OPTIMIZING FORMATION OF FATTY ACID ESTER NANOEMULSION SYSTEMS FOR NON-STEROIDAL ANTI-INFLAMMATORY DRUG DELIVERY

NURSYAMSYILA MAT HADZIR

FS 2012 105
OPTIMIZING FORMATION OF FATTY ACID ESTER NANOEMULSION SYSTEMS FOR NON-STEROIDAL ANTI-INFLAMMATORY DRUG DELIVERY

By

NURSYAMSYILA MAT HADZIR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

OPTIMIZING FORMATION OF FATTY ACID ESTER NANOEMULSION SYSTEMS FOR NON-STEROIDAL ANTI-INFLAMMATORY DRUG DELIVERY

By

NURSYAMSYILA MAT HADZIR

November 2012

Chairman: Professor Mahiran bt. Basri, PhD
Faculty: Science

Pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants (Pluronic F68 and Span 20) and piroxicam were constructed. In each pseudo-ternary phase diagram, a one-phase region was located along the apex line of water and mixed surfactants. A multi-phase region was also formed and found to dominate the three pseudo-ternary phase diagrams. The formation of large multi-phase regions was believed to be due to less or no synergistic effects between the Pluronic F68 and Span 20 in facilitating the formation of nanoemulsions. Even so, a composition from the multi-phase region from each pseudo-ternary phase diagram was chosen for preparing the nanoemulsions systems containing piroxicam via low energy emulsification methods.
The incorporation of a rheology modifier (xanthan gum) into the nanoemulsions systems containing piroxicam successfully facilitated the formation of nanoemulsions systems. The results from the preliminary study via ‘One-At-A-Time Approach’ showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 g (w/w) and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the mixed surfactants (Pluronic F68:Span 20, 8:2) and rheology modifier needed for the emulsification to take place was found to be 10 g (w/w) and 0.5 g (w/w), respectively. However, the emulsification process at optimum amount of the three variables for each nanoemulsions system showed that the low energy emulsification method was unable to form emulsions in the nano-size range.

Thus, further investigation of the emulsification process was carried out using a high shear emulsification method by employing Artificial Neural Network (ANN) and Response Surface Methodology (RSM). ANN and RSM were used to predict the optimum amount (w/w) of oil, mixed surfactants and rheology modifier in order to produce nanoemulsions systems having ‘nano’-sized particles with high physical stability. The results showed that RSM gave a better prediction than ANN whereby a comparison between the predicted and experimental values showed good correspondence between them, with R^2 values ≥ 0.9. The good correspondence of predicted and experimental values indicated that the empirical models derived from RSM can be used to describe the relationship between the variables and responses for the emulsification process of palm-based nanoemulsions systems.
As a result, the optimization of the emulsification process via a high shear emulsification method was performed by RSM based on Central Composite Design (CCD). The optimal amounts (w/w) of oleyl laurate, oleyl stearate and oleyl oleate as the oil phase for the oleyl laurate nanoemulsions (OL-Opt), oleyl stearate nanoemulsions (OS-Opt) and oleyl oleate nanoemulsions (OO-Opt) were found to be 33.92 g, 17.74 g and 17.95 g, respectively. As for the mixed surfactants (Pluronic F68:Span 20, 8:2) and rheology modifier, the optimal amounts (w/w) were found to be 4.03 g (OL-Opt), 9.97 g (OS-Opt), 7.59 g (OO-Opt) and 0.71 g (OL-Opt), 0.57 g (OS-Opt) and 1.02 g (OO-Opt), respectively. The emulsification process via high shear emulsification method at optimal amounts of the three variables has produced emulsions in ‘nano’-sized particles with surface charge values more negative than -30 mV at pH around 5, which suggest high physical stability of the emulsions.

The characterization of oleyl laurate nanoemulsions (OL-Opt), oleyl stearate nanoemulsions (OS-Opt) and oleyl oleate nanoemulsions (OO-Opt) showed that the particle sizes were in the nano-range (in between 50 and 200 nm), with surface charge values and pH of -32.7 to -40.6 mV and 5.08 to 5.14, respectively. From observations, the three nanoemulsions systems were also found to be stable at various storage temperatures, which were 3 °C, 25 °C and 45 °C, with no phase separations. The physically stable nanoemulsions systems were also found to exhibit non-Newtonian flow behaviour by displaying a pseudoplastic behavior and shear-thinning properties. The conductivity values of OL-Opt (310.0 \(\mu\)S cm\(^{-1}\)), OS-Opt (281.0 \(\mu\)S cm\(^{-1}\)) and OO-Opt (413.0 \(\mu\)S cm\(^{-1}\)) also confirmed that oil-in-water nanoemulsions have been successfully produced. They were also found to be non-irritant to the skin.
The oleyl laurate nanoemulsions (OL-Opt), oleyl stearate nanoemulsions (OS-Opt) and oleyl oleate nanoemulsions (OO-Opt) were found to be stable for three months at various storage temperatures, which were 3 °C, 25 °C and 45 °C; and passed the Freeze-thaw cycle with no phase failures. The particle size analyses showed that there were no significant differences during the three months storage period especially at temperatures of 3 °C and 25 °C, which indicated that Ostwald ripening could be prevented from occurring by incorporating polymeric surfactants and rheology modifiers into the nanoemulsions systems. At storage temperature of 45 °C, the particle sizes for the three nanoemulsions systems were found to increase, which was probably due to the loss of water from the system, thus allowing the particles to combine and finally forming larger particles.

The in-vitro study of OL-Opt, OS-Opt and OO-Opt was carried out by investigating their penetration through the cellulose synthetic membrane and Wistar male rat skin. It was found that the highest penetration of piroxicam at the 8th h was given by OS-Opt (31.12%) followed by OO-Opt (25.46%) and OL-Opt (21.55%). The addition of 1% menthol (which was labeled as WE) to each nanoemulsions system has increased the amount of piroxicam passing through the cellulose synthetic membrane as oleyl stearate nanoemulsions with menthol (OS-OptWE) showed the highest penetration of piroxicam (35.65%) followed by oleyl oleate nanoemulsions with menthol (OO-OptWE) (30.54%) and oleyl laurate nanoemulsions with menthol (OL-OptWE) (25.15%). Finally, the release of piroxicam from OL-OptWE, OS-OptWE and OO-OptWE was carried out via the rat skin. OS-OptWE was found to give the highest penetration of piroxicam (41.44%), followed by OO-OptWE (29.01%) and OL-OptWE (21.10%).
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MENGOPTIMUM PEMBENTUKKAN SISTEM NANOEMULSI ASID LEMAK ESTER UNTUK PENGHANTARAN UBAT ANTI-RADANG BUKAN STEROID

Oleh

NURSYAMSYILA MAT HADZIR

November 2012

Pengerusi: Profesor Mahiran bt. Basri, PhD

Fakulti: Sains

Penambahan bahan pengubahsuai reologi (xanthan gam) ke dalam sistem nanoemulsi yang mengandungi piroksikam telah berjaya menghasilkan nanoemulsi yang stabil. Oleh itu, satu kajian awal telah dijalankan melalui kaedah konvensional iaitu memvariasikan satu parameter pada-satu-masa. Keputusan yang diperolehi menunjukkan bahawa jumlah optimum (w/w) minyak untuk nanoemulsi oleil laurat adalah 30 g (w/w) dan 20 g (w/w) untuk kedua-dua nanoemulsi oleil stearat dan oleil oleat. Bagi setiap sistem nanoemulsi, campuran surfaktan dan pengubahsuai reologi yang diperlukan untuk proses pengemulsian adalah 10 g (w/w) dan 0.5 g (w/w). Walau bagaimanapun, keputusan eksperimen menunjukkan bahawa proses pengemulsian pada jumlah optimum bagi ketiga-tiga pembolehubah menunjukkan bahawa kaedah pengemulsian tenaga rendah tidak dapat membentuk emulsi dalam julat saiz nano.

Oleh itu, ujikaji lanjutan terhadap proses emulsifikasi telah dijalankan menggunakan Rangkaian Saraf Tiruan (ANN) dan Kaedah Permukaan Respons (RSM). ANN dan RSM telah digunakan untuk meramal jumlah optimum bagi fasa minyak, campuran surfaktan dan pengubahsuai reologi untuk menghasilkan emulsi dengan zarah bersaiz ‘nano’ dan stabil. Hasil kajian menunjukkan bahawa RSM memberikan keputusan yang lebih baik berbanding ANN, di mana perbandingan di antara nilai ramalan dan nilai sebenar ujikaji menunjukkan jalinan yang baik diantara mereka, dengan nilai $R^2 \geq 0.9$. Hubungkait yang baik di antara keputusan ramalan dan keputusan sebenar menunjukkan bahawa model empirik yang diperolehi dari RSM boleh digunakan untuk menerangkan hubungkait antara pembolehubah dan maklumbalas bagi proses pengemulsian nanoemulsi.
Proses mengoptimum emulsi telah dijalankan menggunakan RSM berdasarkan kepada Pusat Komposit Berputar (CCD). Jumlah optimum (w/w) fasa minyak (oleil laurat) untuk nanoemulsi oleil laurat (OL-Opt) adalah 33.92 g, manakala 17.74 g oleil stearat dan 17.95 g oleil oleat diperlukan untuk menghasilkan nanoemulsi oleil stearat (OS-Opt) dan nanoemulsi oleil oleat (OO-Opt). Keputusan uji kaji juga menunjukkan bahawa jumlah optimum bagi campuran surfaktan adalah 4.03 g (OL-Opt), 9.97 g (OS-Opt), 7.59 g (OO-Opt) dan jumlah optimum bagi pengubahsuai reologi adalah 0.71 g (OL-Opt), 0.57 g (OS-Opt) dan 1.02 g (OO-Opt). Penghasilan emulsi menggunakan kaedah pengemulsi ricih tinggi pada nilai optimum bagi ketiga-tiga pembolehubah telah menghasilkan nanoemulsi dengan nilai cas permukaan melebihi -30 mV pada pH sekitar 5 telah mencadangkan bahawa ketiga-tiga nanoemulsi yang dihasilkan mempunyai kestabilan fizikal yang tinggi.

Pencirian sistem nanoemulsi pada amaun optimum (w/w) menunjukkan bahawa saiz zarah berada dalam julat nano (di antara 50 dan 200 nm), dengan nilai cas permukaan di antara 32.7 mV dan 40.6 mV dengan nilai pH di antara 5.05 dan 5.14. Pemerhatian juga menunjukkan bahawa ketiga-tiga sistem nanoemulsi berada dalam keadaan stabil pada suhu penyimpanan 3 °C, 25 °C dan 45 °C. Sistem-sistem nanoemulsi tersebut juga mempamerkan sifat bukan Newtonian, atau dalam erti kata yang lain bermaksud sistem tersebut mempamerkan sifat pseudoplastik dan ricih-penipisan. Nilai kekonduksian bagi sistem nanoemulsi oleil laurat (310.0 μS cm⁻¹), nanoemulsi oleil stearat (281.0 μS cm⁻¹) dan nanoemulsi oleil oleat (413.0 μS cm⁻¹) telah mengesahkan bahawa nanoemulsi dari jenis minyak-di dalam-air telah berjaya dihasilkan. Ketiga-tiga nanoemulsi juga didapati tidak meyebabkan kerengsaan kepada kulit.

Kajian in vitro terhadap sistem nanoemulsi telah dijalankan untuk mengetahui kadar penembusan piroksikam melalui membran selulosa sintetik dan kulit tikus jantan Wistar. Hasil kajian menunjukkan bahawa penembusan tertinggi piroksikam pada jam ke-8 diperolehi dari OS-Opt (31.12%), diikuti oleh OO-Opt (25.46%) dan OL-Opt (21.55%). Penambahan 1% menthol (dilabelkan sebagai WE) kepada sistem nanoemulsi berjaya meningkatkan jumlah penembusan piroksikam melalui membran selulosa sintetik. Keputusan menunjukkan bahawa nanoemulsi oleil stearat mengandungi menthol (OS-OptWE) memberikan penembusan tertinggi piroksikam (35.65%) diikuti oleh nanoemulsi oleil olate mengandungi menthol (OO-OptWE) (30.54%) dan nanoemulsi oleil laurat mengandungi menthol (OL-OptWE) (25.15%). Ujikaji terakhir adalah mencari peratusan pembekalan piroksikam dari setiap sistem nanoemulsi melalui kulit tikus. Keputusan ujikaji menunjukkan bahawa OS-OptWE telah memberikan pembekalan tertinggi piroksikam (41.44%) diikuti oleh OO-OptWE (29.01%) dan OL-OptWE (21.10%).
ACKNOWLEDGEMENTS

First and foremost, I thank Allah the Almighty for giving me the strength and showing me the light to complete this thesis.

To complete this thesis, I am indebted to many- too many for me to include all in this little acknowledgement.

My heartfelt gratitude and greatest appreciation goes to my supervisor, Professor Dr. Mahiran Basri, for her countless time, tireless advice, patience, guidance, encouragement, support and warmth which gave me the confidence and strength in the preparation and completion of this arduous task and for making this thesis a reality despite her busy schedule as the Director of Centre of Foundation Studies For Agricultural Science, UPM. All her assistance and kindness helped to make this academic journey an invaluable experience. There are no words to describe my gratefulness to her.

My special thanks and sincere appreciation also is extended to my co-supervisors, Professor Dato’ Dr. Abu Bakar Salleh and Professor Dr. Mohd Basyaruddin Abd Rahman for their help, encouraging support and assistance.

This thesis is also dedicated to my husband, my parents and parents-in-law, my lovely Misha and Amin, and my siblings, for their patience and never-ending support.
throughout the time I undertook this PhD programme. They have been a constant source
of motivation and inspiration in moments of dismay.

Special thanks to Puan Norizan Yusof, friends in Lab 401 and staffs of the Faculty of
Science UPM, The Animal Care and Use Committee of the Faculty of Medicine and
Health Sciences UPM and colleagues in UiTM Perlis who directly and indirectly helped
me through during the PhD stages, especially the writing phases: Dr Zeti Zuryani and Dr
Norizul Azida, thank you for the kind words of encouragement and for never saying no
to any help needed by me and for being there whenever I need help; and to all- for being
understanding in times of distress and stressfulness.

To all, thank you for being there for me.
I certify that an Examination Committee has met on 29 November 2012 to conduct the final examination of Nursyamsyila binti Mat Hadzir on her Doctor of Philosophy thesis entitled “Optimizing The Formation Of Fatty Acid Ester Nanoemulsions System For Non-Steroidal Anti-Inflammatory Drugs Delivery” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy degree.

Members of the Examination Committee were as follows:

Mansor bin Haji Ahmad, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Zobir Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Zaizi Desa, PhD
Lecturer
Centre of Foundation Studies For Agricultural Science
Universiti Putra Malaysia
(Internal Examiner)

Sanjula Baboota, PhD
Assistant Professor
Faculty of Pharmacy
Hamdard University
(External Examiner)

SEOW HENG KONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Dato’ Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd. Basyaruddin Abdul Rahman, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Azmin Mohd Noor, PhD
Associate Professor
School of Pharmaceutical Sciences
Universiti Sains Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURSYAMSYILA MAT HADZIR
Date: 29 November 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background Of The Study 1
1.2 Problem Statements 2
1.3 Significance Of The Study 3
1.4 Objectives 4

2 LITERATURE REVIEW

2.1 Emulsions 5
2.1.1 Nanoemulsions 8
2.2 Non-Steroidal Anti-Inflammatory Drugs 18
2.2.1 Mode Of Action Of Non-Steroidal Anti-Inflammatory Drugs 19
2.2.2 Piroxicam 22
2.3 Methods Of Drug Delivery 24
2.3.1 Transdermal Drug Delivery 24
2.3.2 Pathways Of Transdermal Drug Delivery 25
2.4 Wax Esters 28
2.5 Methods For Optimization 31
2.5.1 Response Surface Methodology 32
2.5.2 Artificial Neural Networks 34
2.6 Characterizations Of Nanoemulsions System 37
2.6.1 Particle Size Analysis 37
2.6.2 Surface Charge Analysis 38
2.6.3 Electrical Conductivity Study 39
2.6.4 Stability Study 40
2.6.5 Morphology Study 42
2.6.6 Rheological Study 43
2.6.7 In-vitro Study 45
2.6.8 Irritancy Study 46

3 MATERIALS AND METHODS 47
3.1 Materials 35
3.1.1 Preparation And Characterization Of Oleyl Laurate, Oleyl Stearate And Oleyl Oleate 49
3.2 Construction Of Psedo-Ternary Phase Diagram Using Single Wax Ester Containing Piroxicam 49
3.3 Modification Of The Nanoemulsions System Containing Piroxicam Using Rheological Modifier 50
3.4 Study On Individual Effects Of Various Parameters Using ‘One-At-Time Approach’ 51
3.4.1 Effect Of Oil Phase On Nanoemulsions Formulations 51
3.4.2 Effect Of Rheology Modifier On Nanoemulsions Formulations 52
3.4.3 Effect Of Mixed Surfactants On Nanoemulsions Formulations 52
3.4.4 Optimization Of The Nanoemulsions Systems Using Low-Energy And High-Energy Emulsification Methods 52
3.5 Studies On Interactive Effects Of Various Parameters Using Response Surface Methodology 53
3.6 Studies On Interactive Effects Of Various Parameters Using Artificial Neural Network 57
3.7 Characterization Of Nanoemulsions Systems 59
3.7.1 Particle Size Analysis 59
3.7.2 Surface Charge Analysis 59
3.7.3 Electrical Conductivity Study 60
3.7.4 Stability Study 60
3.7.5 Morphology Study 61
3.7.6 Rheological Study 61
3.7.7 In-Vitro Study 62
3.7.8 Irritancy Study 63

4 RESULTS AND DISCUSSION 64
4.1 Construction Of Pseudo-Ternary Phase Diagrams Using Single Wax Ester 64
4.2 Optimization Of Nanoemulsions System By One-At-A-Time Approach: A Preliminary Study 71
4.2.1 Effect Of Oil On Nanoemulsions Systems 71
4.2.2 Effect Of Rheology Modifier On Nanoemulsions Systems 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3 Effect Of Mixed Surfactants On Nanoemulsions Systems</td>
<td>77</td>
</tr>
<tr>
<td>4.2.4 Optimization Study Of Nanoemulsions Systems Using Low-Energy And High-Energy Emulsification Methods</td>
<td>79</td>
</tr>
<tr>
<td>4.3 Optimization Of Nanoemulsions Systems By Response Surface Methodology</td>
<td>81</td>
</tr>
<tr>
<td>4.3.1 Analysis Of Variance On The Particle Size Of Nanoemulsions Systems</td>
<td>82</td>
</tr>
<tr>
<td>4.3.2 Analysis Of Variance On The Surface Charge Of Nanoemulsions Systems</td>
<td>104</td>
</tr>
<tr>
<td>4.4 Optimization Of Nanoemulsions Systems By Artificial Neural Network</td>
<td>125</td>
</tr>
<tr>
<td>4.5 Optimization And Characterizations Of Nanoemulsions Systems</td>
<td>141</td>
</tr>
<tr>
<td>4.5.1 Characterization Studies</td>
<td>142</td>
</tr>
<tr>
<td>5 CONCLUSION</td>
<td>175</td>
</tr>
</tbody>
</table>

REFERENCES 179
APPENDIX 195
LIST OF PUBLICATIONS 196
BIODATA OF STUDENT 197
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Chemical Name, Chemical And Physical Data Of Piroxicam</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Coded And Actual Levels For Each Variables For Experimental Design Of Response Surface Methodology</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Design Matrix of the Coded and Actual Level Combinations for a Three-Variable-Five-Factor Central Composite Design (F1=Mixed Surfactants, F2=Rheology Modifier And F3=Oil Phase)</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>The experimental data values of variables for the purpose of training and testing analyses for Artificial Neural Network</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>The effect Of Oil Phase On The Particle Size Of The Nanoemulsions Systems (All Data Are Presented As Mean ± SD, N=3)</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>The effect Of Rheology Modifier On The Particle Size Of The Nanoemulsions Systems (All Data Are Presented As Mean ± SD, N=3)</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>The Effect Of Mixed Surfactants On The Particle Size Of The Nanoemulsions Systems (All Data Are Presented As Mean ± SD, N=3)</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>The Composition Of Mixed Surfactants, Oil Phase And Xanthan Gum With Respect To Particle Size And Surface Charge Of The Nanoemulsions Systems</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>The Particle Sizes For Two Formulations Prepared Using Different Emulsification Methods (All Data Are Presented As Mean ± SD, N=3)</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>The Actual And Predicted Particle Sizes At Various Compositions Of Oleyl Laurate Nanoemulsions</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>The Actual And Predicted Particle Sizes At Various Compositions Of Oleyl Stearate Nanoemulsions</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>The Actual And Predicted Particle Sizes At Various Compositions Of Oleyl Oleate Nanoemulsions</td>
<td>85</td>
</tr>
</tbody>
</table>
13 ANOVA and R-squared (R^2) Analysis Of Particle Size For Oleyl Laurate Nanoemulsions 87
14 ANOVA and R-squared (R^2) Analysis Of Particle Size For Oleyl Stearate Nanoemulsions 88
15 ANOVA and R-squared (R^2) Analysis Of Particle Size For Oleyl Oleate Nanoemulsions 89
16 Significance Values Of Regression Coefficients For Oleyl Laurate Nanoemulsions 91
17 Significance Values Of Regression Coefficients For Oleyl Stearate Nanoemulsions 92
18 Significance Values Of Regression Coefficients For Oleyl Oleate Nanoemulsions 93
19 The Actual And Predicted Surface Charge Of Oleyl Laurate Nanoemulsions 105
20 The Actual And Predicted Surface Charge Of Oleyl Stearate Nanoemulsions 106
21 The Actual And Predicted Surface Charge Of Oleyl Oleate Nanoemulsions 107
22 ANOVA and R-squared (R^2) Analysis Of The Surface Charge For Oleyl Laurate Nanoemulsions 108
23 ANOVA and R-squared (R^2) Analysis Of The Surface Charge For Oleyl Stearate Nanoemulsions 109
24 ANOVA and R-squared (R^2) Analysis Of The Surface Charge For Oleyl Oleate Nanoemulsions 110
25 Significance Values Of Regression Coefficients For The Oleyl Laurate Nanoemulsions System 113
26 Significance Values Of Regression Coefficients For The Oleyl Stearate Nanoemulsions System 114
27 Significance Values Of Regression Coefficients For The Oleyl Oleate Nanoemulsions System 115
28 Experimental Values (Training And Testing), Actual And Predicted Particle Size Of Oleyl Laurate Nanoemulsions 126
29 Experimental Values (Training And Testing), Actual And Predicted Particle Size Of Oleyl Stearate Nanoemulsions 127
30 Experimental Values (Training And Testing), Actual And Predicted Particle Size Of Oleyl Oleate Nanoemulsions 128
31 Statistical Measures And Performances Of Back Propagation Algorithm On The Particle Size Of Nanoemulsions Systems 129
32 Experimental Values (Training And Testing), Actual And Predicted Surface Charge Of Oleyl Laurate Nanoemulsions 134
33 Experimental Values (Training And Testing), Actual And Predicted Surface Charge Of Oleyl Stearate Nanoemulsions 135
34 Experimental Values (Training And Testing), Actual And Predicted Surface Charge Of Oleyl Oleate Nanoemulsions 136
35 Statistical Measures And Performances Of Back Propagation Learning Algorithm On The Surface Charge Of Nanoemulsions Systems 137
36 The Optimal Amount Of Mixed Surfactants, Rheology Modifier And Oil Phase For Oleyl Laurate Nanoemulsions (OL-Opt), Oleyl Stearate Nanoemulsions (OS-Opt) And Oleyl Oleate Nanoemulsions (OO-Opt) 141
37 The Predicted And Actual Particle Sizes Of Nanoemulsions Systems Using The Optimal Amount Of Mixed Surfactants, Rheology Modifier And Oil Phase (All Data Are Presented As Mean ± SD, N=3) 143
38 The Predicted And Actual Surface Charge Values Of Nanoemulsions Systems Using The Optimal Amount Of Mixed Surfactants, Rheology Modifier And Oil Phase (All Data Are Presented As Mean ± SD, N=3) 145
39 The Electrical Conductivity Values Of OL-Opt, OS-Opt and OO-Opt At Optimum Amount Of Mixed Surfactants, Rheology Modifier And Oil Phase 147
40 Particle sizes of Nanoemulsions Systems over 90 d at 3 °C, 25 °C and 45 °C (All Data Are Presented As Mean ± SD, N=3) 150
41 Irritancy test of OL-Opt 174
42 Irritancy test of OS-Opt 174
43 Irritancy test of OO-Opt 174
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic Representation Of The Structure For Both O/W And W/O Emulsions</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>The Instability Of An Emulsions System</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>The Arachidonic Acid Cascade</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>The side-effects and therapeutic effects of Non-Steroidal Anti-Inflammatory Drugs</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>The Chemical Structure Of Piroxicam</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Several Routes Of Drug Penetration</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>The Stratum Corneum With Alternating Lipid Bilayers Surrounding Corneocytes</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>The Chemical Structure Of (a) Oleyl Laurate; (b) Oleyl Stearate And (c) Oleyl Oleate</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Back-Propagation ANN Models With Multi-Layered Architecture Where X Is The Input Layer And Y Is The Output Layer</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>The Ternary Phase Diagram For The System Oleyl Laurate:Piroxicam/Mixed Surfactants/Water (1P=One-Phase Region, 2P=Two-Phase Region)</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>The Ternary Phase Diagram For The System Oleyl Stearate:Piroxicam/Mixed Surfactants/Water (1P=One-Phase Region, 2P=Two-Phase Region, 3P=Three-Phase Region)</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>The ternary phase diagram for the system Oleyl oleate:Piroxicam/Mixed surfactants/Water (1P=One-Phase Region, 2P=Two-Phase Region, 3P=Three-Phase Region)</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>A Schematic Representation Of Pluronic F68 Conformation On A Plane Surface</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>The 3D Plot Of Interactive Effects Of AB On The Particle Size Of Oleyl Laurate Nanoemulsions Using RSM</td>
<td>97</td>
</tr>
</tbody>
</table>
15 The 3D Plot Of Interactive Effects Of AB On The Particle Size Of Oleyl Stearate Nanoemulsions Using RSM

16 The 3D Plot Of Interactive Effects Of AB On The Particle Size Of Oleyl Oleate Nanoemulsions Using RSM

17 The 3D Plot Of Interactive Effects Of AC On The Particle Size Of Oleyl Laurate Nanoemulsions Using RSM

18 The 3D Plot Of Interactive Effects Of AC On The Particle Size Of Oleyl Stearate Nanoemulsions Using RSM

19 The 3D Plot Of Interactive Effects Of AC On The Particle Size Of Oleyl Oleate Nanoemulsions Using RSM

20 The 3D Plot Of Interactive Effects Of BC On The Particle Size Of Oleyl Laurate Nanoemulsions Using RSM

21 The 3D Plot Of Interactive Effects Of BC On The Particle Size Of Oleyl Stearate Nanoemulsions Using RSM

22 The 3D Plot Of Interactive Effects Of BC On The Particle Size Of Oleyl Oleate Nanoemulsions Using RSM

23 The 3D Plot Of Interactive Effects Of AB On The Surface Charge Of Oleyl Laurate Nanoemulsions Using RSM

24 The 3D Plot Of Interactive Effects Of AB On The Surface Charge Of Oleyl Stearate Nanoemulsions Using RSM

25 The 3D Plot Of Interactive Effects Of AB On The Surface Charge Of Oleyl Oleate Nanoemulsions Using RSM

26 The 3D Plot Of Interactive Effects Of AC On The Surface Charge Of Oleyl Laurate Nanoemulsions Using RSM

27 The 3D Plot Of Interactive Effects Of AC On The Surface Charge Of Oleyl Stearate Nanoemulsions Using RSM

28 The 3D Plot Of Interactive Effects Of AC On The Surface Charge Of Oleyl Oleate Nanoemulsions Using RSM

29 The 3D Plot Of Interactive Effects Of BC On The Surface Charge Of Oleyl Laurate Nanoemulsions Using RSM
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>The 3D Plot Of Interactive Effects Of BC On The Surface Charge Of Oleyl Stearate Nanoemulsions Using RSM.</td>
</tr>
<tr>
<td>31</td>
<td>The 3D Plot Of Interactive Effects Of BC On The Surface Charge Of Oleyl Oleate Nanoemulsions Using RSM</td>
</tr>
<tr>
<td>32</td>
<td>The Scatter Plots Of ANN Predicted Particle Size Vs. Actual Particle Size For (a) Training Data And (b) Testing Data Sets For Oleyl Laurate Nanoemulsions</td>
</tr>
<tr>
<td>33</td>
<td>The Scatter Plots Of ANN Predicted Particle Size Vs. Actual Particle Size For (a) Training Data And (b) Testing Data Sets For Oleyl Stearate Nanoemulsions</td>
</tr>
<tr>
<td>34</td>
<td>The Scatter Plots Of ANN Predicted Particle Size Vs. Actual Particle Size For (a) Training Data And (b) Testing Data Sets For Oleyl Oleate Nanoemulsions</td>
</tr>
<tr>
<td>35</td>
<td>The Scatter Plots Of ANN Predicted Surface Charge Vs. Actual Surface Charge For (a) Training Data And (b) Testing Data Sets For Oleyl Laurate Nanoemulsions</td>
</tr>
<tr>
<td>36</td>
<td>The Scatter Plots Of ANN Predicted Surface Charge Vs. Actual Surface Charge For (a) Training Data And (b) Testing Data Sets For Oleyl Stearate Nanoemulsions</td>
</tr>
<tr>
<td>37</td>
<td>The Scatter Plots Of ANN Predicted Surface Charge Vs. Actual Surface Charge For (a) Training Data And (b) Testing Data Sets For Oleyl Oleate Nanoemulsions</td>
</tr>
<tr>
<td>38</td>
<td>TEM Micrographs Of a) OL-Opt; b) OS-Opt; and c) OO-Opt (The Scale Bar Is 200 nm)</td>
</tr>
<tr>
<td>39</td>
<td>Shear Stress ((\sigma)) And Viscosity ((\eta)) Curves Plotted As A Function Of Shear Rate ((\gamma)) Of OL-Opt</td>
</tr>
<tr>
<td>40</td>
<td>Shear Stress ((\sigma)) And Viscosity ((\eta)) Curves Plotted As A Function Of Shear Rate ((\gamma)) Of OS-Opt</td>
</tr>
<tr>
<td>41</td>
<td>Shear Stress ((\sigma)) And Viscosity ((\eta)) Curves Plotted As A Function Of Shear Rate ((\gamma)) Of OO-Opt</td>
</tr>
<tr>
<td>42</td>
<td>Storage ((G')) And Viscous ((G'')) Moduli Plotted As A Function Of The Frequency For OL-Opt At 25 °C</td>
</tr>
</tbody>
</table>
43 Storage (G’) And Viscous (G’’) Moduli Plotted As A Function Of The Frequency For OS-Opt At 25 °C

44 Storage (G’) And Viscous (G’’) Moduli Plotted As A Function Of The Frequency For OO-Opt At 25 °C

45 Compliance (J) Values Of OL-Opt At 25 °C In The Creep Recovery Test

46 Compliance (J) Values Of OS-Opt At 25 °C In The Creep Recovery Test

47 Compliance (J) Values Of OO-Opt At 25 °C In The Creep Recovery Test

48 In-Vitro Piroxicam Release From OL-Opt, OS-Opt, OO-Opt And Brand X Via Synthetic Cellulose Acetate Membrane

49 In Vitro Piroxicam Release From OL-Optwe, OS-Optwe, OO-Optwe And Brand X Via Synthetic Cellulose Acetate Membrane

50 In Vitro Piroxicam Release From OL-Optwe, OS-Optwe, OO-Optwe And Brand X Via Wistar Male Rat Skin
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pluronic F68</td>
<td>47</td>
</tr>
<tr>
<td>2 Span 20</td>
<td>48</td>
</tr>
<tr>
<td>3 Xanthan gum</td>
<td>48</td>
</tr>
<tr>
<td>4 Piroxicam</td>
<td>48</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background Of The Study

The pharmaceutical industry is an important component of the healthcare sector in Malaysia. Its development is driven by rising wealth, increased longevity of the population, greater awareness of healthcare and better access to medicines. In addition to that, there are opportunities to benefit from the diversified natural resources (such as form Malaysia’s flora and fauna) for the development of various types of resource-based and bio-generic drugs. For instance, the utilization of palm-based raw materials in the pharmaceutical industry (as drug delivery agent) is expected to maintain Malaysia’s position as a global producer and exporter of oil palm products.

Palm oil consists of triglycerides with the combination of glycerol and different fatty acids. The fatty acids can be converted to wax esters by synthesizing the fatty acids with long chain alcohols using lipases at mild reaction conditions and an environmentally friendly process, as described by Mat Radzi et al. (2005a). Wax esters are preferable as the oil phase for a nanoemulsions system over other types of oil phases such as triglycerides. This is due to the novel characteristics exhibited by wax esters, such as superb wetting behaviour at interfaces, without the ‘oily feeling’ when applied on skin surfaces and able to form nanoemulsions with selected surfactants.
Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals (Friedman, 2008). Investigation on drug delivery technologies is carried out for the benefit of improving product efficacy and safety, as well as patient convenience and compliance. Most common routes of administration include the preferred non-invasive peroral (through the mouth), topical (skin), transmucosal (nasal, buccal/sublingual, vaginal, ocular and rectal) and inhalation routes. However, many medications may not be delivered using these routes because they might be susceptible to enzymatic degradation or cannot be absorbed into the systemic circulation efficiently due to its molecular size.

1.2 Problem Statements

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed medications in the world (Sostres et al., 2010). They are known to have prominent anti-inflammatory, analgesic and antipyretic properties. In spite of these properties, some of the drugs are unable to be marketed due to difficulties in delivery. Some of the obstacles in drug delivery are poor solubility of the drugs, low bioavailability, short in-vitro and in-vivo stability, adverse side effects (such as irritation and ulceration to the gastro-intestinal mucosa) especially when taken orally, and regulatory issues. Therefore, such drugs need to be administered through a delivery system (such as topical delivery) that can make them marketable and acceptable for treatment of patients.
1.3 Significance Of The Study

Topical application of a pharmacologically active compound onto the skin offers several advantages over other methods of administration such as oral and parenteral. The advantages of topical application are reduction in first pass metabolism by the liver, non-invasiveness, avoidance of the gastric route, reducing the potential for both degradation of the drug and gastric irritation, improved owner compliance with drug administration as well as elimination of pain and other complications of parenteral administration (Wosicka and Cal, 2010). In terms of the clinical use, topical administration will be the most preferred way of drug delivery due to limited or no side effects, especially for elderly patients who cannot tolerate oral dosage form and prolonged therapy.

Hence, a new carrier-system for NSAIDs which is more efficient than the existing one has to be found, especially if it is able to reduce the adverse effects and solubility problem of the drug, thus overcoming the permeability problem of the drug. Therefore, an emulsions system, which is in nanometric size, mainly covering a size range of 50–200 nm, (Kong and Park, 2011) appears to be a potential carrier for transdermal delivery because the penetration through rough skin is easier, which also enhances the penetration of the actives (Tadros et al., 2004). Nanoemulsions are believed to be independent of the molecular size of the actives. Using oil-in-water nanoemulsions, the drug can be solubilized in the lipophilic phase, and the surfactant and co-surfactant in the nanoemulsions system may function as permeation enhancers by reducing the diffusional barrier of the stratum corneum.
1.4 Objectives

Consequently, there are specific objectives, which have been listed below, that need to be carried out to develop a nanoemulsions system as a potential carrier for a transdermal delivery for the prototype NSAIDs, piroxicam:

1. To prepare and construct pseudo-ternary phase diagrams of single fatty acid esters.

2. To prepare nanoemulsions for piroxicam via spontaneous and high shear emulsifications methods.

3. To predict and optimize the conditions for preparing nanoemulsions with nano-size particle and good physical stability using Response Surface Methodology (RSM) and Artificial Neural Network (ANN).

4. To characterize the rheological and physicochemical properties of the nanoemulsions containing piroxicam.

5. To evaluate the stability of the nanoemulsions system containing piroxicam.

6. To study the delivery potential of the nanoemulsions system containing piroxicam.
REFERENCES

183

192

The Zeta Potential; Colloidal Dynamics: Sydney, NSW, 1999

APPENDIX

An example of a typical output of particle size distribution using Nanophox at 25.0 ± 0.5 °C.

\[
\begin{align*}
\sigma_{25} &= 25.49 \pm 3.84 \text{ mm} \\
\sigma_{50} &= 41.38 \pm 3.31 \text{ mm} \\
\sigma_{100} &= 69.22 \pm 4.23 \text{ mm} \\
\sigma_{200} &= 114.62 \pm 5.07 \text{ mm} \\
\sigma_{400} &= 274.43 \pm 4.16 \text{ mm}
\end{align*}
\]
LIST OF PUBLICATIONS

 Comparison of the optimizing ability of RSM and ANN on the stability of oleyl oleate nanoemulsions. (submitted)

 Application of RSM in determining the factors that affecting the particles size of fatty acid esters nanoemulsions. (In preparation)

 Formation and characterizations of palm-based transdermal nanodelivery of piroxicam. (In preparation)

 Effect of xanthan gum on the formation of oleyl oleate nanoemulsions system. (In preparation)
Nursyamsyila Mat Hadzir was born in Kangar, Perlis on 26th December 1974. She received her primary education at Sekolah Kebangsaan Jejawi, Kangar, Perlis. She continued her secondary education at Sekolah Menengah Derma, Kangar, Perlis. In 1994, she completed her matriculation study from Universiti Putra Malaysia. Then, she was offered to pursue her studies at UPM and four years later in 1998, she obtained her first degree in Bachelor Of Science (Hons.) majoring in Industrial Chemistry. Starting on July 1998, she enrolled in Master of Science programme at Department of Chemistry, Faculty of Science, UPM under the supervision of Prof. Dr. Mahiran Basri. In January 2002, she started her career as a lecturer in Universiti Teknologi MARA Perlis until present. In 2007, she was offered a scholarship from the Ministry of Higher Education (MOHE) for her PhD’s programme.