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of the requirement for the degree of Doctor of Philosophy 
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ACIDS AND PEPTIDES AS RECOGNITION ELEMENTS 

 

 

By 
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July 2012 

 

Chairman: Associate Professor Nor Azah Yusof, PhD 

 

Faculty: Faculty of Science 

 

Toxic metal ions in waste water such as arsenic and mercury have lethal effects on 

the environment and living organisms. This indicates several striking requirements 

for novel analytical technologies that are fast, portable and cost-effective. In this 

work, sensitive voltammetric methods for the detection of arsenic and mercury ions 

are developed based on modified platinum and gold electrode, respectively.  

 

The electrochemical sensors that comprise of metal chelating reagents, together with 

an ion carrier immobilised within polymeric thin films such as Nafion were 

developed. The molecule receptors such amino acids (glutamine and leucine) are 

used for the determination of As(III) ion in water samples using the voltammetric 

technique. Determination of As(III) by using CNTs/glutamine/Nafion modified 

platinum electrode was found to be reproducible with R.S.D of 7.3%. The redox 

peak current of As(III) shows a linear response towards different concentrations of 

As(III) and linear calibration curves were obtained in the range of 0.1×10
-8 

to 
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50.5×10
-8 

M. The sensitivity is 1×10
-4

 AµM
-1 

with the limit of detection 3.63×10
-8 

M 

which is better, compared to CNTs/leucine/Nafion modified Pt electrode in the 

determination of As(III). The LOD reported here is well within the range defined by 

the WHO regulation (10 µgL
-1

). The determination of As(III) by using 

CNTs/leucine/Nafion modified Pt electrode has optimum response,  observed at pH 

5 with R.S.D. of 7.6%. The redox peak current of As(III) shows a linear response 

towards different concentrations of As(III) and linear calibration curves were 

obtained in the range of 0.02 µM to 2 µM. The limit of detection was determined as 

1.67×10
-8 

M and the sensitivity recorded to be 2.1×10
-5

 AµM
-1

.  

 

A novel sensing strategy, based on the SAM method of MPA-HFHAHFAF peptide 

and Biotinyl Somatostatin-14 peptide has been used as a receptor for the 

determination of Hg(II) ion using gold electrode. The reproducibility of MPA-

HFHAHFAF peptide modified gold electrode is 4.5%, indicating a reproducible and 

reliable detection system. A linear working range for the detection of mercury was 

obtained between 51 to 161 µgL
-1 

with LOD of 1.9 µgL
-1

. The LOD obtained was 

below than the WHO guidelines for drinking water of 2 µgL
-1

. The detection of 

mercury using Biotinyl Somatostatin-14 peptide /Nafion had been carried out under 

acidic conditions. Good relative standard deviation of 3.7% was obtained. A linear 

calibration plot in the range of 40-170 µgL
-1 

was obtained with the sensitivity value 

of 1×10
-10

 AµM
-1

. The value of LOD obtained was below WHO guidelines for 

drinking water, 0.4 µgL
-1

.
 
In terms of the LOD value, the Biotinyl Somatostatin-14 

peptide /Nafion peptide modified gold electrode was better compared to the MPA-

HFHAHFAF peptide modified gold electrode for determining Hg(II). 
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PEMBANGUNAN PENDERIA As(III) DAN Hg(II) DENGAN 

MEMANFAATKAN ASID-ASID AMINO DAN PEPTIDA-PEPTIDA 

SEBAGAI ELEMEN-ELEMEN PENGENALAN 

 

 

Oleh 

 

NURULHAIDAH BINTI DAUD 

 

 

Julai 2012 

 

Pengerusi: Profesor Madya Dr. Nor Azah Yusof, PhD 

 

Fakulti: Fakulti Sains 

 

Ion logam toksik di dalam sisa air seperti arsenik dan merkuri mempunyai kesan 

yang membawa maut terhadap alam sekitar dan organism hidup. Ini menunujukkan 

keperluan untuk teknologi analisis yang pantas, mudah alih dan kos efektif. Dalam 

kerja ini, kaedah voltammetri yang sensitif untuk mengesan arsenik dan merkuri 

dimajukan berdasarkan dengan mengubahsuai elektrod platinum dan emas. 

 

Penderia electrokimia yang terdiri daripada reagen pengikat logam, bersama-sama 

dengan pembawa ion yang bergerak dalam filem nipis polimer seperti Nafion telah 

dibangunkan. Penerima molekul seperti asid–asid amino (glutamin dan leusina) 

digunakan untuk penentuan ion As(III) di dalam sisa air menggunakan teknik 

voltammetry. Penentuan As(III) dengan menggunakan CNTs/glutamin/Nafion 

ubahsuai platinum elektrod didapati boleh disalin semula dengan nilai R.S.D. 7.3%. 

Penentuan As(III) telah diperhatikan bebas gangguan dari ion logam pada keadaan 

berasid di dalam penimbal asetat. Puncak arus tindak balas pengoksidaan-penurunan 
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As(III) menunjukkan tindak balas bergaris ke arah kepekatan As(III) yang berbeza 

dan garisan keluk penentukuran telah diperolehi dalam julat 0.1×10
-8

 kepada 

50.5×10
-8

 M. Kesensitifan adalah 1×10
-4

 AµM
-1

 dengan had pengesanan 3.63×10
-8

 

M dimana ianya lebih bagus dibandingkan dengan CNTs/leusina/Nafion ubahsuai 

platinum elektrod  di dalam penentuan As(III). Nilai LOD yang dilaporkan disini 

adalah dalam lingkungan yang ditakrifkan oleh peraturan-peraturan WHO, iaitu 10 

µgL
-1

. Tindak balas optimum untuk penentuan As(III) dengan menggunakan 

CNTs/leusina/Nafion ubahsuai platinum elektrod telah diperhatikan pada pH 5 

dengan nilai R.S.D. 7.6%. Puncak arus tindak balas pengoksidaan-penurunan As(III) 

menunjukkan tindak balas bergaris kearah kepekatan As(III) yang berbeza dan 

garisan keluk penentukuran telah diperolehi dalam julat 0.02 µM kepada 2 µM. Had 

pengesanan telah ditentukan sebanyak 1.67×10
-8

 M dan kesensitifan ialah 2.1×10
-5

 

AµM
-1

. 

 

Satu strategi baru penderiaan, berdasarkan kaedah SAM peptida MPA-HFHAHFAF 

dan Biotinyl Somatostatin-14 peptida telah digunakan sebagai reseptor untuk 

penentuan Hg (II) ion menggunakan elektrod emas. Kebolehulangan isyarat analsis 

adalah 4.5% menunjukkan pengesanan sistem penghasilan dan boleh dipercayai. 

Peringkat garis lurus untuk pengesanan merkuri adalah antara 51 kepada 161 µgL
-1

 

dengan LOD pada 1.9 µgL
-1

. LOD yang diperolehi berada bawah daripada garis 

panduan WHO untuk air minuman 2 µgL
-1

. Pengesanan merkuri menggunakan 

peptida Biotinil Somatostatin-14/Nafion telah dijalankan di bawah keadaan berasid. 

Sisihan piawai relative yang bagus sebanyak 3.7% telah diperolahi. Satu plot 

penentukuran garisan dalam lingkungan 40-170 µgL
-1

 telah diperolehi dengan nilai 

sensitivity pada 1×10
-10

 AµM
-1

. Nilai LOD yang diperolehi adalah 0.4 µgL
-1

 dimana 
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dibawah garis panduan WHO untuk air minuman. Di dalam istilah nilai LOD, 

Biotinil Somatostatin-14/Nafion peptide ubahsuai elektrod emas lebih bagus 

dibandingkan dengan MPA-HFHAHFAF peptide ubahsuai electrod emas  untuk 

penetuan Hg(II). 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Heavy Metals 

 

Metals are defined chemically as “elements which conduct electricity, have a 

metallic cluster, are malleable and ductile, form cations, and have basic oxides”. 

These elements can be found in chemical compounds as positive ions and with a 

density over 5 kg/dm
3
. Heavy metals can harm the natural environment even at low 

concentration. 

 

Toxic metals in water can be classified into two different health viewpoints. There 

are metals with an unpleasant effect like iron and other metals giving a very toxic 

effect such as lead. Heavy metal poisoning comes from industrial pollution, cooking 

utensils, deodorants, pesticides etc with devastating effects on the human body. 

Toxic metals also have a predisposition to gather in the human body and can result in 

chronic damage. One example of a toxic metal in water is cadmium, which can 

accumulate in the liver and kidney. 

 

Some heavy metals are essential for life, for example they are physiologically 

essential for plants and animals, although it is needed in trace amount only. They 

have a direct bearing on human health and agricultural productivity and many are 

significant pollutants in the ecosystem throughout the world (Adegoke et al., 2009). 

They are essential for maintaining the metabolism of the human body at trace 
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concentrations, such as Cu, Fe, Mg, Mn, and Zn (Lan et al., 1998). Some are 

considered to be both very toxic above recommended levels and are relatively 

accessible, such as As, Cd, Hg, Pb and Sn (Hasan et al., 1998). Heavy metals can 

enter a water supply from industrial and consumer wastes. They can even enter from 

acidic rains and breaking down soils which release heavy metals into streams, rivers, 

lakes and ground water.  

 
In developing countries, on average, 90% to 95% of all domestic sewage and 75% of 

all industrial wastes are discharged into surface waters without undergoing any 

treatment whatsoever (Hinrichsen et al., 1997). In Thailand and Malaysia, water 

pollution is so serious as lakes often contain 30 to 100 times more pathogens, heavy 

metals, and poisons from the industry and agriculture than those permitted by 

government health standards (Suhaimi-Othman et al., 2001; Ebrahimpour & 

Mushrifah, 2008). Most industries located in the western coast of the Peninsular 

Malaysia are dealing with electroplating, electronics, batteries and metal 

treatment/fabrication and become the major sources of heavy metal contamination 

(Onundi et al., 2010). Industrial waste water usually contains a specific, readily 

identified chemical compounds and it carries more than 'twice as much degradable 

organic matter' as the municipal councils combined. It is found that one-third of the 

total water pollution comes in the form of effluent discharge, solid wastes and other 

hazardous wastes (Lokhande et al., 2011). 

 

The presence of heavy metal ions in the environment is a major concern due to their 

high toxicity. The ability to maintain quality water supplies and the need for water 

monitoring continues to grow as larger populations require increasing volumes of 

water (Flavel et al., 2010). On-site monitoring is important because the 



© C
OPYRIG

HT U
PM

3 
 

measurements can be carried out in real time without the need for the sample to be 

taken back to the laboratory for analysis, so that immediate actions can be taken if 

guideline levels are exceeded. Therefore, simple and reliable instruments/methods 

for example, chemical and biosensor are highly potential to be developed as an 

alternative for these tedious and laborious procedures of metal analysis. 

 

1.2 Biosensor 

 

International Union of Pure and Applied Chemistry (IUPAC, 1999) defines a 

biosensor as a self-contained integrated device, which is capable of providing 

specific quantitative or semi-quantitative analytical information using a biological 

recognition element (biochemical receptor) which converts a biological response into 

an electrical signal. Biosensor device incorporates a biological sensing element 

connected to a transducer. A transducer converts an observed change (physical or 

chemical) into a measurable signal, usually an electronic signal which magnitude is 

proportional to the concentration of a specific chemical or a set of chemical (Eggins, 

1996). 

 

The first component in biosensor is biological molecule that can specifically interact 

and recognize the molecules present in the sample analyte. The second component is 

an electrochemical or optical device known as a transducer. In Figure 1.1, the 

molecular sensing element in biosensor recognizes the target analyte and the 

transducer converts the recognition event into a measurable signal. The output from 

the transducer is amplified, processed and displayed. The transducer makes use of a 

physical change that accompanies the reaction, where the changes in the distribution 
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of charges can cause an electrical potential to be produced in potentiometric 

biosensors. Electrochemical, optical, and thermal biosensors can be identified based 

on the type of signal used for gathering information about the analyte (Chaki and 

Vijayamohanan, 2002). 

 

 

Figure 1.1: Schematic diagram showing the main components of a biosensor. 

 

The specificity of the signal is guaranteed by the bio-receptor and the intensity is 

most often related to the concentration of the analyte.  A good biosensor should 

possess a reproducible bioreceptor with a very high specificity of bioreceptor 

towards the analyte, which is stable under different experimental conditions. The 

transducer should be stable, easily modified and have good properties. The pre-

treatment phase should be minimal, to allow fast and easy utilization while the 

output should be accurate, easily understandable, reproducible, free of background 

noise, and within the range of interest (Soldà, 2009). The main advantages of a 

biosensor are the simplicity; it is able to provide rapid, simple and low-cost on-site 

detection. The use of biological molecule to detect metals enables biosensors to 

provide an indication of how metal ion interacts with a particular organism (Chow & 

Gooding, 2006). 
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1.3 Electrochemical Sensors for the Determination of Heavy Metals 

 

Electrochemical biosensors can be classified according to the specific 

electrochemical method employed, whether potentiometric or amperometric. A 

potentiometric biosensor is based on the measurement of variations of the electrode 

potential with respect to a reference electrode, or the potential difference between 

two reference electrodes separated by a permeoselective membrane (Koncki, 2007).  

 

An amperometric biosensor measures the current generated by an applied potential 

between two electrodes. The oldest bioanalytical application of amperometry is the 

measurement of dissolved oxygen concentration. It exploits a gas-permeable 

membrane for selectivity, across which oxygen diffuses and is reduced at the 

electrode at a constant potential (Hahn, 1998). For the purpose of the determination 

of heavy metals, electrochemical (bio) sensor and optical chemical (bio) sensors are 

the two most widely used types (Cammann et al., 1996).   

 

Cyclic voltammetry is the most widely used technique for acquiring qualitative 

information about chemical reactions (Wang, 2000), where the electrode potential 

ramps at a constant rate to a peak value and then decreases at the same rate to the 

initial value. The electroactive material in the solution may reach the electrode in 

three modes of mass transport which are diffusion; spontaneous movement under the 

influence of concentration in an unstirred solution, convection; transportation by a 

force movement in stirred solution, and migration; charged particle movement along 

an electrical field (Wang, 2000).  
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The utility of cyclic voltammetry is highly dependent on the analyte being studied. 

The analyte has to be redox-active within the experimental potential window and 

displays a reversible wave. If the heterogeneous electron transfer is rapid, and the 

oxidized and reduced species are stable, the redox process will be known as 

electrochemically reversible. 

 

There has been a growing need in recent years for constructing electrochemical 

sensors for fast, on-time and cost-effective monitoring of environmental samples. 

The research and development (R&D) in the sensor area has expanded exponentially 

in terms of financial investment, number of papers published, and the number of 

active researchers worldwide (Wolfbeis, 2004). Electrochemical sensors can be 

portable, simple to use, in-situ and miniature in size. These features are ideal for 

real-time on field measurements, thus the errors caused by the sample transportation 

and storage can be largely reduced (Cammann et al., 1996). 

 

1.4 Recognition Elements 

 

A recognition unit (receptor) in biosensor is constructed to provide a selective target 

binding from a mixture of a compound. An appropriate structure allows multi-point 

non-covalent interactions with the target and it has high specificity and selective 

binding called molecular recognition. These receptors or recognition unit can be 

transformed into sensors by making it coupled with a nanoparticle to respond to the 

presence of the target without affecting the binding affinity. The sensor detects the 

bound target analyte, and information on the limit of detection on the total 

concentration of the target analyte present in the system is needed as an additional 
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requirement on sensor affinity. A good selectivity of binding to discriminate from 

other species that may be close in structure and properties is required for a good 

sensor characterization.  

 

The majority of researches in the development of detection system for metal ion 

involve the usage of macrocyclic ligands as a receptor. In nature, however, metal 

binding is achieved with a high degree of selectivity using peptide rather than 

macrocyclic ligands. The selectivity of the binding sites of metals in proteins is 

defined by the sequence of amino acids within the binding site. As a consequence, 

sensors that use appropriate amino acid sequence as biomimetic ligands for the 

detection of metal ions could solve some of the difficulties in fabricating sensors 

using delicate proteins (Wenrong et al., 2001). Electrodes modified with the 

recognition elements of biological origin have advantages over other approaches for 

detecting metal ions, because they have the potential to give an estimate of the 

bioavailability of heavy metals as distinct from total metal concentration using AAS 

and ICP-MS. Amino acid and peptides represent the simplest biological recognition 

element for metal binding. Thus, the usage of these compounds in metal ion 

detection is important. 

 

There are 20 common amino acids found in proteins that differ in their unique side 

chain and can be arranged in any particular order or length. Peptides present an 

almost infinite number of ligands for complexing metal ions. The presence of 

coordinating side chains in a peptide sequence, the combination of steric effect, the 

pH environment and hard–soft character of metal ions makes it difficult to predict 

precisely the relative affinity of a ligand for specific metal ion. A suitable way of 
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determining the relative affinity and selectivity of peptide for a particular metal is 

through experimental approaches. In this thesis, we discuss different binding 

recognition molecules such as amino acids and peptides to detect As(III) and Hg(II) 

ions. 

 

1.4.1 Amino Acids as Recognition Elements 

 

Organic molecules such as amino acids and peptides are able to specifically bind 

metal ions. Moreover, some of these compounds have been shown to recognize 

particular motives at the interfaces and even on the surfaces of protein molecules 

(Fletcher & Hamilton 2007; Peczuh & Hamilton 2000).  

 

Glutamine is a hydrophilic and a non-essential amino acid present in the human 

body. The concentration of glutamine in the blood is three to four times greater than 

all other amino acids, and it is the only amino acid with the ability to easily cross the 

barrier between both the blood and brain tissue. Glutamine is also one of the most 

important building blocks in forming the proteins that maintain tissue repair. It can 

be changed by the body into glutamic acid. It has several important metabolic roles, 

including as a regulator of nitric oxide synthesis by endothelial cell (Bussolati et al., 

1993), as an energy source of intestinal and lymphocytic cells (Leighton et al., 1987) 

, and a non-toxic transport vehicle to carry ammonia from peripheral tissues to the 

liver where ammonia is metabolized to urea (Souba, 1991). Glutamine is generally 

buried in folded proteins and tends to favour the formation of helical structures in 

proteins. 
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Leucine is a hydrophobic, non-polar amino acid that is found as a structural element 

on the interior of proteins and enzymes. It is the second most common amino acid 

that can be found in proteins and acts in a unique way as it can help burn fat without 

burning the muscles. It is a neutrally essential ketogenic amino acid and forms an 

aceoacetate and acetate. Leucine can be synthesized from pyruvate through a 

multiple-step process in plants. Leucine is one of the three amino acids with a 

branched hydrocarbon side chain and has one additional methylene group in its side 

chain compared to valine. It can function as a chain crosslinker via hydrogen bond 

formation or it can hydrogen-bond to water at the protein surface.  

 

Amino acids and peptide are known for their ability to form complex with metal ions 

because they possess nitrogen, oxygen and sulfur donor atoms at the main chain, as 

amino and carboxyl terminals, and at the side chain as in the case of serine and 

tyrosine (oxygen), lysine and histidine (nitrogen), aspartic acid and glutamic acid 

(oxygen) or cysteine and methionine (sulfur) (Shimazaki et al., 2009). Thus, the 

design of peptides that coordinates metals, by the incorporation of modified amino 

acids, has the potential for applications in the development of selective chemical 

sensors for metals for use in vivo and in vitro (Mathews et al., 2008; Joshi et al., 

2009). In the past, many functional groups such as amine, carboxylate, thiol, 

hydroxyl, ether and nitrile have been used as a ligand to detect metal ions (Jal et al., 

2004).  
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1.4.2 Peptides as Recognition Elements 

 

Peptides represent an option if one wishes to mimic the molecular recognition 

mechanism occurring in biomolecules such as enzymes, antibodies, drug receptors, 

and transmembrane proteins (Tewari & Dubey, 2008; Chiari et al., 2008; Ariga et 

al., 2007). Peptide could form the basis of biomimetic ligands for the development of 

sensors for the detection of metal ion.  

 

Peptides have an excellent opportunity for the design of artificial receptors because 

of (1) the number of different molecules that can be obtained by combining the 21 

natural amino acids, (2) the availability of both molecular biology and chemical 

techniques for the fast screening of peptide libraries, (3) the possibility of automated 

synthesis, and the low cost for the preparation of relatively large amounts of highly 

purified peptides, (4) the ease of modification to further enhance binding, and (5) 

relatively easy modelling (Pavan & Berti, 2012). 

 

NH2-His-Phe-His-Ala-His-Phe-Ala-Phe-OH (NH2-HFHAHFAF-OH) peptide is 

synthesized in order to form a peptide nanotube for further research. NH2-

HFHAHFAF-OH peptide has D,L configuration of eight residues of amino acid. 

With D,L configuration of amino acid, NH2-HFHAHFAF-OH peptide has an ability 

to form a cyclo(HFHAHFAF) and later can be synthesized to form a peptide 

nanotube (PNTs) sensor.  

 

Peptide nanotubes (PNTs) are fascinating structures because they have the scope for 

numerous chemical modifications and allow the use of biological system‟s 
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specificity (Reches M., 2003). Ghadiri and co-workers (Ghadiri et al., 1995; 

Hartgerink et al., 1996,1998) introduce the PNTs from self-assembly by cyclic 

peptide consisting D- and L-amino acids (Figure 1.2). To form the PNTs, a highly 

convergent covalent process was involved. In this stage, the cyclic peptide will 

rapidly self-assemble, forming well-ordered three-dimensional structures with an 

appropriate chemical or medium-induced triggering. The choice of the amino acid 

side chain functionalities and the ring size of the peptide sub-unit employed affect 

the properties of the outer surface and the internal diameter of peptide nanotubes 

(Ghadiri et al., 1995). 
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Figure 1.2: (center) Appropriately designed cyclic d,l-a-peptides and bpeptides 

can adopt a low-energy flat ring-shaped conformation in which the amide 

backbone moieties lie nearly perpendicular to the plane of the ring structure 

with side chains radiating around a central pore, the size of which is determined 

by the number of amino acids employed (for illustrative purposes only an eight-

residue cyclic d,l-a-peptide is depicted). Depending on the peptide sequence and 

conditions employed, peptide subunits can be assembled into: a) 

transmembrane ion channels and pore structures, b) soluble cylindrical 

ensembles, c) solid-state tubular arrays, and d) surface-supported composites. 

Other plausible applications are denoted by the dashed arrow. The 

representations emphasize the antiparallel hydrogen- bond -directed stacking of 

the d,l-a-peptide nanotubes (Source: Hartgerink et al., 1998). 
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In order to minimize non-bonded intramolecular transannular side chain−side chain 

and side chain−backbone interactions of cyclic peptide, an alternating even number 

D and L amino acid residues are needed (such as NH2-[D-His, L-Phe, D-,His, L-Ala, 

D-His, L-Phe, D-Ala, L-Phe]-OH). With this configuration, the peptide structure 

adopts or samples a flat-ring shaped conformation, in which all backbone amide 

functionalities lie approximately perpendicular to the plane of the ring structure. In 

this flat ring-shaped structure, the subunit components can be stacked on top of each 

other, resulting in a hollow nanotube. The rings are glued together by 

complementary attractive hydrogen bonding interactions between the amide groups 

of the peptide backbone.  All amino acid side-chains will point outward, away from 

the center of the peptide ring structure because of the local conformational and steric 

constraints imposed by the alternating amino acid backbone configuration, leaving it 

free to form a tubular core structure. 

 

Two most important factors in the peptide self-assembly process are the ring strain 

and conformational stability which are influenced by the size of cyclic peptide 

employed. A cyclic D,L-peptides with more than six residues may have an internal 

diameter that is too small, and may have prohibitively large ring strain to allow the 

peptide backbone to adopt the required geometry for stacking and intermolecular 

hydrogen-bonding interactions (Ghadiri  et al., 1995). On the contrary, due to the 

greater flexibility of the peptide backbone, a large ring structure may not be sampled 

in the flat ring shape to take part effectively in the nanotubes‟ self-assembly process 

(Hartgerink et al., 1996). Molecular modeling and experimental studies have 

indicated that eight-residue cyclic peptides possess the optimum balance of a low-

strain ring structure and the desired flat ring-shaped conformational stability 
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(Hartgerink et al., 1996). Ghadiri et al. (1993) publish the first well characterized 

eight residue peptide cycle [-(D-Ala-Glu-D-Ala-Gln)2-] that is self assembled to 

form crystalline nanotubes with a uniform 7.5 Ǻ internal diameter. 

 

The backbone−backbone intermolecular hydrogen-bonding interactions can proceed, 

in principle, via either parallel or antiparallel β-sheet-like ring-stacking arrangements 

(Figure 1.3) (Hartgerink et al., 1996). However, molecular modeling and a number 

of experimental observations (Ghadiri, M, 1993, 1994, 1995) suggest a marked 

preference for the antiparallel arrangement. The formation of the antiparallel ring-

stacked arrangement in self-assembled nanotubes has been supported by the 

symmetries observed in the electron diffraction patterns and the position of the 

amide I bands in the FT-IR spectra (Ghadiri et al., 1995; Hartgerink et al., 1996). 

 

 

Figure 1.3: Peptide self-assembly producing antiparallel (a) and parallel (b) 

stacking arrangements (Source: Hartgerink et al., 1996). 
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In PNTs synthesized, hydrophobic interaction is assumed to play the dominant part 

in the orientation of nanotubes because it is formed in aqueous solution. With no 

interaction with water molecules, hydrogen bonding between the peptide subunit is 

strengthened and results in easier formation of PNTs. With phenylalanine in a 

peptide sequence (Phe, F), strong covalent bonding is expected and the ring may 

have a better alignment and have closer stacked aromatic rings in PNTS that will 

enhance its conductivity. 

 

In single amino acid, there are two donor atoms that can stay complex with metal 

which are the terminal amine and carboxyl oxygen or amide nitrogen. With a 

peptide, a stronger binding is achieved when the amide nitrogen is involved. The 

cyclic voltammetry study from Wenrong et al. (2001b) demonstrates the enhanced 

sensitivity and hence, greater detection limit achievable with an oligopeptide-

modified electrode over an electrode in which a single amino acid is used. 

 

In order to study a detection of metal ion with a longer peptide as a modified 

electrode, another peptide is used in this study which is Biotinyl-Neuromedin S 

(Biotinyl-Ile-Leu-Gln-Arg-Gly-Ser-Gly-Thr-Ala-Ala-Val-Asp-Phe-Thr-Lys-Lys-

Asp-His-Thr-Ala-Thr-Trp-Gly-Arg-Pro-Phe-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 or 

Biotin-ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN-NH2).  

 

Biotinyl-Neuromedin S is a 36 amino acid neuropeptide that can be found in human 

brains and which is related to the neuromedin U. Biotin has low dissociation constant 

and it can be easily modified using standard peptide coupling methods. Biotin is a B-

complex vitamin, a coenzyme in the metabolism of fatty acids and leucine and 
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contains a cyclic urea structure (Figure 1.4) that the sulphur is present in a thio ether 

linkage. The point of biotinylation can be amino group (NH2) with a covalent bond 

that makes the attachment strong and suitable for many different applications.  

 

HN

NH

O

H

H

S

COOH

 

Figure 1.4: Biotin structure. 

 

1.5  Problem Statement 

 

The toxicity of metal ions makes the monitoring of metals in the environment vital. 

Thus, an accurate development of very sensitive, precise instruments for the 

detection of heavy metal is becoming a big challenge and important to the regulatory 

agencies, community and general public.  

 

Current methods of metal ion monitoring involve using a classical elemental analysis 

technique such cold vapour atomic fluorescence spectrometry (Guimaraes et al., 

2000), cold vapour atomic absorption spectrometry (Hight & Cheng, 2005), ICP-

AES (Boaventura et al., 1997) and ICP-MS (Ugo et al., 2001). These methods are 

sensitive, which can provide a wide linear range and low detection limits of heavy 

metal ions especially arsenic and mercury ions. However, these instruments are 

expensive, large in size and can only be used in the laboratory only. They require the 
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sample to be transported from the site to a laboratory and therefore, the pre-treatment 

sample is inevitable. The high cost and slow measurement times are typically 

associated with the conventional measurements of regulated heavy metals. Hence, 

the high toxicity of heavy metal has prompted the development of various analytical 

methods for its determination towards the creation of a sufficiently stable electrode 

which is simple to operate, inexpensive and which does not require mechanical or 

chemical treatment before analysis or for regeneration.   

 

Electrochemical sensors with recognition elements of biological origin have received 

particular attention, which include a very broad range of electrode materials and 

measurement methodologies with high sensitivity and selectivity, impressive cost 

effectiveness and possible miniaturization (Fu et al., 2010). A variety of attempts, 

with more complex fabrication technology are required to develop a more sensitive 

and inexpensive sensor. The development of such sensors should be given to the 

efforts to improve the recognition element, where the researchers need to synthesize 

good molecular receptors that can give a good response to the selective metal ions 

such as arsenic and mercury without much interference from foreign metal ions. 

Another aspect is to investigate the immobilization of the new material use as solid 

matrix with interesting properties such as its easy preparation, inexpensive, non-toxic 

and multifunctional nature. It is also important to improve the signal processing 

technologies and instrumentation to qualify of sensor information thus makes it more 

selective and sensitive for the detection of arsenic and mercury ions. 

 

 

 



© C
OPYRIG

HT U
PM

18 
 

1.6 Objectives  

 

Objectives of the research are: 

1) To develop electrochemicals for As(III) ion sensors using glutamine and leucine 

as recognition elements. 

 

2) To develop electrochemicals for Hg(II) ion sensors using NH2-HFHAHFAF-OH 

peptide and Biotinyl Somatostatin-14 as recognition elements. 

 

3) To characterize the sensing ability of the developed electrochemical sensor for 

the optimization of experimental conditions. 
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i) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 using 

unmodified Pt electrode 
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ii) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 

using CNTs/leucine/Nafion modified Pt electrode 
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-3 

M) 

 

A (real electrochemical surface area)
 
= 0.06 cm

2  
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iii) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 using 

CNTs/glutamine/Nafion modified Pt electrode 

 

 

D
1/2 

= slope x π
1/2 

               nFAC 

1.79 e
-5 

=           2.05 e
-5

 x π
1/2

 

                   (1 x 96500 x A x 4 e
-3 

M) 

 

A (real electrochemical surface area)
 
= 0.05 cm

2  

 

iv) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 using 

unmodified gold electrode 

 

 
 

D
1/2 

= slope x π
1/2 

               nFAC 

D
1/2 

=                  1.05 e
-5

 x π
1/2

 

              (1 x 96500 x 0.03 cm
2
 x 4 e

-3 
M) 

 

D
1/2 

= 6.912 e
-5 
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v) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 using 

MPA-HFHAHFAF-OH modified gold electrode 

 

 
 

D
1/2 

= slope x π
1/2 

               nFAC 

6.912 e
-5 

=        1.27 e
-5

 x π
1/2

 

              (1 x 96500 x A x 4 e
-3 

M) 

 

A (real electrochemical surface area)
 
= 0.08 cm

2  

 

vi) Chronocoulometry of 4 ×10
-3 

M K3Fe(CN)6 in 1 M KNO3 

using Biotinyl Somatostatin-14/Nafion modified gold electrode  

 

D
1/2 

= slope x π
1/2 

               nFAC 

6.912 e
-5 

=        1.41 e
-5

 x π
1/2

 

              (1 x 96500 x A x 4 e
-3 

M) 

 

A (real electrochemical surface area)
 
= 0.09 cm

2  
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B 

Glutamine 

 

ί/√T = nFAD
1/2

Cπ1
/2

 

D
1/2 

= slope x π
1/2 

               nFAC 

D
1/2 

=                  7.81 e
-5

 x π
1/2

 

              (2 x 96500 x 0.05 cm
2
 x 1 e

-3 
M) 

 

D
1/2 

= 1.43 e
-5

 

 

Diffusion coefficient, D    = (1.43 e
-5

)
2
 

 

                                          = 2.05 e
-10

 cm
2
/s 

 
 

CNTs/glutamine/Nafion modified 

Pt electrode 

CNTs /Nafion modified Pt 

electrode 

  

Surface charge, Q  

= |intercept of Qforward - intercept of Qreverse| 

= |7.563 e
-7

 – 5.843 e
-8

| 

= 1.720 e
-7 

=0.172 µC 

 

Density charge = Q/A 

             =     0.17 µC                               

                   (0.05 cm
2
) 

             = 3.40 µC/cm
2 

 

Surface coverage, Γ   = Q/nFA 

                       =            0.17 µC                              

                          2(96500)(0.05) 

                        = 1.76 e
-11

 molcm
-2

 

 

                            

 

Surface charge, Q  

= |intercept of Qforward - intercept of 

Qreverse| 

= |6.578 e
-8

 – 8.406 e
-8

| 

= 1.828 e
-8 

=0.018 µC 

 

Density charge = Q/A 

             =     0.018 µC                               

                    (0.05 cm
2
) 

             = 0.36 µC/cm
2 

 

Surface coverage, Γ    = Q/nFA 

   =            0.018 µC                               

         2(96500)(0.05 cm
2
) 

   = 1.87 e
-12 

molcm
-2
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Leucine 

 

ί/√T = nFAD
1/2

Cπ1
/2

 

D
1/2 

= slope x π
1/2 

               nFAC 

D
1/2 

=                  5.687 e
-5

 x π
1/2

 

              (2 x 96500 x 0.06 cm
2
 x 1 e

-3 
M) 

 

D
1/2 

= 1.04 e
-5

 

 

Diffusion coefficient, D    = ( 1.04 e
-5

)
2
 

 

                                          = 1.09 e
-10

 cm
2
/s 

 
 

CNTs/leucine/Nafion modified Pt 

electrode 

CNTs /Nafion modified Pt 

electrode 

  

Surface charge, Q  

= |intercept of Qforward - intercept of Qreverse| 

= |4.267 e
-7

 - 8.694 e
-8

| 

= 3.398  e
-7 

=0.34 µC 

 

Density charge = Q/A 

             =     0.34 µC                               

                   (0.06 cm
2
) 

             = 5.67 µC/cm
2 

 

Surface coverage, Γ   = Q/nFA 

                       =         0.39 µC                            

                          2(96500)(0.06 cm
2
) 

                        = 3.37 e
-11 

molcm
-2

 

 

                            

 

Surface charge, Q  

= |intercept of Qforward - intercept of 

Qreverse| 

= |4.376 e
-8

 – 7.911 e
-8

| 

= 3.535 e
-8 

=0.04 µC 

 

Density charge = Q/A 

             =     0.04 µC                               

                    (0.06 cm
2
) 

             = 0.66 µC/cm
2 

 

Surface coverage, Γ= Q/nFA 

                    =      0.04 µC                               

                    2(96500)(0.06 

cm
2
) 

                    =3.45 e
-12

 molcm
-2
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MPA-HFHAHFAF-OH peptide 

 

ί/√T = nFAD
1/2

Cπ1
/2

 

D
1/2 

= slope x π
1/2 

               nFAC 

D
1/2 

=                  1.375 e
-5

 x π
1/2

 

              (1 x 96500 x 0.08 cm
2
 x 2.49 e

-5 
M) 

 

D
1/2 

= 1.27 e
-4

 

 

Diffusion coefficient, D    = ( 1.27 e
-4

)
2
 

 

                                          = 1.61 e
-8

 cm
2
/s 

 
 

MPA-HFHAHFAF-OH modified 

gold electrode 

MPA modified gold electrode 

  

Surface charge, Q  

= |intercept of Qforward - intercept of Qreverse| 

= |5.339 e
-8

 – 9.129 e
-8

| 

= 3.79  e
-8 

=0.038 µC 

 

Density charge = Q/A 

             =     0.038 µC                               

                   (0.08 cm
2
) 

             = 0.48 µC/cm
2 

 

Surface coverage, Γ   = Q/nFA 

                       =         3.79  e
-8

 

                          1(96500)(0.08) 

                        = 4.91e
-12

 molcm
-2

 

 

                            

 

Surface charge, Q  

= |intercept of Qforward - intercept of 

Qreverse| 

= |7.145 e
-9

 – 6.145 e
-9

| 

= 1.00 e
-9 

=0.001µC 

 

Density charge = Q/A 

             =     0.001µC                               

                    (0.08 cm
2
) 

             = 0.01 µC/cm
2 

 

Surface coverage, Γ = Q/nFA 

                     =      1.00 e
-9

 

                    1(96500)(0.08 

cm
2
) 

                     =1.29 e
-13

 molcm
-2
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Biotinyl Somatostatin-14  

 

ί/√T = nFAD
1/2

Cπ1
/2

 

D
1/2 

= slope x π
1/2 

               nFAC 

D
1/2 

=                  3.662 e
-5

 x π
1/2

 

              (1 x 96500 x 0.09 cm
2
 x 2.49 e

-5 
M) 

 

D
1/2 

= 3.00 e
-4

 

 

Diffusion coefficient, D    = ( 3.00 e
-4

)
2
 

 

                                          = 9.00 e
-8

 cm
2
/s 

 
 

Biotinyl Somatostatin-14/Nafion  

modified gold electrode 

Nafion modified gold 

electrode 

  

Surface charge, Q  

= |intercept of Qforward - intercept of Qreverse| 

= |1.721 e
-9

 – 3.351 e
-7

| 

= 3.333  e
-7 

=0.33 µC 

 

Density charge = Q/A 

             =     0.33 µC                               

                   (0.09 cm
2
) 

             = 3.67 µC/cm
2 

 

Surface coverage, Γ   = Q/nFA 

                       =         3.333  e
-7

 

                            1(96500)(0.09) 

                        = 3.83 e
-11 

molcm
-2

 

 

                            

 

Surface charge, Q  

= |intercept of Qforward - intercept of 

Qreverse| 

= |7.109 e
-8

 – 4.310 e
-8

| 

= 2.799 e
-8 

=0.03µC 

 

Density charge = Q/A 

             =     0.03µC                               

                    (0.09 cm
2
) 

             = 0.33 µC/cm
2 

 

Surface coverage, Γ  = Q/nFA 

                      =      2.799 e
-8

 

                    1(96500)(0.09 

cm
2
) 

                      =3.22 e
-12 

molcm
-

2
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