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This thesis deals with the solution of some pursuit and evasion differential game

problems described by some models in Hilbert space. The models arise from the

solution of pursuit and evasion game problems described by some partial diffrential

equations. Three different type of models are considered, where for each model,

we solve pursuit and evasion problem with some forms of constraints on controls

of the players.

The first model is the infinite system of first order differential equations

żk(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

where zk, uk, vk, zk0 ∈ R1, z0 = (z10, z20, . . . ) ∈ l2r+1, u = (u1, u2, . . . ) is the con-

trol parameter of the pursuer, v = (v1, v2, . . . ) is that of the evader and λ1, λ2, . . .

is a bounded sequence of negative numbers. For this model, we present solution of

optimal pursuit problem, where the controls of the players are subjected to integral
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constraints.

Secondly, we consider

żk(t) + λk(t)zk(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

where z0 = (z10, z20, . . . ) ∈ l2, λk(t), k = 1, 2, . . . , are bounded, non-negative

continuous functions such that λk(0) = 0, k = 1, 2, . . . , on the interval [0, T ] and

all other parameters are defined as in the first model. In this case, we solve pur-

suit and evasion problems with integral, geometric, and mix constraints on control

functions of the players.

The third model is given by

z̈k(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, żk(0) = zk1, k = 1, 2, . . . ,

where zk, uk, vk ∈ R1, k = 1, 2, . . . , z0 = (z10, z20, . . . ) ∈ l2r+1, z1 = (z11, z21, . . . ) ∈

l2r , u = (u1, u2, . . . ) is the control parameter of the pursuer and v = (v1, v2, . . . ) is

the control parameter of the evader. Conditions for the solvability of pursuit and

evasion problems described by this model are obtained.

Furthermore, we also study control problems related to each of the three models.

In the case of first and third models, necessary and sufficient conditions for which

the state of the systems can be transfered to the origin are presented. Sufficient

conditions are given for the control problem described by the second model for the

cases of geometric and integral constraints on the control functions.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MASALAH-MASALAH PERMAINAN PEMBEZAAN MENGENAI
MANGSA DAN PEMANGSA YANG TERPILIH DARI RUANG

HILBERT

Oleh

ABBAS BADAKAYA JA’AFARU

May 2012

Pengerusi: Profesor Madya Gafurjan I. Ibragimov, PhD

Fakulti: Sains

Tesis ini berkenaan dengan penyelesaian permainan pembezaan mengenai mangsa

dan pemangsa yang diperihalkan dari model ruang Hilbert. Model ini diperolehi

dari penyelesaian masalah permainan mangsa dan pemangsa dari persamaan pem-

bezaan separa dengan menggunakan kaedah penguraian. Tiga jenis model yang

berbeza dipertimbangkan. Untuk setiap model, kami selesaikan masalah mangsa

dan pemangsa dengan beberapa bentuk kekangan pada kawalan para pemain.

Model yang pertama adalah sistem tidak terhingga bagi persamaan pembezaan

peringkat pertama

żk(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

di mana zk, uk, vk, zk0 ∈ R1, z0 = (z10, z20, . . . ) ∈ l2r+1, u = (u1, u2, . . . ) adalah

kawalan paramater kepada pemangsa, v = (v1, v2, . . . ) adalah kawalan paramater

kepada mangsa, and λ1, λ2, . . . adalah satu urutan batasan nombor negatif. Un-
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tuk model ini, kami mempersembahkan penyelesaian kepada masalah pengejaran

yang optimum, di mana kawalan kepada para pemain tertakluk kepada kekangan

kamiran.

Keduanya, kami mempertimbangkan

żk(t) + λk(t)zk(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

di mana z0 = (z10, z20, . . . ) ∈ l2, λk(t), k = 1, 2, . . . , adalah terbatas, fungsi

selanjar bukan-negatif sedemikian hingga λk(0) = 0, k = 1, 2, . . . , di atas selang

[0, T ] dan semua parameter yang lain ditafsirkan sebagai model yang pertama.

Dalam kes ini, kami selesaikan masalah mangsa dan pemangsa dengan kamiran,

geometrik dan kekangan campuran pada fungsi kawalan pemain.

Model ketiga diberikan sebagai

z̈k(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, żk(0) = zk1, k = 1, 2, . . .

yang mana zk, uk, vk ∈ R1, k = 1, 2, . . . , z0 = (z10, z20, . . . ) ∈ l2r+1, z1 =

(z11, z21, . . . ) ∈ l2r , u = (u1, u2, . . . ) adalah kawalan parameter pemangsa,v =

(v1, v2, . . . ) adalah kawalan parameter mangsa. keadaan keboleh-selesaian masalah

mangsa dan pemangsa yang diterangkan oleh model ini diperoleh.

Dengan demikian, kami mengkaji masalah kawalan yang berkaitan dengan ketiga-

tiga model tersebut. Dalam kes model-model yang pertama dan ketiga, syarat

perlu dan cukup bagi keadaan sistem tersebut boleh di pindahkan kepada yang asal

ditunjukkan. Syarat cukupa dijelaskan untuk masalah kawalan yang digambarkan

oleh model yang kedua untuk kedua-dua kes kekangan iaitu geometrik dan kamiran

terhadap fungsi kawalan.
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l2r
{
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L2(0, T, l
2
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{
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∑∞
k=1 |λk|r

∫ T
0 w2

k(t)dt <∞
}

and wk(·) ∈ L2(0, T )

C[a, b] Space of continous functions on [a, b]

C(0, T, l2r) Space of continuous functions in the norm of l2r
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R |f |
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)1/p
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CHAPTER 1

INTRODUCTION

This chapter contains an introduction which presents an overview about differential

games problem. It also includes some basic definitions and standard results used

in this thesis. Objectives of the thesis are also stated in this chapter.

1.1 Introduction

Differential game constitutes a group of important mathematical problems related

to game theory and optimal control theory. It is a game that consists of two play-

ers, a pursuer and an evader, with conflicting goals. The goal of the pursuer is to

capture the evader in some sense, while that of the evader is to prevent this cap-

ture. For example, capture could be minimizing the distance as much as possible

between the two players. The game consists of a model describing the behavior

of the players which is determined by the player’s input through their respective

control functions contained in the model. The model is usually a system of differ-

ential equations and each player attempts to control the state of the system so as

to achieve his goal.

Differential game relates to optimal control theory in the sense that optimal control

problems consists of a single control function in the model and a single criterion

to be optimized. Differential game theory generalizes this to two controls and two

criteria, one for each player. Therefore, optimal control problem are regarded as

differential game involving only one player. Technically, control problem can be

extended to a differential game problem by introducing control function of the

second player to the game model. In both optimal control and differential game

problems, the control functions are normally subjected to constraints to reflect
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a natural phenomenon. Usually, a constraints could either be geometric or inte-

gral. If player’s control parameter belongs to a subset of Rn, then it is said to be

subjected to a geometric constraint. A constraint is referred to as integral if the

resources of the player are bounded.

Differential game problem that requires finding conditions for which the pursuer

can catch the evader is called pursuit problem. In the other hand, evasion problem

requires finding conditions for which the evader can escape catch from the pursuer.

Pursuit and evasion differential game is played in an environment(space) where the

solution of the system of the differential equations(game model) exists.

Numerous applications of differential games signify it’s importance. It has been

applied to solve practical problems related to military operations, economics and

engineering among others. For example, it has been employed for missile guid-

ance system and military strategy. It has successfully been used to solve problems

related market, financial and economy strategies. Most recent, addition of stochas-

ticity to differential games helps in its application to the study of capitalism eg.

Leong and Huang (2010). Other applications includes searching building for In-

truders, traffic control and surgical operations to mention but a few.

In this thesis, we study some pursuit and evasion differential game problems de-

scribed by three different models in Hilbert space. In each case, we first study

control problem and then extend it to pursuit and evasion problems. Existence-

uniqueness of solution to each of the three models in the Hilbert space is also

discussed. Generally, we use analytical techniques as method of solution to the

problems.

2
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1.2 Preliminaries

In this section, we present basic definitions; examples and some standard results

which will be used in the subsequent chapters.

1.2.1 Hilbert space

Definition 1.1 : Let X be a complex linear space. An inner-product on X is a

function 〈·, ·〉 : X ×X → C which satisfies the following axioms:

i. 〈y, x〉 = 〈x, y〉 , the complex conjugate of 〈y, x〉.

ii. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

iii. 〈αx, y〉 = α 〈x, y〉.

iv. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0.

where x, y ∈ X and α is a complex number.

An inner-product space is a linear space with an inner-product on it and is denoted

as (X, 〈·, ·〉). (Chandrasekhara, 2002)

Example 1.1 Euclidean space Rn with the dot product

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑

k=1

xkyk,

is an inner product space.

(Pedersen, 2000)

Definition 1.2 : A sequence {xn} in Hilbert space (X, 〈·, ·〉) is called Cauchy

sequence if for every positive real number ε > 0, there is a positive integer N(ε) > 0

such that ||xm − xn|| < ε for all natural numbers m,n > N(ε).

(Thomson et al., 2001)

3
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Definition 1.3 : A complete inner-product space is called a Hilbert space. In

other words, a Hilbert space is an inner-product space in which every Cauchy se-

quence in the space converges to a point in the space.

(Ponnusamy, 2002)

Example 1.2 : Cn is a Hilbert space with inner-product

〈x, y〉 =
n∑

k=1

xkȳk,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , xn). are in Cn

Example 1.3 : Let E be a measurable subset of R. Then the space of all square

integrable functions denoted by L2(E) with inner product define by

〈f, g〉 =

∫
E
fḡdµ,

is Hilbert space.

Definition 1.4 : Let X be a linear space. A norm on X is a real-valued function

|| · || on X satisfying the following axioms:

a. ||x|| > 0 ∀x ∈ X.

b. ||x|| = 0 ⇔ x = 0, the zero element in X.

c. ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X. (triangular or subadditivity)

d. ||αx|| = |α|||x|| ∀x ∈ X and for all scalars α. (absolute homogeneity)

A linear space X with a norm || · || on it is called a normed space (or a normed

linear space). It is denoted by (X, || · ||)). The norm is also referred to as the

length of the vector x. (Chandrasekhara, 2002)

Definition 1.5 : The sequence space lp (1 ≤ p ≤ ∞) for which norm for the

sequence {zn} ∈ lp defined by

4
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||z||p =


( ∞∑

n=1
|zn|p

)1/p

<∞, if 1 ≤ p <∞,

sup1≤n<∞ |zn| <∞, if p = ∞,

is normed space.

The norm defined for 1 ≤ p < ∞ is called lp norm (or simply p − norm) and for

p = ∞ is called l∞ norm or simply supnorm (Ponnusamy, 2002).

Theorem 1.1 : Every inner-product space is a normed linear space with norm

defined by ||x|| =
√
〈x, x〉.

For the proof of this theorem, see (Chandrasekhara, 2002).

1.2.2 Important Inequalities

Theorem 1.2 :(Cauchy-Schwarz Inequality) Let (X, 〈·, ·〉) be an inner-product

space. Cauchy-Schwarz inequality states that

| 〈x, y〉 |2 ≤ 〈x, x〉 · 〈y, y〉 ,

for all vectors x, y ∈ X.

(Chandrasekhara, 2002)

Example 1.4 : In Euclidean space Rn with the standard inner product, the Cauchy-

Schwarz inequality is

(
n∑

k=1

xkyk

)2

≤

(
n∑

k=1

x2
k

)(
n∑

k=1

y2
k

)
.

Example 1.5 : For the inner product space of square-integrable complex-valued

functions, Cauchy-Schwarz inequality is

∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣2 ≤ ∫ |f(x)|2dx
∫
|g(x)|2dx.

5
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where g(x) is the conjugate of g(x)

(Ponnusamy, 2002)

Theorem 1.3 : (Minkowski inequality) Suppose that p ≥ 1 and f, g ∈ Lp(R).

Then

||f + g||p ≤ ||f ||p + ||g||p.

For the proof, refer to (Michael, 2000).

Example 1.6 : (Minkowski’s sum Inequality) If p ≥ 1 and xk, yk ∈ R, k =

1, 2, . . . , then

[
n∑

k=1

|xk + yk|p
]1/p

≤

[
n∑

k=1

|xk|p
]1/p

+

[
n∑

k=1

|yk|p
]1/p

.

This result is true for infinite sum and for the details , see (Chandrasekhara, 2002).

Example 1.7 : (Minkowski’s integral Inequality). If p ≥ 1 and f, g ∈

C[a, b], k = 1, 2, . . . , then

[∫ b

a
|f(x) + g(x)|pdx

]1/p

≤

[∫ b

a
|f(x)|pdx

]1/p

+

[∫ b

a
|g(x)|pdx

]1/p

.

(Ponnusamy, 2002)

1.2.3 Measurable functions

Definition 1.6 : Let X be a set. A collection Σ of subsets of X is called σ −

algebra on set X, if the following holds

i. X belongs to Σ,

ii. if A belongs to Σ then complement of A belongs to Σ,

iii. if Ak is a sequence of elements of Σ, then the union of the Aks belongs to Σ.

6
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Elements of the σ − algebra are referred to as measurable sets.

Definition 1.7 : Let X be a set and let Σ be a σ − algebra defined on X. A set

X together with Σ is called a measurable space and is denoted as (X, Σ) .

Definition 1.8 : Let (X, Σ1) and (Y, Σ2) be measurable spaces. A measurable

function is a function f : (X, Σ1) → (Y, Σ2) such that f−1(E) ∈ Σ1 for all

E ∈ Σ2.i.e., preimage of any measurable set is measurable.

(Cohn, 1980)

Definition 1.9 : Let Σ be a σ − algebra over a set X. A function µ : Σ → R is

called a measure if it satisfies the following:

i. µ(E) ≥ 0 for all E ∈ Σ,

ii. µ(∪k∈IEk) =
∑

k∈I µ(Ek), for all countable {Ek}k∈I pairwise disjoint mem-

bers of Σ,

iii. µ(∅) = 0.

Definition 1.10 : In measure theory, a property holds almost everywhere, if the

set of elements for which the property does not hold has a measure zero.

For example, If f : [a, b] → R is a monotonic function, then it is differentiable

almost everywhere. (Aliprantis and Burkinshaw, 1981)

1.3 Objectives of the Thesis

The following are the objectives of the thesis:

• To obtain solution of optimal pursuit differential game problem described by

the infinite system

żk(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

7
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where zk, uk, vk, zk0 ∈ R1, z0 = (z10, z20, . . . ) ∈ l2r+1, u = (u1, u2, . . . ) is

the control parameter of the pursuer, v = (v1, v2, . . . ) is that of the evader;

λ1, λ2, . . . is a bounded sequence of negative numbers. The case for which

integral constraints imposed on the controls functions of the players.

• To obtain solution of pursuit and evasion differential game problems de-

scribed by the infinite system

żk(t) + λk(t)zk(t) = −uk(t) + vk(t), zk(0) = zk0, k = 1, 2, . . . ,

where z0 = (z10, z20, . . . ) ∈ l2, λk(t), k = 1, 2, . . . , are bounded, non-

negative continuous functions on the interval [0, T ] such that λk(0) = 0, k =

1, 2, . . . , and other parameters are defined as in above. We consider the cases

where the control functions of the players are subjected to both integral,

geometric and mixed constraints.

• To obtain solution of pursuit and evasion differential game problems de-

scribed by the infinite system

z̈k(t) + λkz(t) = −uk(t) + vk(t), zk(0) = zk0, żk(0) = zk1, k = 1, 2, . . . ,

where zk, uk, vkzk0 ∈ R1, k = 1, 2, . . . , z0 = (z10, z20, . . . ) ∈ l2r+1, z1 =

(z11, z21, . . . ) ∈ l2r , u = (u1, u2, . . . ) is the control parameter of the pursuer,

v = (v1, v2, . . . ) is that of the evader. The control functions of the players

are subjected to integral constraints.

1.4 Organization of the Thesis

The remaining part of the thesis is organized as follows:
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Chapter 2 contains review of related literature. We review a history for the emer-

gence of the differential game in brief and reported some important works by many

researchers related to our works. The report includes both methods and results to

some relevant differential game and optimal control problems.

In chapter 3, the proof of existence-uniqueness for the solution to the three con-

sidered differential equation models are presented.

We present optimal solution to pursuit problem described by infinite system of

first-order differential equations with negative coefficients in chapter 4. Moreover,

the chapter includes solution to the control problem described by this system.

Chapter 5 focuses on the solutions to pursuit and evasion problems described by

infinite system of first-order differential equations with variable coefficients, where

geometric, integral and mixed constraints are imposed to the control functions of

the players. Furthermore, the chapter houses solution to control problems for cases

involving geometric and integral constraints on the control function.

Solution to both pursuit and evasion as well as control problem described by in-

finite system of second order equations with negative coefficients are presented in

chapter 6. Here, integral constraints on the control function of the players are

considered.

We summarize the thesis in Chapter 7, and explore some possible future research

directions related to this work. This chafter if followed by bibiliography, biodata

of the author to this thesis and finally the list of publications extracted from the

thesis.
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