 JACO	 FSTEP	 FCN	 STEP	 JACO	 FSTEP

	 F1(A)	 1370	 103	 1	 4	 3306	 251	 1	 4

	 F1(B)	 1331	 100	 1	 3	 3202	 343	 1	 4

	 R1	 2399	 264	 1	 2	 9288	 1022	 2	 4

Figure 5  Total Time Taken to solve  the problems over all the
tolerances (in seconds)
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We derived embedded SDIRK methods of order (4,5) in (5,6), 
denoted as F1(A) and F1(B). The methods have large regions 
of stability and are hence suitable for solving stiff differential 
equations. These methods performed better compared to Rabeh’s 
method in terms of Jacobian evaluations, number of steps and also 
the total time taken to solve each system of equations over tolerances 
10-2, 10-4, 10-6 and, 10-8. Even though methods F1(A) and F1(B) have 
more function evaluations to be evaluated at each step, they are 
more economical compared to the existing method.

IMPROVED RUNGE-KUTTA METHODS FOR 
SOLVING ORDINARY DIFFERENTIAL EQUATIONS 

Most efforts to increase the order of the RK method have been 
accomplished by increasing the number of Taylor series terms 
used and thus the number of function evaluations. The RK method 
of order !! has a local error over the step size h of !!!!!!!. Many 
authors have attempted to increase the efficiency of RK methods 
by trying to lower the number of function evaluations required. 
Goeken and Johnson (2000) proposed a class of RK methods 
with higher derivatives approximations for the third and fourth-
order methods; Xinyuan (2003) presented a class of RK formulae 
of order three and four with reduced evaluations of functions; 
Phohomsiri and Udwadia (2004) constructed the accelerated RK 
integration schemes for the third-order method using two function 
evaluations per step; and  Udwadia and Farahani (2008) developed 
the higher order accelerated Runge-Kutta methods. However these 
methods are for the autonomous system. Improved Runge-Kutta 
methods (IRK) can be used for autonomous as well as non-
autonomous systems. Rabiei and Ismail (2011) extended the work 
and constructed the third-order Improved Runge-Kutta method for 
non-autonomous systems, solving ordinary differential equations 
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without minimization of the error norm. The IRK methods that arise 
from the classical RK methods can also be considered as a special 
class of two-step methods. That is, the approximate solution !!!! !   
is calculated using the values of !! ! and !!!!!! The IRK method 
introduces the new terms of !!! !, which are calculated using !! !,    
!! ! !!!,  from the previous step. The scheme proposed here has a 
lower number of function evaluations than the RK methods. 

Derivation of the IRK Method

The proposed IRK method can be presented as follows:

!!!! ! !! ! ! !!!! ! !!!!!! ! !! !! ! !!!
!

!!!
!, 	 (3.1)

!! ! !!!! ! !!!!, !!! ! !!!!!!! !!!!!!, 	

!! ! ! !! ! !!!! !! ! ! !!"
!!!

!!!

!! !

,

!!!!!! ! ! !!!! ! !!!! !!!! ! ! !!"!!!
!!!

!!!

!

,
! ! ! ! !!.

Taylor Series expansion for !!!! ! around !! !is given by

!!!! ! !! ! !! !
!!

!! !! ! !!! !
!!

!! !!! ! !!!"! ! !!!!! ! !!!! ! !!!! ! ! !! !!

where !! ! ! !! ! !!"#!and by expanding (3.1) in the Taylor series 
expansion and comparing both the series in terms of h, we have 
the order conditions of the method:
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Table 8  Order Conditions of the Method

First order	 !! ! !!! ! !!	 Fifth order :	 !!!!!
!

!

!
!"
!		

Second order	 !!! ! !! !
!
!

!

!!!

!		  !!!!!!"!!!
!

!

!
!"
!"#!

		

Third order	 !!!!
!

!

!
!
!"!

		  !!!!"!!!
!

!

!
!"
!"#!

	

Fourth order	 !!!!!
!

!

!
!
!"!

		  !!!!"! !!

!

!

!
!"
!"#!		

		  !!!!"!!!
!

!

!
!
!!		

	 	
Using the order conditions in Table 8, we derived the IRK methods 
of orders ! ! !! and ! ! !!!. To determine the free parameters of 
the third and fourth order methods we minimized the error norm 
for the methods of order 4 and 5, respectively.  Hence, the third 
order method (IRK3) with two stages ! ! !! ! ! ! !!, IRK3-3,   

! ! !! ! ! ! !and the fourth order method with three stages  
! ! !! ! ! ! !! are obtained. Then, by satisfying as many equations 

as possible, for the fifth order method, we obtained the optimized 
fourth order method with 4-stages ! ! !! ! ! ! !, which is denoted 
as the IRK4-4 method. The coefficients of the IRK3, IRK4 and 
IRK4-4 methods are presented in Table 9. The derivation can also 
be seen in Rabiei et al. (2013).
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Numerical Results and Discussions

In this section, we tested a set of initial value problems to show the 
efficiency and accuracy of the proposed methods. The following 
problems are solved for  !! ! !! !! 

Problem 1:	!!! ! !!"!!! ! !!!! ! ! ! ! !!! 

	 Exact solution: ! ! ! !!!!!! ! !!!!  

	 (Source: Udwadia and  Farahani ( 2008))    

Problem 2:	(an oscillatory problem)

	 !! ! ! ! ! ! ! ! !!!

	 Exact solution: ! ! ! !!"#!!!!!	
	 (Source: Hull et al. (1972))

Problem 3:	(1-body gravitational problem with eccentricity e = 0)

	 !!!! ! !!!!!!! ! !!!!!!!! !,  !! ! ! !! !!
! ! ! !!

Table 9  Coefficients of IRK3, IRK4 and IRK4-4 methods

		
							       0

				    0			   1	 1
							       5	 5

	 0			   31	 31		  3	 0	 3
				    60	 60		  5		  5

	 1	 1		  31	 31	 31	 4	 2	 4	 38
	 2	 2		  60	 60	 60	 5	 15	 25	 75

	 –1	 2	 5	 –157	 23221	 –1800	 19	 307	 –25	 25	 125
	 3	 3	 6	 23064	 23064	 161448	 288	 288	 144	 144	 288

	 IRK3	 IRK4	 IRK4-4
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	 !!!! ! !!!!!!! ! !!!!!!!! !, !!! ! ! !! !!
! ! ! !!

	 Exact solution:!! ! ! ! !!!!!! ! ! !!!!!	
	 (Source: Hull et al. (1972))

Notations used are as follows:

IRK3 ~ Improved Runge-Kutta Method (! ! !! ! ! !!!)
IRK3-3 ~ Improved Runge-Kutta Method (! ! !! ! ! !!!)
IRK4 ~ Improved Runge-Kutta Method (! ! !! ! ! !!!) 
IRK4-4 ~ Improved Runge-Kutta Method (! ! !! ! ! !!!)
RK2 ~ Existing RK Method (! ! !! ! ! !!!)
RK3 ~Existing Runge-Kutta Method (! ! !! ! ! !!!)
RK4~ Existing Runge-Kutta Method (! ! !! ! ! !!!)
(Existing RK method in Dormand J.R.(1996)).

The number of function evaluations versus the log(maximum 
global error) for the tested problems  are shown in Figures 6 – 8.

Figure 6  Maximum global error versus number of function evaluations 
for problem 1
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Figure 7  Maximum global error versus number of function evaluations 
for problem 2

Figure 8  Maximum global error versus number of function evaluations 
for problem 3
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In this research, the order conditions of the IRK method up 
to order five are derived. Based on these order conditions, we 
obtained IRK methods of order three and four with different stages. 
From the numerical results, we observed that for the same order, 
IRK methods with less number of stages require less number 
of function evaluations, which leads to less computational time 
needed for approximating numerical solutions of the problems as 
compared with the existing RK methods. Thus, we can conclude 
that IRK methods are computationally more efficient compared to 
the existing RK methods.

RUNGE-KUTTA TYPE METHODS FOR DIRECTLY 
SOLVING SPECIAL THIRD ORDER ORDINARY 
DIFFERENTIAL EQUATIONS

A special third order ODE can be written in the following form:

!!!! ! ! !!!! !!!!!!! ! ! !!!!! !! ! !!! !!! !! ! !! !!!! !! ! !!!!!!	 (4.1)
                        
where !!! ! ! ! !!!, which is not explicitly dependent on the first 
derivative !! ! ! and the second derivative !!! ! ! of the solution. The 
ODE (4.1) is frequently found in many physical problems such as 
thin film flow, gravity and electromagnetic waves.  Most researchers, 
scientists and engineers used to solve (4.1) by converting the third 
order differential equations to a system of first order equations three 
times the dimension. However, it is more efficient if the problem 
can be solved directly using numerical methods. Such work can 
be seen in Awoyemi, 2005; Waeleh, 2011; Noraini, 2011; Jator, 
2011 and Yap et al. 2014.  All the methods previously discussed are 
multistep methods, hence they need the starting values when used 
to solve the equation. Here we are going to derive a RK method for 
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solving the third order ODEs directly, and the method is denoted 
as the RKD method

Derivation of the RKD Method

The general form of an s-stage RK method for directly solving 
the initial value problem (4.1), denoted as the RKD method, can 
be written as

!!!! ! !! ! !!!! !
!!

! !!
!! ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!

!		 (4.2)

!!!!! ! !!! ! !!!!
! ! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!!!

!		 (4.3)

!!!!!! ! !!!! ! ! !!!!!!
!

!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 (4.4)

!!!!!!!! ! ! !!! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 (4.5)

!! ! ! !! ! !!!! !! ! !!!!!! !
!!!!!!

! !!!! ! !! !!"!!
!!!

!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 (4.6)

    

for i ! !!!!! ! !!. The parameters of the RKD method are !! ! !!" ! !!!!!
!!!!! !!!!! for ! ! !!!!!! ! ! !! and ! ! !!!!!!! ! !! are assumed to be 
real. 

To determine the coefficients of the RKD method, the 
expressions given in (4.3) - (4.7) are expanded using Taylor’s series 
expansion. After some algebraic manipulations these expansions 
are equated to the Taylor’s series expansion of the true solution. 
Comparison of the Taylor series expansion between the true solution 
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and the RKD method gives the order conditions, which can be seen 
in Mechee et al. (2014a).

To obtain the higher order RKD method, the following 
simplifying assumptions are used in order to reduce the number of 
equations to be solved:

!!! ! !!!! ! ! !! ! ! ! !!! ! !!, !! ! !!!
!! ! !!!!

! ! ! ! !! ! ! !!   

The following strategies are used for developing the efficient 
pairs.

The quantities !!!!!!
!
! and !!!!!! ! ! should be as small as 

possible for higher and lower order RKD formulas.  Further, a local 
truncation error (LTE) estimation at the point !! !is determined by 
the formula

! !! ! !!! ! !!!! !,
  
where !!! ! !! ! !! !, !!! ! !!! ! !!!!!!!!!! ! !!!! ! !!!!!.

!! !, !!!! !!!!!and !!!!! !!!! !!!!! !!!!! !!!! !!!!!are the solutions for the lower and 
higher order formulas, respectively and the LTE can be used to 
control the stepsize h.  

Derivation of RKD 5(4) Pair

For the three-stage fifth order formula, the algebraic order conditions 
up to the fifth order, together with the simplifying assumptions, are 
solved simultaneously. Based on the values of !!" ! and!! !, for the 
fifth order method, we derived the three-stage fourth order method, 
where the free parameters are obtained using the minimized error 
norm. This gives us the following formula:        
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Derivation of  RKD 6(5) Pair
Here, we are going to derive the RKD6(5) pair with four stages. 
For the 6th order formula the order conditions of up to order 
six for !! !!! !!!!!!! !!! !!!!!need to be solved. Imposing the simplifying 
assumptions the number of equations are reduced to 12 with 13 
unknowns, which leaves us with one degree of freedom. The free 
parameter is chosen to be !! !where it is in the interval [0,1] and 
choosing !! !

!
!! !! !
!
!!gives the smallest error norm. Now based on the 

values of A and c, we derived the fifth order embedded formula by 
solving the order conditions up to order five.  
                   

Table 10  Embedded  RKD 5(4) method

		  0			   0
			 
	 3	 +	 √6	 27	 +	 19√6	 	 0
	 5		  10	 500		  1000

	 3	 –	 √6	 33	 –	 51√6	 51	 –	 11√6	 	 0
	 5		  10	 2500		  5000	 1250		  1250

					     1		  1	 –	 √6	 1	 +	 √6
					     18		  18		  48	 18		  48

					     1		  7	 –	 √6	 7	 +	 √6
					     9		  36		  18	 36		  36

					     1		  4	 –	 √6	 4	 +	 √6
					     9		  9		  36	 9		  36

					     1		  1	 –	 11√6	 1	 +	11√6
					     15		  20		  720	 20		  720

					     1		  7	 –	 √6	 7	 +	 √6
					     9		  36		  18	 36		  18

					     1		  4	 –	 √6	 4	 +	 √6
					     9		  9		  36	 9		  36
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Table 11  Embedded  RKD 6(5) Method

		  0			   0

	1	 +	 √15	 7	 –	 3√15	 	 0
	2		  10	 120		  200

		  1		  -1	 +	 √15	 1	 –	 √15	 0
		  2		  90		  480	 32		  480

	1	 +	 √15	 –1	 +	 √15	 	 √15	 	 3	 –	 √15	 0
	2		  10	 600		  600		  50		  50		  150

				    0			   1	 +	 √15	 	 1	 	 1	 –	 √15
							       18		  72		  18		  18		  72

				    0			   5	 +	 √15	 	 2	 	 5	 –	 √15
							       36		  36		  9		  36		  36

				    0				    5			   4			   5
								        18			   9			   18

				    7	 –	 43√15	 49	 +	 43√15	 19	 –	 43√15	 	 1
				    600		  3000	 600		  1800	 300		  4500		  100

					     0		  5	 +	 √15	 	 2	 	 5	 –	 √15
							       36		  36		  9		  36		  36

					     0			   5			   4			   5
								        18			   9			   18	

Numerical Results

Below are some of the third order problems to be tested and the 
numerical results will be compared with that using the existing 
numerical methods.
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Problem 1: (Inhomogeneous linear problem) 

!!!! ! !! ! !! ! ! ! ! ! ! !!!!!!!!!!!! ! ! ! !!!

! ! ! !!!!!!!! ! ! !!!!!!!! ! ! !!!

The exact solution is given by ! ! ! ! !!  

Problem 2:

!!!! ! ! ! ! !!!!!!!!!!!!!!! ! ! ! !!

! ! ! !!!!!!!! ! ! !!!!!!!! ! ! !!!

The exact solution is given by ! ! !
!
! ! !

!
! ! ! !!!! !

  
Problem 3: 

!!!! ! !! ! ! !!!!!!!!!!!!!!!! ! ! ! !!!  

! ! ! !!!!!!!! ! ! !!!!!!!! ! ! !!!        

The exact solution is given by ! ! ! ! ! !!  

Problem 4:

!!!!! ! !!! !!!!!!!, !! ! ! !! !!! ! ! !!! !!
!! ! ! !!!

!!!!! ! ! !!! !!!!!!!, !! ! ! !! !
!
! ! ! !!! !!

!! ! ! !!!

!!!!! ! ! !! !!!!!!!, !! ! ! !! !
!
! ! ! !!! !!

!! ! ! !!

The system is integrated in the interval !!! !! 

The exact solution is: !! ! ! !! !! !! ! ! !!! !!!! ! ! !!! !.
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The following notations are used in Figures 4.1 - 4.4:

RKD 5(4): Runge-Kutta type method, 5(4) pair derived here.
RKD 6(5): Runge-Kutta type method, 6(5) pair derived here.
DOPRI 5(4): Runge-Kutta method, 5(4) pair derived by Dormand 
and Prince (1980).
RK5(4) B: Runge-Kutta method, 5(4) pair derived by Butcher 
(2008).
RK5(4) F: Runge-Kutta method, 5(4) pair derived by Fehlberg 
(1968).
RK6(5) D: ): Runge-Kutta method, 6(5) pair derived by Dormand 
and Prince (1981).
RK6(5) B: Runge-Kutta method, 5(4) pair derived by Butcher 
(2008).
RK6(5) F: Runge-Kutta method, 5(4) pair derived by Fehlberg 
(1968).

  Figure 9  The efficiency curves of the methods and their comparisons 
for problem 1
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   Figure 10  The efficiency curves of the methods and their 
comparisons for problem 2

Figure 11  The efficiency curves of the methods and their comparisons 
for problem 3
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Here, we derived the order conditions of the RKD method and 
constructed two pairs of embedded methods. Variable stepsize 
codes based on the methods are developed and used to solve the 
special third order ODEs directly. From the numerical results, it 
is observed that the new methods are more efficient compared 
to the existing embedded RK pairs in scientific literature. In fact 
the RKD5(4) is more efficient compared to the existing RK6(5) 
methods.

RUNGE-KUTTA TYPE METHODS FOR DIRECTLY 
SOLVING SPECIAL FOURTH ORDER ORDINARY 
DIFFERENTIAL EQUATIONS

In this section we are concerned with the efficient numerical 
integration of the special fourth-order ODEs of the form 

Figure 12  The efficiency curves of the methods and their comparisons 
for problem 4
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	 !! !!!! ! !!!! !!!!	 (5.1)

with initial conditions 

!!!!! ! !!!!!!!!!! ! !!! !!!!!!!!! ! !!!!!!!!!!!!!! ! !!!!!!

where! ! !! ! !!!!is a continuous valued function which 
does not contain the first, second and third derivatives. Normally, 
researchers and engineers solve the fourth-order ODEs by 
converting them into a first-order system of ODEs and then applying 
a suitable numerical method to solve the resulting system. However, 
the application of such technique takes a lot of computational time. 
Direct integration method is proposed to avoid this computational 
burden and to increase the efficiency of the method. Many 
authors have proposed several numerical methods for directly 
approximating the solutions for the higher order ODEs. For 
example, Kayode (2008) proposed a zero stable predictor-corrector 
method for solving fourth-order ordinary differential equations 
and Yap et al. (2015) derived a one point block method to solve a 
system of higher order ODEs. All these methods are multistep and 
are not self-starting. These methods require the starting values to 
obtain the initial values for solving equation (5.1).  

This research primarily aims to construct a one-step method 
of order six to solve special fourth-order ODEs directly. Further, 
this new method will be self-starting in nature. Mechee et al. 
(2014a) and Senu et al. (2014) derived RKD methods for direct 
integration of special third order ODEs and Mechee et al. (2014b) 
also applied the RKD method for solving third order PDEs. Here  
we will further extend their work to fourth order ODEs.

Exploring Efficient Numerical Methods for Differental Equations new.indd   35 9/19/16   4:36:06 PM



❚❘❘ 36

Exploring Efficient Numerical Methods for Differential Equations

The General Form of the RKFD Method

In this section we present the general form of the Runge-Kutta 
method for directly solving special fourth order ODEs, denoted as 
the RKFD method with s-stage, as follows 

!!!! ! !! ! !!!! !
!!

! !!!
!! !
!!

! !!!
!!! ! !! !!

!

!!!

!!!!	 (5.2)

!!!!! ! !!! ! !!!!! !
!!

! !!!
!!! ! !! !!!

!

!!!

!!!!	 (5.3)

!!!!!! ! !!!! ! !!!!!! ! !! !!!!
!

!!!

!!!!	 (5.4)

!!!!!!! ! !!!!! ! ! !!!!!
!

!!!

!!!!	 (5.5)

where

!! ! !!!!! !!!!!	

 
!! ! ! !! ! !!!! !! ! !!!!!! !

!!

! !!
!!!!! !

!!

! !!
!!!!!! ! !! !!"

!!!

!!!

!! ! ! ! !!!! ! !!!i = 2,3 ...,s.   (5.6)

All parameters !!! !!!! !!!!! !!!!!! !!" ! !!! !!!! !!!!! !!!!!! !!" ! !!! !!!! !!!!! !!!!!! !!" ! !!! !!!! !!!!! !!!!!! !!" !!!! !!!! !!!!! !!!!!! !!" ! and !! ! of the RKFD method are 
used for !! ! !!!! ! !!!; !! ! !!!! ! !!! and is supposed to be real. 

To determine the parameters of the RKFD method, expressions 
(5.2) to (5.6) are expanded using the Taylor series expansion. This 
expansion is equated to the Taylor series expansion of the true 
solution. The direct expansion of the truncation error is used to 
derive the order conditions for the RKFD method. A good deal of 
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the algebraic and numerical calculations required were carried out 
using the algebra package MAPLE. 

Order Conditions of the RKFD Method

Hussain et al. (2015a) and Hussain et al. (2016) derived the 
algebraic order conditions for the RKFD method using the Taylor 
Series expansion and the theory of B-series. Using the order 
conditions, embedded pairs of RKFD methods were derived 
by Hussain et al. (2015b). The order conditions for the RKFD 
method  obtained by Hussain et al. (2015a), up to order six, are 
as follows:

The order conditions for !!!!!:	

order 4: !! !
!

!

!!!

!!! 	 (5.7)	 order 5: !!!!!!! !
!
!"!!

!

!!!

!	 (5.18)

order 5: !!!! !
!

!

!!!

!!!	 (5.8)	 order 6: !!!!!!! !
!
!"!!

!

!!!

!	 (5.19)

order 6: !!!!! !
!
!"#

!

!!!

!!!	(5.9)	             !!!!!!!" !
!
!"#!!

!

!!!!!

! 	 (5.20)

order 7: !!!!! !
!

!

!!!

!!! 	(5.10)	 order conditions for !!!!!!:

The order conditions for !!!!:	 order 1: !!!!!
!

!!!

! !!! 	 (5.21)

order 3: !!! !
!
!!!

!

!!!

!  	 (5.11)	 order 2: !!!!!!!
!

!!!

!
!
!!!!

 	 (5.22)
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order 4: !!!!! !
!
!!

!

!!!

!  	(5.12)	 order 3: !!!!!!!!
!

!!!

!
!
!!!!	 (5.23)

order 5: !!!!!! !
!
!!

!

!!!

!	 (5.13)	 order 4: !!!!!!!!
!

!!!

!
!
!!!!

	 (5.24)

order 6: !!!!!! !
!
! !

!

!!!

!	(5.14)	 order 5: !!!!!!!!
!

!!!

!
!
!!!!

	 (5.25)

The order conditions for !!!!!:	              !!!!!!!"
!

!!!!!

!
!
!!!	 (5.26)

order 2: !!!! !
!
!!!

!

!!!

!	 (5.15)	 order 6: !!!!!!!

!

!!!

!
!
!!!!

  	 (5.27)

order 3: !!!!!! !
!
!!!

!

!!!

!	 (5.16)	         !!!!!!!!"!! !
!
!"#!!

!

!!!!!

!!!!!!!   	(5.28)

order 4: !!!!!!! !
!
!"!!

!

!!!

! 	 (5.17)	         !!!!!!!!!!!!!!!!! !!!!!!!!!!!" !
!
!

!

!!!!!

!!	 (5.29)

Sixth Order RKFD Method with Four-Stages

In order to construct the four-stage sixth-order RKFD6 method, 
the algebraic conditions of the RKFD method up to order six for 
!!! !!! !!!!! and !!!!!!!need to be solved first. We choose equations 
(5.11) -to (5.14) from the order conditions for !!!!, equations (5.15) 
- (5.19) from order conditions for !!!!!! and equations (5.21) - (5.25) 
and (5.27) from order conditions for !!!!!!!. Here we have one free 
parameter !!!!!!, which can be chosen by minimizing the error norm 
of the seventh order conditions for !!!!, as in Dormand (1987). 
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By minimizing the error norm of the seventh order condition,   
! !! !

!
! with respect to the free parameter !!!!!, we obtain !!!!!  !! ! !

as the optimal value. Finally, all the parameters of the four-stage 
sixth-order RKFD method, denoted as RKFD6, are written in 
Butcher tableau as follows:

Numerical Results

In order to evaluate the performance of the new RKFD6 method, 
it is used to solve a set of special fourth-order ODEs, chosen from 
the scientific literature, and then results compared with some 
existing RK methods of the same order. 

Table 12 Butcher tableau for RKFD6 method

	 1	
+
	 √5	 1	

+
	 11√5

	 2		  10	 168		  4200

	 1	 –	 √5	 1	 –	 √5	 1	 –	 √5
	 2		  10	 420		  700	 280		  840

		  1		  –1	 –	 √5	 1	 –	 √5	 5	
+
	 11√5

				    840		  168	 84		  140	 168		  840

	
					     17		  1	 –	 √5	 1	

+
	 √15	 1

					     1260		  72		  168	 72		  168	 2520

					     1		  1	 –	 √5	 1	
+
	 √5	 0

					     24		  16		  48	 16		  48

					     1		  5	 –	 √5	 5	
+
	 √5	 0

					     12		  24		  24	 24		  24

					     1			   5			   5		  1
					     12			   12			   12		  12
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Problem 1:
 

! !
! ! ! ! ! ! ! ! !

! ! !!!!

! ! ! !!!!!!!! ! ! !!!!!!!! ! ! !!!!!!!!!!! ! ! !!!!

The exact solution is given by y(x)= arc sin (x). Interval of 
integration is !!! !! !

.

Problem 2:

!! ! ! !!!! !!!!!!!! ! ! !!!!!!!!! ! ! !!!!!!!!!! ! ! !!!!!!!!!!!! ! ! !!!!!! 

!! ! ! !!!!!!!!!!!!!! ! ! !!!!!!!!! ! ! !!!!!!!!!! ! ! !!!!!!!!!!!! ! ! ! !!!!

! ! ! !!!!!!!!!!!!! ! ! !!!!!!! ! ! ! !!!!!!! !! ! ! !!!!!!! !!! ! ! ! !!!!

! ! ! !!!!!! !!!!!!! ! ! !!!!!!! ! ! ! !!!!!!! !! ! ! !!!!!!! !!! ! ! ! !!!!

The problem is integrated in the interval  [0 ,2]. The exact solution 
is given by

! ! !!!!!!!!!!! ! !!!!!!!!!!!! ! !!!!!!!!!! ! !!!! !.

Problem 3:

!! ! ! ! !
!
!! ! !!

!
!
! ! !

!!!!!!! ! ! !!!!!!!!! ! ! !!!!!!!!! ! ! !!!!!!!!!!!!! !

! !!!

!! ! ! ! !
!
!! ! !!

!
!
! ! !

!!!!! !!! ! ! !!!!!!!! ! ! !!!!!!!!! ! ! !!!!!!!!!!!! ! ! !!!!!
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! ! ! !
!
!! ! !!

!
!
! ! !

!!

! ! !! !! ! ! ! !!!!! !! ! ! !!!!!!! !!! ! ! !!!		
	

! ! ! !
!
!! ! !!

!
!
! ! !

!!

! ! !! !! ! ! ! !!!!! !! ! ! !!!!!!! !!! ! ! !!!

! ! ! !
!
!! ! !!

!
!
! ! !

!!!!!! ! ! !!!!!!! ! ! ! !!!!!! !! ! ! !!!!!!!! !!! !

! ! !!
	! ! ! !

!
!! ! !!

!
!
! ! !

!!!!!! ! ! !!!!!!! ! ! ! !!!!!! !! ! ! !!!!!!!! !!! !

! ! !!

! ! ! !
!
!! ! !!

!
!
! ! !

!!!!!! ! ! !!!!!!! ! ! ! !!!!!! !! ! ! !!!!!!!! !!! !

! ! !!

The problem is integrated in the interval  [0, 2]. The exact solution 
is given by 

         y = cos (x) ,  z = sin (x) ,  w = cos (2x) ,  u = sin (2x).

In the numerical comparisons we use the criteria based on the 
maximum error in the solution ! ! !! ! !! ! !! !!,
which is equal to the maximum of absolute errors of the true 
solutions and the computed solutions.. The following methods are 
used in the comparison. 

•	 RKFD6: The four-stage sixth-order RKFD method derived 
here.

•	 RK6N: The seven-stage sixth-order RK method given in 
Butcher (1964).

•	 RK6B: The seven-stage sixth-order RK method derived by 
Butcher (2008). 

Figures 13 – 15 show the efficiency curves of  Log
10

 (Max Error) 
against the computational effort, measured by Log

10
 (Function 

Evaluations), which are required by each method.    
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Figure 13  The efficiency curves for Problem 1
with h = 0.1/2i, i = 0, 2, 3, 4

Figure 14  The efficiency curves for Problem 2
with h = 0.1/2i, i = 0, 2, 3, 4
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Figure 15  The efficiency curves for Problem 3
with h = 0.1/2i, i = 0, 2, 3, 4

We derived the order conditions of the RKFD methods up to 
order seven. Based on the order conditions we constructed the 
four-stage sixth-order RKFD method for directly solving special 
fourth-order ODEs, and this method is denoted as the RKFD6 
method. The numerical results illustrate that the RKFD6 method 
is more efficient compared to the well known Runge-Kutta 
methods in literature. In conclusion it can be said that, the new 
RKFD6 method can directly solve the special fourth-order ODEs 
efficiently.

SEMI-IMPLICIT HYBRID METHOD FOR SOLVING 
OSCILLATORY PROBLEMS

Initial value problems (IVPs) for second order ODEs, where the 
first derivative does not appear explicitly, which can be written 
as

! ! ! !! ! !, !! !! ! !! !, !!!! !! ! !!
! !
	  (6.1)
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often arise in many scientific areas of engineering and applied 
science, such as, celestial mechanics, molecular dynamics and 
quantum mechanics. 

The solution for (6.1) also often exhibits a pronounced 
oscillatory character. It is well known that it is rather difficult to 
get the accurate numerical results if the initial value problems 
are oscillatory in nature. In trying to address the problem a lot of 
research has been focused on developing methods with reduced 
phase-lag. Phase-lag or dispersion error is the angle between the 
true and the approximated solution. The performance of numerical 
methods for solving oscillatory problems can be enhanced by 
phase-fitting the method.

The idea of Phase-lag of a numerical method was first 
introduced by  Bursa and Nigro (1980). Based on this work, Van 
der Houwen and Sommeijer (1987) proposed explicit Runge-Kutta 
Nystrom methods of order 4, 5 and 6, with reduced phase-lag of 
order q = 6, 8 and 10, respectively. Work on oscillatory problems 
has also been done by  Samat et al. (2012). 

Derivation of the Method

A Semi-implicit hybrid method for the numerical integration of 
the IVPs is given as

! ! ! ! !! !! ! !!!!!! ! !! !!"! !! ! !!!! !
!

!!!

!	 (6.2)

!!!! ! !!! ! !!!! ! !! !!
!

!!!

! !! ! !!!! ! !	 (6.3)

where ! ! !! ! !!! and !! ! !!and the coefficient !! !, !! !, and !!"!! can 
be represented as seen in Table 13 and ! ! !!!!! ! ! !!!!.		
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The phase-lag  analysis is investigated using the second order equation 

! !!! ! ! !! ! ! for ! ! !!!! for ! !!!!	 (6.4)

By replacing !!!! !! ! ! !!! into equations (6.2) and (6.3), and 
defining ! ! !!, the equations can be written as

!!!! ! ! !! !! ! ! !! !!!! ! !!	 (6.5)

and the stability polynomial is 

! ! ! ! ! ! !! ! ! !! ! !!!	 (6.6)

where ! !! ! ! ! !! ! !! !! ! ! and

	 ! !! ! ! ! !! ! !! !! !.	 (6.7)

Solving the difference equation (6.5), gives the solution

!! ! ! ! ! ! ! !!	 (6.8)

where ρ is the amplification factor, ϕ is the phase and ω and c are 
real constants determined by the initial values y

0
 and y

0
'. The exact 

solution of ! !!! ! ! !! ! ! is given by

 Table 13  The s-stage semi-implicit hybrid methods

!! !
! ! !
!! !!!! !!!! !

!! !!!! !!!! !!!!!! !
!! !! !!!! !!

!

!! !
! ! !
!! !!!! !!!! !

!! !!!! !!!! !!!!!! !
!! !! !!!! !!

!
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! !! ! ! !! ! !!	 (6.9)

where n is the number of terms and, σ and χ are real constants 
determined by the initial conditions. Equations (6.8) and (6.9) led 
to the following definition which was given in Van der Houwen 
and Sommeijer (1987).

Definition 6.1: The quantity φ(z) = z - ϕ is called the phase-lag 
or dissipation error and the quantity d(z) = 1 – |ρ|, is called the 
amplification error.  From definition  6.1, it follows that 

! ! ! ! !! ! !!

! ! !!
! and ! ! ! ! ! !! !!	 (6.10)

If ! ! ! !!!! !, then the hybrid method is said to be dispersive 
of order q, while, the quantity ! ! ! ! !, called the amplification 
error, and if ! ! ! ! !! !, then the hybrid method is said to have 
dissipation order r.

Figure 17  Dissipation and Dispersion or Phase-lag Error
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Development of Dispersion and Dissipation Relations

In this section we will develop the dispersion and dissipation 
relations of the method of stage three and four where ! !! ! and  
!!!!!! can be written in the following forms

	 ! !! !
! ! !!!! ! !! !!!!!! !!!

! ! !!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		  (6.11)

	
! !! !

! ! !!!! ! !! !!!!!!!!!

! ! !!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	 (6.12)

and where γ is the diagonal element. 

For a zero dissipative method with three stages (s = 3), the 
dispersion relations of order six  (q = 6) is given as

Order 6: !! !
!
!
!
!"# ! !

! !

and the dispersion relations up to order eight for s = 4, are given as

Order 6: !!!!! ! !!!! ! !! ! !!! !
!
!!! ! !

!
!!
! !

!
!"# ! !!

! !

Order 8: 
!
!!!

! ! ! !
! ! ! !

!
!! ! !!! ! !!!! ! !! !

!
! !! !

	
!

!
!
!
!! ! !!! !

"!
! !

! !

	
The following quantities are used to determine the dissipation of 
the formula for s = 3, 4.
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For  (s = 3) it is

! ! !!!!! ! !
!
!!! !

!
! ! !

! ! !
!
!!! !

!
! !!! !

!
!! !

!
!!! !! !

	
!
!
! ! !

!
!!!! !

!
!! !

!
!!!!! !

!
!!!! !

!
!!! !! !

	

!
!
!!! !

!
!!!! !

!
"! !

!!! !
!
!!!!! !

!
!!! !

!
!!!!! !

		
					   
	

!!
!
"!!!

!! !
!
!!!!! ! !!! !! ! !!! !!

and for s = 4, it is

	
! ! !!!!! ! ! !

!
!!! !

! !
!
!!!! ! !

! !
!
!!! !

!
!!! !! !

	
! !

!
!!!!

! !
!
!!!! ! !

! !
!
!!! !

!
!!!! !

!
!!!!! !

!
!!! !! !

	
!!! !

!
!!!!

! !
!
!!!!

! ! !! !
!
!!!! !

!
!!!!!! !

!
!!!!! !

	
!!
!
!!!!! !

!
!!! !

!
!!!! !

!
!!!!! !

!
!!!! !! !!!!! !!

while the stability polynomial is

! ! ! ! ! ! !! ! ! !! ! !!! 

The integrat ion process is  s table i f  :  ! !! ! !! and
!!!!! ! ! ! ! !! ! !!! ! !!! !!!!!, !!!!! ! ! ! ! !! ! !!! ! !!! !!!!!. The interval of !! !!! ! is 

called the stability interval.
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Derivation of Semi-implicit Hybrid Methods (SIHMs)

The derivation of the methods is based on the order conditions, 
dispersive and dissipative error and minimization of the error norm 
of the method. The order conditions of hybrid methods given in 
Coleman (2003) are:

Order 2: !! ! !
!

!!!

!!! 	 Order 3: !!!! ! !
!

!!!

!!!, 

Order 4: !!!!! !
!
!

!

!!!

!!! !!!!" !
!
!"

!

!!!

!!!                                                     

Order 5: !!!!! ! !
!

!!!

!!! !!!!!!" !
!
!"

!

!!!

! ,  !!!!"!! ! !
!

!!!

!,  

Order 6: !!!!! ! !
!

!!!

!!! !!!!!!!" !
!
!"

!

!!!

!, !!!!!!"!! ! !
!

!

!!!

!,

			 
		
!!!!!!!!!!!! !!!!"! ! !

!

!!!

! !!!!"!!! !
!
!

!

!!!

!,
 
!!!!"! !

!
!"# !

!

!!!

!

and c
i
 needs to satisfy

!!" !
!!! ! !!
!

!

!!!

!, j = 1, … , i –1, which is called the simplifying

condition.

We use the notations SIHM p(q, r) which indicate: 

SIHM - Semi-implicit hybrid method; p - the algebraic order of 
the method;
q - the dispersion order of the method; and r - the dissipation order 
of the method.
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Derivation of Three - Stage Fourth - Order SIHM 

To derive the fourth order SIHM method, we use the algebraic 
order conditions up to order four, simplifying conditions, zero 
dissipation conditions !!!!! ! !! !! ! !!! and dispersion relations 
of order six ! ! ! !!. The resulting system of equations consists 
of five nonlinear equations and seven unknowns, thus we have 
two degrees of freedom. The coefficients of the methods are 
determined in terms of the arbitrary parameters, !! ! and !!! !. By 
minimizing the error norm we have !! ! ! !! ! ! and !!! !

!
!"!!!! !
!
!"!. This 

method is denoted as SIHM4(6, ∞), which is given in the table 
of coefficients (Table 14):

Table 14  The SIHM4(6, ∞) method

This formula has dispersive order six and is zero-dissipative with 
a dispersion constant 

"!
! ! ! ! !. The stability polynomial for 

SIHM4(6, ∞) is ! ! ! !
! "!!! ! !!!

! !" ! !! ! !!!!"#! !!+1 and the interval of 
stability of the method is (0, 2.96).

Derivation of Three - Stage Fifth Order SIHM 

To develop a three-stage fifth order SIHM, the algebraic conditions 
up to order five with dispersive of order six (q = 6) are first solved. 
This involved seven equations and seven unknowns, hence it has 
a unique solution. 

!! !
! ! !

! !
!"

! !!
!

!! !
! ! !

! !
!"

! !!
!
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Table 15  The SIHM5(6, ∞) method

Stability polynomial for the method is ! ! ! !
! "!!! ! !!!

! !" ! !! ! !!+1 
and the stability interval is (0, 2.96).

For the fifth-order SIHM method, eight nonlinear equations 
from the algebraic conditions, up to order five, with one equation 
from order condition of dispersive order eight (q = 8) are solved 
using the Maple package, resulting in nine nonlinear equations 
with eleven free parameters to be solved simultaneously. The 
coefficients are obtained in terms of two free parameters, !! ! and 
! !!. 

Minimizing the error norm we derive ! ! !  and !! !
!"
!"#!. 

This method is denoted as SIHM5(8, 5) and is given in Table 16.

Table 16  The SIHM5(8, 5) method

!! !
! ! !

!
!
!" !"

!
!"

!
!"

!
!

!
!"

!

!! !
! ! !

!
!
!" !"

!
!"

!
!"

!
!

!
!"

!

!! !
! ! !

!
!

!
!

!
!"

!
!

!"
!"#

!

!

!! !
! ! !

!
!

!
!

!
!"

!
!

!"
!"#

!

!
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The dispersive order is eight and dissipative order is five with 
a dispersion and dispersion constant ! ! ! !!! !and 

!! ! ! !! !!!!!, respectively. The interval of stability of  the method 
is (0, 5.75) .

Table 17  Summary of properties of the methods

	 Methods	 Stage	 q	 r	 Err norms	 S. I

	 SIHM4 (6, ∞)	 3	 6	 ∞	 1.863 x 10-2	 (0, 2.96)
	 SIHM5 (6, ∞)	 3	 6	 ∞	 1.147 x 10-1	 (0, 2.96)
	 SIHM5 (8, 5)	 4	 8	 5	 9.772 x 10-2	 (0,5.75)

					   
Notation: q is dispersive order, r is dissipative order and S.I is the 

stability interval.

Problems Tested

In order to evaluate the effectiveness of the SIHMs, we solved 
several problems from scientific literature, which have oscillatory 
solutions. The test problems are listed below:

Problem 1 (Homogenous)

! ! ! ! ! ! !, ! ! ! !!, !! ! ! !!!, 

Exact solution is ! ! !! ! ! ! ! !.

Problem 2 (Inhomogeneous system)

!!! !
!"! ! ! !!! ! ! !! ! ! ! ! !!! ! ! ! ! ! ! !! !!! ! ! !! ! !,

!!! !
!"! ! ! !!! ! ! !! ! ! ! ! !! ! ! ! ! ! !!! ! ! ! !! ! !
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The exact solution is !! ! ! ! ! ! ! ! = !!! ! ! ! ! ! ! !, 
f (x) is chosen to be !!!! ! ! and parameters v and a are 20 and 0.1 
respectively.

Problem 3 (An almost Periodic Orbit problem)

!! ! ! !! ! ! !! ! !, !! ! ! !!, !!! ! ! !!!,

!! ! ! !! ! ! !! ! !, !! ! ! !!, !!! ! ! !! !!,

T h e  e x a c t  s o l u t i o n  i s  !! ! ! ! !! ! ! !!, 
!! ! ! ! !! ! ! !.

Problem 4  (Oscillatory linear system)

! ! ! "! !!"
!!" "! ! ! ! ! !

! !
!,! ! !

!
! !, !! ! !

!! !

! ! ! !! ! !" !! !,! ! ! ! !!" !! ! !! ! and whose 
analytic

solution is given by ! !
! ! !! ! !!!!!
! ! !! ! !!!!! !.

Numerical Results and Discussions for the Fourth 
Order Method

In this section, we test and compare our methods with five other 
methods in the literature. Following are the notations used:

•	 SIHM4(6, ∞): A semi - implicit hybrid method of order four 
with dispersive order six and zero dissipation, developed in the 
previous section.

•	 DIRKN3(4) --DIRKN method in Senu et al. (2010). 
•	 DIRKN(HS): DIRKN method by Sommeijer (1987).
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•	 RKN3(4):  RKN method in Hairer et al. (2010).
•	 RK4: A classical RK method of order four in Butcher 

(2008).
•	 E-HYBRID3(4): hybrid method by Franco (2006).

The methods are compared in terms of absolute error for 
interval of T

end 
= 100, 1000, and 10000. The results are given in the 

form of efficiency curves for T
end 

= 10,000. The efficiency curves of  
the methods are plotted for the largest interval, T

end  
= 104.

Figure 18  The efficiency curve for SIHM4(6, ∞) for Problem 1

with T
end

 = 104 and h !
!

!  for i = 3, 4, 5, 6, 7
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Figure 19  The efficiency curve for SIHM4(6, ∞) for Problem 2

with T
end

 = 104 and h !
!

!  for i = 3, 4, 5, 6, 7

Figure 20  The efficiency curve for SIHM4(6, ∞) for Problem 3

with T
end

 = 104 and h !
!

!  for i = 1, 2, 3, 4, 5
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Here we present efficiency curves where the common 
logarithm of the maximum global error along the integration 
versus the CPU time taken. From the results, we observed that 
the SIHM4(6, ∞) performs better when integrating second ODEs 
possessing the oscillatory solution compared to the other implicit 
and explicit methods.

Numerical Results and Discussions for the Fifth 
Order Methods

The fifth order methods, SIHM5(6,∞) and SIHM5(8,5), are 
compared with four existing methods that consist of explicit and 
implicit methods in the literature. We compare the methods using 
the same problems. The following are the notations used for  Figures 
22 – 25:

•	 SIHM5(6, ∞): A semi-implicit hybrid method of order five 
with dispersive order six and zero-dissipation developed in the 
previous section.

Figure 21  The efficiency curve for SIHM4(6, ∞) for Problem 4

with T
end

 = 104 and h !
!

!  for i = 2, 3, 4, 5, 6
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•	 SIHM5(8, 5): A semi-implicit hybrid method of order five with 
dispersive order eight and dissipation order five developed in 
the previous section.

•	 DIRKN4(4): DIRKN method derived by Senu et al. (2011) 
•	 RKN4(5): A four-stage fifth-order classical RKN method in 

Hairer et al. (2010).
•	 RK7(6): A seven-stage sixth-order RK method in Butcher 

(2008).
•	 E-HYBRID4(5): A four-stage fifth order hybrid method by 

Franco (2006).

The efficiency is measured using the absolute error and time 
taken for solving the problems over a large interval. The graphs 
of Log (Max-error) versus Time (second) for the largest interval 
T

end
=10000 are given below.

Figure 22  The efficiency curve for SIHM5(6, ∞) and SIHM5(8,5) for

 Problem 1 with T
end

 = 104 and h !
!

!  for i = 3, 4, 5, 6, 7
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Figure 23  The efficiency curve for SIHM5(6, ∞) and SIHM5(8,5) for

 Problem 2 with T
end

 = 104 and h !
!

!  for i = 3, 4, 5, 6, 7

Figure 24  The efficiency curve for SIHM5(6, ∞) and SIHM5(8,5) for

 Problem 3 with T
end

 = 104 and h !
!
!  for i = 0, 1, 2, 3, 4
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From the numerical results shown, we observed that 
SIHM5(8,5) is more efficient than the other existing methods, 
followed by SIHM5(6,∞). This is expected because SIHM5(8,5) 
has dispersion of order eight, hence it is more efficient in 
integrating oscillatory problems in comparision to methods 
without the dispersion properties.

PHASE-FITTED HYBRID METHODS FOR SOLVING 
OSCILLATORY PROBLEMS

Introduction

Ahmad et al. (2013a) derived phase-fitted hybrid methods with 
higher order of dispersion  for solving oscillatory problems. As an 
extension of their work, phase-fitted hybrid methods (PFHMs) based 
on hybrid methods derived in Franco (2006) will be developed for 
solving problems which are oscillatory in nature. The purpose of 

Figure 25  The efficiency curve for SIHM5(6, ∞) and SIHM5(8,5) for

 Problem 4 with T
end

 = 104 and h ! !
! for i = 0, 1, 2, 3, 4, 5
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phase-fitting is to develop a method which has a variable coefficient 
which depends on the product of the frequency v of the problems 
and the step-length of the method. This method will nullify the 
phase-lag error for a specific product of z = vh. 

Derivation of Phase-fitted Hybrid Methods 

In this section three new phase-fitted hybrid methods are 
developed. The notations used for the phase-fitted hybrid methods 
PFHMm(p) are as follows: 

PFHM-phase-fitted hybrid method; m-the number of stages 
of the method; and  p-the algebraic order of the method.  

Given

	 ! !! ! ! ! !!!! ! !!!! ! !!!! ! !! !!!!! !	 (7.1)

	 ! !! ! ! ! !!!! ! !!!! ! !!!! ! !! !!!!! !	 (7.2)

and rewriting (7.1) and (7.2) in terms of the coefficients of the hybrid 
method, we obtained the expressions ! !! ! and ! !! !!. 

i.	 for m = 3

! !! ! ! ! !! !! !!!! ! !!!!! ! ! ! !! !!!! ! !!!!! ! ! ! !! !!!! ! (7.3)                                                                                               

! !! ! ! ! !! !!!! ! !!!!! ! !! !!!! ! !!!!! ! !!!!!! !	 (7.4)

where z = vh. Recall from the previous section that, in order to 
have phase-lag of order infinity and zero dissipation the following 
equations must hold:
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! ! ! ! !! ! !!

! ! !!
! !!	 (7.5)

! ! ! ! ! !! ! !!	 (7.6)

Substituting (7.3) and (7.4) into (7.5), we get

! !! ! ! ! !! !
! ! ! ! ! !! !!!! ! !!! !!
! ! ! !! !!!! ! !!! !! ! ! !! !!!!

! ! ! ! !! !!!! ! !!! !! ! !! !!!! ! !!!!!!! ! !!!!!! ! ! !
! !!!

	

! !! ! ! ! !! !
! ! ! ! ! !! !!!! ! !!! !!
! !! !! !!!! ! !!! !! ! ! !! !!!!

! ! ! ! !! !!!! ! !!! !! ! !! !!!! ! !!!!!!! ! !!!!!! ! ! !
! !!!

	

! !! ! ! ! !! !
! ! ! !! !! !!!! ! !!! !!
! ! ! !! !!!! ! !!! !! ! ! !! !!!!

! ! !! !! !!!! ! !!! !! ! !! !!!! ! !!!!!!! ! !!!!!! ! ! !
! !!!  (7.7)                

Choosing ! ! as the free parameter and substituting the coefficients 
of the explicit fourth order hybrid method in Franco (2006) into 
equation (7.7), we obtained ! ! where ! !

!" !! ! !! ! ! !
!! !! .

This method is denoted as PFHM3(4) and can be written in 
Butcher tableau as follows:

Table 18  Table of coefficients for PFHM3(4)

and the Taylor expansion of ! ! is

! ! ! !
!
!" !

! !
!
!! !

!
!! !

!
!! ! ! ! !. 

!! !
! ! !
! ! ! !

!
!"

!
!

!
!"

!
!! !
! ! !
! ! ! !

!
!"

!
!

!
!"

!
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Thus the coefficient  ! ! depends on z = vh, where v  is the 
eigenvalue of the problem and h is the stepsize used. 

ii.	 for m = 4

! !! ! ! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!!
! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!!
! ! ! !! !!!! ! !!!!! ! ! ! !! !!!! ! (7.8)                                                        

! !! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!!
! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! ! !! !!!! ! !!!!!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	

! !! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!!
! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! ! !! !!!! ! !!!!!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

	
	

! !! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!!
! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! ! !! !!!! ! !!!!!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 (7.9)                                                                    

Substituting equation (7.8) and (7.9) into (7.5), we obtained the 
dispersion error as

! !! ! ! ! !! !
! ! ! ! ! !! !!!! ! !!! !! ! !!!! !!! ! ! !!!
! ! ! !! !!!! ! !!! !! ! !!!! !!! ! ! !!! !! !! !!!!

! !!!!! ! ! ! !! !!!!

! ! ! ! !! !!!! ! !!! !! ! !!!! !!! ! ! !!!
! !! !!!! ! !!! !! ! !!!! !!! ! ! !!! ! !! !!!! ! !!!!!

! !!!!!!
!
! ! ! !!! 		(7.10)    

We substitute all the coefficients of the four-stage fourth-
order hybrid method from Franco (2006) and leave ! ! as the 
free parameter because we found that by choosing ! ! as the free 
parameter the zero-dissipation condition (d(z) = 0) is satisfied. 

The coefficients of the new method, PFHM4(4) can be written 
in Butcher tableau as below:

Exploring Efficient Numerical Methods for Differental Equations new.indd   62 9/19/16   4:40:57 PM



63 ❘❘❚ 

Fudziah Ismail

The Taylor expansion of ! ! is given as

! ! ! !! ! !"""""""""""" !
! ! !!

! ! ! ! ! !!

Problems Tested

In order to evaluate the accuracy of the new methods, several 
problems which have oscillatory solutions are solved using these 
methods. The test problems used are:

Problem 1 (Homogenous) 

! ! ! ! ! ! !,  ! ! ! ! !!, !! ! ! !
!
!! The fitted frequency, 

v = 8.

The exact solution is ! ! ! ! !, ! ! !! ! !!.

Problems 2 to 4 are the same as that in the Chapter 6.

!! !
! ! !
!!

! ! !

!
"!

! !

!

!

Table 19  Table of coefficients for PFHM4(4)

!! !
! ! !
!!

! ! !

!
"!

! !

!

!
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Numerical Results and Discussions

In this section, we will test and compare PFHM3(4) and  
PFHM4(4) with other methods of order four in the literature, 
using the measure of accuracy, that is absolute error and time 
taken in seconds. The following are the notations used in Figures 
24 – 29:

•	 PFHM3(4): A phase-fitted hybrid method of three-stage fourth-
order and zero dissipation developed in the previous section..

•	 E-HYBRID3(4): An explicit three-stage fourth-order hybrid 
method derived by Franco (2006).

•	 PFHM4(4): A phase-fitted hybrid method of four-stage fourth-
order and zero dissipation developed in the previous section.

•	 E-HYBRID4(4): An explicit four-stage fourth order hybrid 
method derived by Franco (2006).

•	 PFRKN4(4): A phase-fitted hybrid method of four-stage fourth-
order Runge-Kutta Nyström (RKN) method by Papadopoulos 
et al. (2009).

•	 RKN3(4): A three-stage fourth-order classical RKN method 
in Hairer et al. (2010).

We compared the methods in terms of accuracy and time taken in 
seconds for the  interval T

end
 =10000.
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Figure 26  The efficiency curve for PFHM3(4) and PFHM4(4) for

 Problem 1 with T
end

 = 104 and h !
!

!  for i =  1, 2, 3, 4, 5

Figure 27  The efficiency curve for PFHM3(4) and PFHM4(4) for

 Problem 2 with T
end

 = 104 and h !
!

!  for i =  2, 3, 4, 5, 6
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Figure 28  The efficiency curve for PFHM3(4) and PFHM4(4) for

 Problem 3 with T
end

 = 104 and h !
!
!  for i =  0, 1, 2, 3, 4

Figure 29  The efficiency curve for PFHM3(4) and PFHM4(4) for

 Problem 4 with T
end

 = 104 and h = 0.2 – i 0.035  for i =  1, 2, 3, 4, 5
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From Figures 26 to 29, we observed that the new fourth 
order methods, PFHM3(4) and PFHM4(4), are more efficient 
for integrating second ODEs possessing oscillatory solutions 
compared to the original hybrid methods E-HYBRID3(4), 
E-HYBRID4(4), PFRKN4(4) and RKN3(4). Therefore, it is thus 
shown that phase – fitting the method improved the efficiency of 
the existing zero - dissipative hybrid methods. 

OPTIMIZED HYBRID Methods FOR SOLVING 
OSCILLATORY PROBLEMS

In their previous work, Ahmad et al. (2013b) have derived 
zero-dissipative explicit hybrid methods for solving oscillatory 
problems. Work along the same lines was also done by Jikantoro 

et. al. (2015a, 2015b), who derived zero- dissipative semi-implicit 
hybrid methods which are also suitable for solving oscillatory 
problems. To extend the work, we constructed optimized explicit 
hybrid methods of four-stage fifth-order and five-stage sixth-
order. The methods are constructed by nullifying the phase-lag, 
dissipation and the first derivative of the phase-lag, resulting 
in methods where  the coefficients depend on the problems 
themselves, provided the frequency values of the problems are 
known in advance. Work related to this research can also be seen 
in Ramos and Aguiar (2010) and Papadopoulos and Simos (2011).  
The new optimized hybrid methods are based on the non-zero-
dissipative hybrid method developed by Franco (2006). 

Derivation of the New Hybrid Methods 

In this section, we construct optimized hybrid methods of four-
stage fifth order and five-stage sixth order methods. !!!!!! and 

!!!!!! for hybrid methods, that satisfied algebraic order conditions 
up to order six, can be written in these expressions
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(i)	 for s = 5 :
	
	 ! !! ! ! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! !

		  ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! !

		  ! ! ! !! !!!! ! !!!!! ! ! ! !! !!!!!!	 (8.1)                  

	 ! !! ! ! ! !! !!!! ! !!!!! ! !!!! !!! ! ! !!! !

		  !!! !!!! ! !!!!! ! !!!! !!! ! ! !!! !.

		  !!! !!!! ! !!!!! ! !!!!!! !	 (8.2)           

(ii)	 for s = 6 :

	 ! !! ! !! !!!! ! !!!!! ! !!!! !!! ! ! ! !

		  !!!! ! ! !!! ! !!! ! ! !!! ! ! ! !

		  ! ! ! !! !!!! ! !!!!! ! !!! !!! ! ! ! !

		  ! ! ! !! !!!! ! !!! ! ! ! ! ! !!! !	 (8.3)
	
	 ! !! ! ! ! !!!! ! !!!!! ! !!!! !!! ! ! ! !

		  !!!! ! ! !!! ! !!! ! ! !!! ! ! ! !

		  !!! !!!! ! !!!!! ! !!! !!! ! ! ! !

		  !!! !!!! ! !!! ! ! ! !!! !	 (8.4)
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In order to develop an optimized hybrid method the following 
relations must hold:

The phase-lag condition: ! ! ! ! !! ! !!

! ! !!
! !!	 (8.5)

Dissipation conditions: ! ! !! ! !! ! !!,	  (8.6)

and the first derivative of (8.5), !!! !!!! ! !!		  (8.7)

The method developed is based on the non-zero-dissipative hybrid 
methods developed by Franco (2006). The process involved 
substituting the coefficients of the hybrid methods in Franco (2006) 
into equations (8.1) and (8.2), then substituting into equations (8.5) 
– (8.7) and solving the equations numerically. The coefficients 
of the fifth order method with ! !, !! ! and ! ! are taken as free 
parameters that can be written in Butcher tableau as follows:

	T able 20  An Optimized four-stage fifth-order hybrid method

	

The optimized hybrid method with dissipation order 9 (r = 9) is 
thus obtained and the free parameters in Taylor expansion are 
given by:

! ! ! !! ! !! ! !!!!!!
                                                                                   	

!! !
! ! !

!!!!!!!!!!!!!! !!!!!!!!!! !

!!" ! ! ! ! !

!

!

!! !
! ! !

!!!!!!!!!!!!!! !!!!!!!!!! !

!!" ! ! ! ! !

!

!
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! ! ! !! ! !! ! !!! !
! !!

and ! ! ! !! ! !!

! !!!!!!!!!!!!!!!!!!!!!!!!!! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	 !!! !! !!

For the construction of five-stage sixth-order optimized hybrid 
methods, we substitute equations (8.3) and (8.4) into (8.5) to (8.7), 
and using the coefficients of the five-stage sixth order method 
given in Franco (2006) and choosing ! !, ! !, and ! ! as the free 
parameters, the optimized sixth order hybrid method with  r = 9 is 
obtained and given as follows:

Table 21  An Optimized five-stage sixth-order hybrid method

The Taylor expansion of the parameters are given as 

! ! ! !! ! !! ! ! !! !

! ! ! ! !! ! !! ! ! !! !

! ! ! !! ! !! ! ! !! !

!! !
! ! !
!! ! !! !! !

!! ! !"!! !""" !"! ! !
!
!

!!!!" ! ! ! !
! !" !

!

!! !
! ! !
!! ! !! !! !

!! ! !"!! !""" !"! ! !
!
!

!!!!" ! ! ! !
! !" !

!
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Phase-fitted Hybrid Methods

To develop phase-fitted of a method, only equation (8.5) must 
hold. We first substitute equations (8.1) and (8.2) into (8.5). Then, 
choosing ! ! as the free parameter and using the same coefficients 
as in Table 20, together with 
 
! ! !, !! ! !, ! ! ! !,

we obtained a phase-fitted hybrid method of four-stage fifth-
order with q = 12 and r = 5 and the Taylor expansion of the free 
parameter is

! ! ! !! ! ! !! !!

For the construction of five-stage sixth-order phase-fitted hybrid 
methods, we substitute equations (8.3) and (8.4) into (8.5) and set 
! ! as the free parameter. We then use the coefficients given in 
Table 21 together with

! ! ! ! and ! ! !!

Choosing ! ! as the free parameter, we thus get a phase-fitted 
hybrid method of five-stage sixth-order with q = 12 and  r = 7 and 
the Taylor expansion of ! ! is

! ! ! !! ! !! ! ! !! !!

Problems Tested and Numerical Results

The methods were used to solve test problems and the results are 
tabulated and compared and the efficiency curves plotted. The test 
problems are listed below and most of them are the same problems 
used in previous chapters. The problems are:
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Problem 1 

!!! !
!"! ! !!!!! ! ! !!! ! ! ! ! !

!!! !
!"! ! !!!!! ! ! !!! ! ! ! ! !

!! ! ! ! ! ! ! !, !!! ! ! !! ! !, !! ! ! ! ! !, !!! ! ! ! !! ! ! 

The exact solution is !! ! ! ! ! ! ! !,!!! ! ! ! ! ! ! !, 
! ! !!is chosen to be e-0.05t and parameters z and a are 20 and 0.1, 
respectively. 

Problems 2 to 4 are the same as in the previous sections. The 
following are notations used in the Figures.

•	 OPHM(ETSHM5(8,5)): new optimized hybrid method four-
stage fifth order with dissipation of order 9 derived in this 
section.

•	 OPHM(ETSHM6): new optimized hybrid method five-stage 
sixth order with  dissipation of order 9 derived in this section.

•	 PFHM(ETSHM5(8,5)): new phase-fitted hybrid method four-
stage fifth order with dispersion of order 12 and dissipation of 
order 5 derived in this section.

•	 PFHM(ETSHM6): new phase-fitted hybrid method five-stage 
sixth order with dispersion of order 12 and dissipation of order 
7 derived in this section.

•	 ETSHM5(8,5): explicit hybrid method of four-stage fifth-order 
with dispersion of order eight and dissipation of order five 
developed by Franco (2006).

•	 ETSHM6: explicit hybrid method of five-stage sixth-order 
developed by Franco (2006).

•	 OPRKN4(5): Optimized Runge-Kutta Nyström method of 
four-stage fifth-order developed by Kosti et al. (2012).
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•	 PFRKN4(4): Phase-fitted Runge-Kutta Nyström method 
of  four-stage fourth-order method by Papadopoulos et al. 

(2009).
•	 RKN4(5): A classical Runge-Kutta Nyström method of order 

five in Hairer et al. (1987).
•	 RK7(6):  A Runge-Kutta method of order six with seven stages 

derived by Butcher (2008).
•	 PAFRKN4(4): A four-stage fourth-order phase-fitted and 

amplification-fitted Runge-Kutta Nyström method developed 
by Papadopoulos et al. (2010).

A measure of the accuracy is examined using absolute errors 
which is defined by

! ! ! ! !! ! !! !,

where! !! !is the exact solution and !! ! is the computed solution. 

Figure 30  The efficiency curve for OPHMs and PFHMs of order five 

for Problem 1 with  t
end 

= 104 and h ! !
!!
!! !  for  i = 1,…,5
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Figure 31  The efficiency curve for OPHMs and PFHMs of order five 

for Problem 2 with  t
end 

= 104 and h ! !
!!
!! !  for  i = 2,…,6

Figure 32  The efficiency curve for OPHMs and PFHMs of order five 

for Problem 3 with  t
end 

= 104 and h ! !
!!!
!! ! for  i = 0,...,4
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Figure 33 The efficiency curve for OPHMs and PFHMs of order five 

for Problem 4 with  t
end 

= 104 and h ! !
!!
!! !  for  i = 0,...,4

Figure 34  The efficiency curve for OPHMs and PFHMs of order six 

for Problem 1 with  t
end 

= 104 and h ! !
!!
!! !  for  i = 2,...,6
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Figure 35  The efficiency curve for OPHMs and PFHMs of order six 

for Problem 2 with  t
end 

= 104 and h ! !
!!
!! !

  for  i = 1,...,5

Figure 36  The efficiency curve for OPHMs and PFHMs of order six 

for Problem 3 with  t
end 

= 104 and h ! !
!!!
!! ! for  i = 0,...,4
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Table 22  Summary of the properties of the methods

Methods	S tage	 Algebraic	 Phase-lag	 Dissipative	 efficiency
		  order	  (dispersive)	 order
			   order
		
OPHM5	 4	 5	 ∞	 9	 √
PHFM5	 4	 5	 12	 5	
OPHM6	 5	 6	 ∞	 9	 √
PHFM6	 5	 6	 12	 7	

E-HM5	 4	 5	 8	 5	

Based on the existing non zero-dissipative hybrid methods 
of order five and six originally derived by Franco (2006), we 
constructed the optimized hybrid methods using the phase-lag, 

Figure 37  The efficiency curve for OPHMs and PFHMs of order six 

for Problem 4 with  t
end 

= 104 and h ! !
!!
!! !  for  i = 0,...,4
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dissipative and derivative of the phase-lag conditions. Then we 
derived the phase-fitted method using the phase-lag and dissipative 
conditions only. From the efficiency curves  shown, we can conclude 
that the new optimized methods are more efficient for integrating 
oscillatory initial value problems of second order ODEs compared 
to the phase-fitted methods and other well-known existing methods 
in scientific literature. 

TRIGONOMETRICALLY FITTED HYBRID 
METHOD FOR SOLVING DELAY DIFFERENTIAL 
EQUATIONS

Research reveals that things do not only depend on the current 
state of a system but also on past states, resulting in differential 
equations with a time delay. This kind of equations is called delay 
differential equations (DDEs) where the derivative at any time 
depends on the solution from previous times, and is best known as 
a model that incorporates past history. It is a more realistic model 
which includes some of the past history of the system to determine 
future behavior. Here, we are concerned  with a numerical method 
for solving second-order DDEs with constant delay, which can be 
written in the form of

	 ! !!! ! ! !! ! ! ! ! ! ! ! !,! ! ! ! !!,  	 (9.1)

	 ! !! ! !! !, ! !! ! !! !, ! ! !!! ! !				 

where τ is the delay term and the first derivative does not appear 
explicitly. 

There has been growing interest in the field of DDEs. Kuang 
(1993) in his book discussed delay differential equations with 
applications in population dynamics in his book while Ismail and 
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Suleiman (2000) studied the P-Stability and Q-Stability of Singly 
diagonally implicit Runge-Kutta Method for delay differential 
Equations. Ismail and Suleiman (2001) and Suleiman and 
Ismail (2001) also looked at the intervalwise partitioning and 
componentwise partitioning, respectively, for stiff DDEs. Ismail  
et al. (2003) have also used the Runge-Kutta method with a few 
types of interpolations for solving delay differential equations. 
Work on solving second order DDEs using the Runge-Kutta 
Nystrom method has also been done by Mechee et al. (2012). 
In their previous work Ahmad et al. (2013a) derived the semi 
implicit hybrid method, where they incorporated the phase-lag 
and amplification conditions so that a method which has higher 
order of dissipation and dispersion could be obtained. In this 
research, we are going to construct a new semi-implicit hybrid 
method (NSIHM) of four-stage fifth-order using the algebraic 
order conditions given in Coleman (2003). The derivation will also 
incorporate the simplifying conditions as well as the technique 
of minimization of the error constant. The method is then 
trigonometrically fitted so that it is suitable for solving oscillatory 
problems. This approach, which is similar to that of Jikantoro 
et al. (2015c), is simpler than incorporating the phase-lag and 
amplification conditions into the derivation. In all previous work 
related to phase-fitted methods, the methods have been used to 
solve oscillatory second order ODEs. Here the method is used for 
solving retarded second order delay differential equations which 
are oscillatory in nature. 

Derivation of Four-stage Fifth-order Semi-Implicit 
Hybrid Methods

We derived the four-stage fifth-order NSIHM based on the order 
conditions and simplifying the conditions given in Coleman (2003). 
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Minimization of the error constant !!! ! of the method is used to 
find the value of the free parameter. We obtained the coefficients 
of the four-stage fifth-order semi-implicit hybrid method, denoted 
as NSIHM4(5), which can be written in Butcher tableau as below 
and can also be seen in Ahmad et al. (2016).

Table 23  The 4-stage fifth order Semi-Implicit Hybrid method

Trigonometrically Fitting the Semi-Implicit Hybrid 
Method

To trigonometrically fit the new method, NSIHM4(5), we consider 
stage three and stage four of the NSIHM4(5) as shown in Table 
23. The new method which will be derived is denoted as the four-
stage fifth-order trigonometrically-fitted semi-implicit hybrid 
method or TF-NSIHM4(5), which has fifth algebraic order which 
is the same as the algebraic order of NSIHM4(5). Note that 
trigonometrically fitting the method will not change the algebraic 
order of the method. The method can be written in Butcher tableau 
as shown below.

!! !
! ! !

!
! !

!
!

!
!"

!
!

!"
!"#

!

!

!! !
! ! !

!
! !

!
!

!
!"

!
!

!"
!"#

!

!
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Table 24  The 4-stage Fifth Order Trigonometrically Fitted Semi-
Implicit Hybrid Method

The values of ! !, ! !, !! !, !! ! and !! ! are modified using the 
trigonometrically fitting technique so that it will improve the 
accuracy of the method and be suitable for solving oscillatory 
problems.

We require the internal stage (stage- 3 and 4) and the updating 
stage to integrate exactly the linear combination of the functions 
! !! ! ! ! for ! !!!!, subject to the fifth-order formulae. 

Hence, we obtain the following equations: 

!!! ! ! ! !! ! !! ! ! !! ! ! ! ! ! !!! !!! !	 (9.2) 

!!! ! !! ! ! !! ! ! ! !!! !!! !!	 (9.3)

!!! ! ! ! !! ! !! ! ! !! ! ! ! ! ! ! !!! ! !!! !!! !
	

(9.4)

!!! ! !! ! ! !! ! ! ! ! !!! ! !!! !!! !!	 (9.5)

! ! ! ! ! !! !! ! ! !! ! !! !!! ! !! !!! !!!and	 (9.6)

!! ! ! !! !!! !!! !!! !	 (9.7)

Solving equations (9.2) to (9.5) with the choice of coefficients

!! ! !!!, !! ! !!!, !!! !
!
!! !!! !

!
!!,

!! !
! ! !

!
!

!
!

! !
!

!! !! !!
!

!

!! !
! ! !

!
!

!
!

! !
!

!! !! !!
!

!
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!! ! !, !!! ! ! and,!!!!! !
!
! simultaneously, we obtained

! ! !
! ! ! ! !! !

!! !,					  
			 
and ! ! !

! ! ! ! !! !
!! !,		

				  
where H = vh ; h is step size and v is the fitted frequency. Next, 
using equations (9.6) and (9.7) and another two additional order 
conditions for the fifth-order method which are:

!! ! !! ! !! ! !! ! !! and !!! ! !!!! ! !!!! ! !!!,				
		
we solve the equations simultaneously to get!! !, !! !, and!!!!, which 
are given as below:

!! ! !
!
!

! ! ! ! !!
!!, !! !

! ! ! ! !! !
!!!, and

!! ! !
! ! ! ! !!! ! ! !!

!,	

where ! !! ! ! ! !!							    
		
The parameters can be expressed in Taylor series expansions:

! ! !
!"
!"#!

! ! !! !
!

!! !
!

!! ! ! ! !,			
	

! ! ! !! ! !! ! !! ! !!

! ! ! !

! ! ! !! ! !! ! !! ! !!

! ! ! !,	

!! !
!
!" !

!
!"#!

! !
!
!"#$!

! !
!

!"#$%%!
! ! ! !! !,				 

		

!! !
!
! !

!
!! !

!
!! !

!
$!#""!

! ! ! ! !, and				 
	

and !! !
!"
!"# !

!
!"#!

! !
!

!"#$!
! !

!
!"#$%%!

! ! ! !! !.				 
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The values of ! !, ! !, !! !, !! !, and !!!! depend on the values of v 
and h while the other coefficients remain the same. 

Problems Tested and Numerical Results

In this section, the new method NSIHM4(5) and the trigonometrically 
fitted method, TF-NSIHM4(5) are used to solve a set of oscillatory 
delay differential equation problems. The delay terms are evaluated 
using the Newton divided different interpolation. The numerical 
results are tabulated and compared with the existing explicit and 
implicit methods in scientific literature. The test problems are as 
listed below:

Problem 1: ! !!! ! !
!
! !! ! !

!
!! ! ! !! ! ! ! ! !! ! ! !!!.

	 v = 1. The exact solution is y(t) = sin(t).

	 (Source: Schmidt (1971)).

Problem 2:	! ! ! ! ! ! ! !
!
! ! !!! ! ! ! ! ! !!,

	 where ! !
! !

! ! ! !
!
!
! ! ! ! !!!.

	 v = 2. The exact solution is y(t) = sin(t).

	 (Source: Schmidt (1971)).

Problem 3: ! !!! ! ! ! ! !! ! ! ! ! !! ! ! !!!.

	 v = 1. The exact solution is y(t) = sin(t).

	 (Source: Ladas and Stavroulakis (1982)).
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Problem 4: ! ! ! !
!!!

! ! !!! ! ! ! !! ! ! ! ! !! !! ! !!!.

	 v =1. The exact solution is y(t) = sin(t). 
	
	 (Source: Bhagat Singh (1975)).

The following notations are used in Figures 38 to 41:

SIHM4(5)	 :	SIHM derived in Ahmad et al. (2013a).
NSIHM4(5)	 :	The new semi-implicit hybrid method.
TF-NSIHM4(5)	 :	The new trigonometrically-fitted semi-implicit  

hybrid method.
DIRKN4(4)	 :	A four - stage fourth - order dispersive order six 

of DIRKN method by Senu (2011).
MPAFRKN4(4)	 :	Modified Phase - fitted and Amplification fitted 

RKN method of four stage fourth-order by 
Papadopoulos et al. (2010).

EHM4(5)	 :	Explicit hybrid method of order five derived in 
Franco (2006).

DIRKN3(4) 	 :	A three - stage fourth - order dispersive order 
six of DIRKN method by Senu et al. (2011).

PFRKN4(4) 	 :	A phase - fitted RKN method of four-stage 
fourth-order by Papadopoulos et al. (2009).

A measure of the accuracy is examined using the absolute error 
which is defined by 

! ! ! !! ! !! !

where ! !! ! is the exact solution and !! ! is the computed solution.
The efficiency curves with the logarithm of the maximum global 
error versus the CPU time taken in seconds are analyzed.
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Figure 38  The efficiency curves for problem 1 with h ! ! !, for i = 1,…,4

Figure 39  The efficiency curves for problem 2 with h! ! , for i = 1,…,4
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Figure 40  The efficiency curves for problem 3 with h ! ! , for i = 2,…,6

Figure 41  The efficiency curves for problem 4 with h ! !, for i = 1,…,5
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In this research we derived a four-stage fifth order semi-
implicit hybrid method, which is suitable for solving special second 
order ODEs directly. The new method, called NSIHM4(5), is then 
trigonometrically fitted so that it becomes suitable for solving 
oscillatory problems and is denoted as TF-NSIHM4(5). Both 
methods are then used for solving oscillatory second order DDEs. 
The numerical results clearly showed that the TF-NSIHM4(5) 
is the most efficient in comparison to the original NSIHM4(5) 
method and other existing methods in the scientific literature. 
Trigonometrically fitting the method improved the efficiency of 
the NSIHM4(5) hybrid method and it is much easier to derive 
compared to the approach where we have to include the dispersion 
and dissipation equations in the derivation of the method.

CONCLUDING REMARKS 

Mathematics plays an important role in society. It shapes and 
influences many areas of our daily life, from education and culture 
through technology and industry to physics and information 
science and more. Mathematics has been important for the 
development of technology and industry for many centuries 
and will continue to be so forever. Further, real-world problems 
inspire and accelerate mathematical research in many ways. 
While the contribution of mathematics to the development of a 
new technology is vital it is usually not evident in the end product 
itself. Indeed these phenomena seem to be the characteristics of 
research in mathematics. 

Many problems in science and engineering are reduced 
to quantifiable forms through the process of mathematical 
modelling. The equations arising are often expressed in terms 
of unknown quantities and their derivatives, and these equations 
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are called differential equations. The solution of these equations 
has exercised the ingenuity of great mathematicians since earlier 
times. However, prior to the development of sophisticated 
computing machinery, only a small fraction of the differential 
equations resulting from mathematical modelling were accurately 
solved. Although a model equation based on established physical 
laws may be constructed, analytical tools are frequently inadequate 
for its solution. Such examples concern the gravitational n-body 
system ! ! !!!, whose differential equations are easily constructed 
but cannot be solved completely. Today these problems can be 
solved with the aid of a good numerical method. 

The advancement in computer technology also has enabled 
researchers in many fields to perform computations that would have 
been unthinkable in earlier times. Indeed, computation has become 
one of the most important modes of scientific discovery, other than 
theoretical work and laboratory work.

Remarkable as these developments are, there is no indication 
that research in numerical analysis is slowing down. In fact research 
in numerical analysis, especially numerical methods for differential 
equations, will continue to be developed and enhanced as new 
and improved numerical algorithms are constructed, together with 
improved computer technology.
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