VARIATION IN MYCORRHIZAL SPECIFICITY IN TIGER ORCHIDS
(GRAMMATOPHYLLUM SPP.)

SALIFAH HASANAH BINTI AHMAD BEDAWI

FS 2012 110
VARIATION IN MYCORRHIZAL SPECIFICITY IN TIGER ORCHIDS
(GRAMMATOPHYLLUM SPP.)

SALIFAH HASANAH BINTI AHMAD BEDAWI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
VARIATION IN MYCORRHIZAL SPECIFICITY IN TIGER ORCHIDS (GRAMMATOPHYLLUM SPP.)

BY

SALIFAH HASANAH BINTI AHMAD BEDAWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fullfilment of the Requirements for the Degree of Master of Science

January 2012
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Masters of Science.

VARIATION IN MYCORRHIZAL SPECIFICITY IN TIGER ORCHIDS
(GRAMMATOPHYLLUM SPP.)

By
Salifah Hasanah Binti Ahmad Bedawi

January 2012

Chairperson: Assoc. Prof. Muskhazli Mustafa, PhD
Faculty: Science

Grammatophyllum seeds are minute and lack endosperm. As their other orchid’s counterpart, the seeds are dependent on mychorrhizal fungi for seed germination in nature. Their nutrients uptake from substrate was assisted by preferable fungal symbionts. Introducing a compatible mycorrhiza into a site may facilitate the establishment of self sustaining populations. However this can only be performed if the orchid is present at the target localities or only when the seedlings that were cultured symbiotically were reintroduced as they can serve as both plant material and a source of mycorrhiza inoculums. To determine these fungal symbionts, fungal isolation was conducted on three species of host plant namely G. speciosum, G. scriptum and G. stapeliiflorum, all native to Malaysia. A total of 59 isolates of different species of fungus were isolated from the host plants. Molecular identification using ITS1 and ITS4 as the primers was made to these isolates. Results of the identification showed that the roots of mature Grammatophyllum spp. were the habitat of various fungal taxa consisting of both common orchid mycorrhizas and ubiquitous...
fungal taxa. Diversity index showed that *G. speciosum* harbored the most fungal taxa compared to *G. scriptum* and *G. stapeliiflorum* with value of 3.218 indicating the fungal preferences. Seed of *G. speciosum* and *G. stapeliiflorum* were used to determine the specificity of fungus relationship using fungal isolated from roots of *G. speciosum*, *G. stapeliiflorum* and *G. scriptum*. The result obtained from the test demonstrated that seeds of *G. speciosum* showed the highest volume increment when co-cultured with *Aspergillus niger*, *Paecilomyces lilacinus* *A. fumigatus*, *Trichoderma asperellum*, and an unidentified fungal endophyte. This result shows that specificity of *G. speciosum* towards mycorrhizas preferences was quite broad considering not all of these fungi were isolated from *G. speciosum* roots. An even wider specificity was exhibited by *G. stapeliiflorum*. Having performed the same germination test as *G. speciosum* seeds, the seeds of *G. stapeliiflorum* developed a symbiotic relationship with more numbers of mycorrhizas. The initial development of *G. stapeliiflorum* seed was assisted by 29 of 59 mycorrhizas isolated from different hosts. Based on germination tests, the *P. lilacinus* and *A. fumigatus*, were the most effective orchid mycorrhizas to promote seed germination of tropical orchid, *G. speciosum* and *G. stapeliiflorum*. Nevertheless, the difference between volume of symbiotic and asymbiotic (control) seed germination was not high, and the final protocorm development stage was not sufficient enough for propagation and conservation.

The phylogeny tree showed that all these symbiotic mycorrhizas shared a common class namely Eurotiomycetes, including the unidentified fungi. It can be concluded that *Grammatphyllum* spp. were specialist toward Class of Eurotiomycetes but are generalist toward the members of the class. The specificity in this broadly associating orchid most likely due to the tendency for *Grammatphyllum* spp. to be colonized by multiple mycorrhizal fungi.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

KEPELBAGAIAN PENGKHUSUSAN MIKORIZA DI KALANGAN ORKID HARIMAU (GRAMMATOPHYLLUM SPP.)

Oleh

Salifah Hasanah Binti Ahmad Bedawi
Januari 2012

Pengerusi: Prof. Madya Muskhazli Mustafa, PhD

Fakulti: Sains

Biji benih orkid Grammatophyllum adalah halus serta mempunyai kandungan endosperma yang sangat sedikit. Seperti mana biji orkid spesies lain, biji benih Grammatophyllum bergantung kepada kulat mikoriza bagi bercambah secara semulajadi. Kebolehan biji ini menyerap nutrien daripada substrat dibantu oleh kulat terpilih yang bersimbiosis dengannya. Dengan memperkenalkan mikoriza yang serasi kepada sesuatu habitat, akan memudahkan pembentukan populasi orkid yang mampu hidup sendiri. Walaubagaimanapun ia hanya boleh dilakukan sekiranya orkid tersebut wujud di lokasi yang disasarkan atau apabila anak pokok yang dihasilkan secara simbiosis dengan kulat diperkenalkan di lokasi tersebut, kerana mereka boleh memainkan peranan sebagai sumber pokok dan sumber mikoriza. Bagi menentukan kulat yang bersimbiosis seperti ini, pemencilan kulat telah dilakukan ke atas akar tiga
Pokok filogeni pula menunjukkan kesemua kulat yang dipencilkan berkongsi satu persamaan iaitu semua adalah ahli Kelas Eurotiomycete, termasuklah beberapa kulat yang tak dapat dikenali identitinya. Dapat disimpulkan bahawa spesies orkid *Grammatophyllum* adalah mengkhusus kepada Kelas Eurotiomycete tetapi mengumum kepada ahli kelas itu. Pengkhususan orkid yang boleh berhubung luas ini mungkin disebabkan oleh kecenderungan orkid *Grammatophyllum* untuk dikoloni oleh pelbagai spesies kulat.
ACKNOWLEDGEMENTS

I am heartily thankful to my supervisor, Associate Professor Muskhazli Mustafa, whose consistent encouragement, guidance and brilliant ideas from the initial to the final has led to the successful completion of my study.

My sincere thanks also goes to my co-supervisor, Associate Professor Dr. Rusea Go for her comments and ideas. My appreciation and thanks to the staff of the greenhouse of Universiti Putra Malaysia for their generous assistance in maintaining the plant specimens.

A word of thanks also goes to friends and fellow graduate students as well as staff in Biology Department, UPM, CS, Mui Ching, Suk Kuan, Nithiyaa, Kak Murni, Safura, Nurul, Azleen, Min Cheol and many others who has made available their support in a number of ways.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, my brothers and sister for their moral support and patience during my study period.
I certify that an examination committee has met on 2011 to conduct the final examination of Salifah Hasanah Binti Ahmad Bedawi on her Master of Science thesis entitled “Variation in Mycorrhizal Specificity in Tiger Orchids (Grammatophyllum spp.)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Putra Malaysia (Higher Degree) Regulation 1981. The committee recommend that the student be awarded the relevant degree. Members of the Examination Committee were as follows:

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal examiner)

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal examiner)

Associate Professor
(External examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The member of the Supervisory Committee were as follows.

Muskhazli Mustafa, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia.
(Chairman)

Rusea Go, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia.
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, or concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institutions.

SALIFAH HASANAH BINTI AHMAD BEDAWI

Date: 18 January 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/SYMBOLS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Background of the study 1
 1.2 Statement of the problem 3
 1.3 Objectives of the study 4

2 LITERATURE REVIEW
 2.1 Orchid fungus relationship 5
 2.2 Mycorrhizas isolation techniques 8
 2.3 Symbiotic seed germination 8
 2.4 Asymbiotic seed germination 10
 2.5 Alternative germination method 12
 2.6 Orchid-fungus specificities 13
 2.7 Introduction of seed baiting technique 15
 2.8 Molecular identification of mycorrhizal fungus 16
 2.9 Phylogenetic study 18
 2.10 Mycorrhizas of tropical orchids 19
 2.10.1 Mycorrhizal infection in Malaysian orchids 19
 2.10.2 Mycorrhizal infection in epiphytic Malaysian orchids 21
 2.11 Study species 22
 2.11.1 Grammatophyllum speciosum Bl. 23
 2.11.2 Grammatophyllum stapelitflorum (Teijsm. & Binn.) J. J. Sm. 25
 2.11.3 Grammatophyllum scriptum (L.) Blume 26

3 MATERIALS AND METHOD.
 3.1 Fungal isolation and identification 28
 3.1.1 Plant source 28
 3.1.2 Root colonization 29
 3.1.3 Fungal isolation 29
 3.1.4 Fungi identification- traditional method 30
 3.1.5 Fungi identification- molecular method 32
 3.1.6 DNA extraction 32
 3.1.7 Internal transcribed spacer (ITS) 35
 3.1.8 Polymerase Chain Reaction (PCR) amplification 35
3.1.9 DNA purification 38
3.1.10 DNA sequencing 40
3.1.11 Diversity index calculation 41
3.2 Determination of specificity and symbiotic germination of Grammatophyllum spp. 42
 3.2.1 Seed source 42
 3.2.2 Orchid seed viability test 42
 3.2.3 Orchid seed pretreatment 43
 3.2.4 Symbiotic germination test 43
 3.2.5 Equation volume 45
3.3 Phylogeny tree construction 45

4 RESULT AND DISCUSSION
 4.1 Fungal isolation and identification 47
 4.1.1 Root morphology and mycorrhizal colonization 47
 4.1.2 Fungal isolation. 49
 4.1.3 Fungi isolated from G. speciosum. 50
 4.1.4 Fungus isolated from G. scriptum. 52
 4.1.5 Fungus isolated from G. stapeliiflorum. 54
 4.1.6 Fungal abundance and occurrences 55
 4.1.7 Fungal diversity index 58
 4.2 Symbiotic germination test 61
 4.2.1 Visual observation 61
 4.2.2 Seedling development 62
 4.2.3 Germination of G. speciosum seed. 63
 4.2.4 Germination of G. stapeliiflorum seed. 67
 4.3 Phylogeny tree analysis 73

5 CONCLUSION AND RECOMMENDATION 79

REFERENCES 82
APPENDIX I 93
APPENDIX II 104
APPENDIX III 106
BIODATA OF STUDENT 107
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Orchid species, location and numbers of plants used in the present study.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Development stages of orchid seeds (Stewart & Zettler, 2002).</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Fungi isolated from roots of adult G. speciosum.</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Fungi isolated from roots of adult G. scriptum.</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Fungi isolated from roots of adult G. stapeliiflorum.</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Fungal abundance calculated from three different host plants (habitats).</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Diversity of fungal species per habitat based on Shannon-Weiner Index, H'.</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>The volume of G. speciosum seeds embryos after co-cultured with fungi isolated from G. speciosum roots for 4 weeks. Mean ± SD (n=5).</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>The volume of G. speciosum seeds embryos after co-cultured with fungi isolated from G. scriptum roots for 4 weeks. Mean ± SD (n=5).</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>The volume of G. speciosum seeds embryos after co-cultured with fungi isolated from G. stapeliiflorum roots for 4 weeks. Mean ± SD (n=5).</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>The volume of G. stapeliiflorum seeds after co-cultured with fungi isolated from G. speciosum roots for 4 weeks. Mean ± SD (n=5).</td>
<td>67</td>
</tr>
<tr>
<td>4.10</td>
<td>The volume of G. stapeliiflorum seeds embryos after co-cultured with fungi isolated from G. stapeliiflorum roots. Mean ± SD (n=5).</td>
<td>69</td>
</tr>
<tr>
<td>4.11</td>
<td>The volume of G. stapeliiflorum seeds embryos after co-cultured with fungi isolated from G. stapeliiflorum roots for 4 weeks. Mean ± SD (n=5).</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Grammatophyllum speciosum (a) mature plant in nursery (b) seed pods (c) flower (d) root system.</td>
</tr>
<tr>
<td>2.2</td>
<td>Grammatophyllum stapeliiflorum (a) flowering plant in wild (b) root system (c) flowers.</td>
</tr>
<tr>
<td>2.3</td>
<td>Grammatophyllum scriptum (a) flowering plant in nursery (b) seed pods (c) flower (d) root system.</td>
</tr>
<tr>
<td>3.1</td>
<td>Moist chamber set up for fungi incubation (Shamala, 2005).</td>
</tr>
<tr>
<td>3.2</td>
<td>Fungal DNA extraction process (White et al., 1990). PDB=potato dextrose broth.</td>
</tr>
<tr>
<td>3.3</td>
<td>Polymerase chain reactions process (White et al., 1990).</td>
</tr>
<tr>
<td>3.4</td>
<td>The flow chart of DNA purification (Wizard® SV Gel and PCR Clean-Up System, Promega).</td>
</tr>
<tr>
<td>3.5</td>
<td>Morphometric of an orchid protocorm (Hadley & Williamson, 1971).</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) & (b) Strands of fungal hyphae stained blue with lactofuchsin in cortical layer of G. speciosum roots. (c) Roots and hair root tissues of G. speciosum showing hyphae of fungi branching and showing probably point of entry or point of exit in hair root tips. (d) Coils of peloton inhabiting the whole cells of G. speciosum root tissues. Magnification 10x.</td>
</tr>
<tr>
<td>4.2</td>
<td>Colonization of fungus towards G. stapeliiflorum seed (a) Entire seeds of G. stapeliiflorum were colonized by Geotrichum sp. mycelia after 4 weeks co-cultivated. (b) arrows showing the developing suspensor cells before G. stapeliiflorum embryo co-cultured with Aspergillus fumigatus burst out of testa.</td>
</tr>
<tr>
<td>4.3</td>
<td>Phylogenetic placement of mycorrhizal fungi of G. speciosum among all fungal taxa within Grammatophyllum spp.</td>
</tr>
<tr>
<td>4.4</td>
<td>Phylogenetic placement of mycorrhizal fungi of G. stapeliiflorum among all fungi taxa within Grammatophyllum spp.</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION/SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trades in Endangered Species</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed spacer</td>
</tr>
<tr>
<td>ITS-rDNA</td>
<td>Internal transcribed spacer-ribosomal deoxyribonucleic acid</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium chloride</td>
</tr>
<tr>
<td>OMA</td>
<td>Oat meal agar</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato dextrose agar</td>
</tr>
<tr>
<td>PDB</td>
<td>Potato dextrose broth</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
</tbody>
</table>
SEA South East Asia
sp. Species (singular)
spp. Species (plural)
TE Tris-EDTA
TrisHCl Tris hydrochloric
TTC Triphenyl tetrazolium chloride
V Volt
°C Degree Celcius
% Percents
µl Microliter
µM Micromolar
µg/ml Microgram per milliliter
CHAPTER 1
INTRODUCTION

1.1 Background of the study

Orchidaceae is the most species rich family of flowering plant. Members of this diverse family grow in a wide range of habitats and have a substantial variety of life strategies ranging from epiphytic to terrestrial, and from evergreen to achlorophyllous species (McCormick et al., 2004). They can be found throughout any habitat and geographical zone except in poles and extremely dry desert but reach their sanctuary at the tropics (Holttum, 1964; Hawkes, 1965; Tremblay, et al., 2005). At present orchids are a million dollar industry in several countries like Thailand, Australia, Singapore, Malaysia and several others (Chugh et al., 2009).

The genus *Grammatophyllum* is an epiphyte from the family Orchidaceae; the largest flowering family, subfamily Epidendroideae and the tribe Cymbidiae. It is closely allied to genus *Cymbidium* and consists of 12 species confined only to dense rainforest of Indo-China, to Indonesia, Malaysia, the Philippines, New Guinea, and the Southwest Pacific islands. Two of the species are native to Malaysia; *G. speciosum* and *G. stapeliiflorum* (Holttum 1964). Convention on International Trade in Endangered Species (CITES) has placed *Grammatophyllum* in Appendix II since 1975, which means they are not necessarily now threatened with extinction but they may become so unless trade is closely controlled (http://www.cites.org/eng/resources/species.html). Malaysia fortunately still is good shelter for this genus. The neighboring country implemented several conservation
efforts to propagate and reintroduce species that have special horticultural or educational value. Singapore for example successfully reintroduces locally the once locally extinct *G. speciosum* and four other native species into its locality with varying survival rate to up to 95% (Yam *et al.* 2010).

In Malaysia, horticulturist simply called the genus *Grammatophyllum* as ‘Gram’. There are two types of growth form in the genus. One has very long pseudobulb which is really fleshy stems, bearing many leaves. The other has rather short proportionately thick pseudobulb which is not covered by leaves base, with few leaves at the apex. The flowers in the both are essentially the same. Both have the erect branched white roots. The plant at the first type is represented by *G. speciosum*, which is believed to be the largest orchid plant in existence and is the only species with this life form. The plants at the second type similar to *Cymbidium* in habit; the genera *Cymbidium* and *Grammatophyllum* are in fact very nearly allied. The most notable difference is in the pollinia, which are seated directly on the disc in *Cymbidium* and on separate upgrowth in *Grammatophyllum*.

Grammatophyllum speciosum in Malaysia can be found in the lowland throughout the country including east Malaysia and still is common nowadays if one know where to look to. They usually flower on July but all plants do not flower every year (Holt tum 1964). *Grammatophyllum stapeliiflorum* distribution in Malaysia however is rare and has been recorded as early as 1899 but only found in Taiping Hills. More recent collection was in in Genting Highland when the research group joined by the author stumble upon a clump of *G. stapeliiflorum* in bloom on a dead tree trunk in an exposed area by a stream in Gunung Bunga Buah in 26 September 2005. A herbarium
sample, voucher number km022 and a live specimen was made out of the sample and deposited in Herbarium of Biology Department, Faculty of Science, Universiti Putra Malaysia (UPM) and UPM greenhouse respectively.

1.2 Statement of the problem

Malaysia has a great potential to become world’s major orchid flower exporter, but only less than 30% of the flower export are orchids and the majestic native orchid Grammatophyllum do not even make it to the favorite list (Lim et al., 1998). The fact that the plant is not considered decorative when flowerless, the slow growing nature and its fleshy pseudobulb that susceptible to infection by fungus and bacteria of all sorts could be responsible to the lack of interest. Secondly, it is a great importance in understanding the mycorrhizal symbionts of Grammatophyllum spp., as availability of the fungal symbionts may play a key role in determining orchid distribution and diversity. Most study on orchid mycorrhizas have concentrated on terrestrial orchids from temperate region such as Goodyera pubescens, Tipularis discolor and Liparis lilifolia (McCormick et al., 2004) whereas the majority of orchid species are epiphytes in tropical region (Otero et al., 2002). To date, apart from the study of general distribution and micropropagation of this genus, there is no published research regarding the orchid-fungus relationship of Grammatophyllum spp. in Malaysia. There are little efforts of identifying the mycorrhiza of Malaysian epiphytic orchids (Hadley and Williamson, 1971 & 1972) but no published report or known efforts to detect the mycorrhizal fungi of Grammatophyllum spp. and their specificities.
1.3 Objectives of the study

The overall aim of this study is to select the isolate(s) that are best adapted as the mycorrhizal symbionts towards *Grammatophyllum* spp. to produce feasible fungal inoculants. To achieve this goal, the experiment was divided into three parts to achieve 3 objectives:

1. To isolate and to determine the identity of fungi isolated from roots of adult *G. speciosum*, *G. stapeliiflorum* and *G. scriptum* using both traditional and molecular methods.
2. To determine the specificities of *G. speciosum* and *G. stapeliiflorum* towards fungi isolated from roots of adult *Grammatophyllum* spp. by means of symbiotic seed germination and,
3. To generate a representative, molecular phylogeny tree from all *Grammatophyllum* spp. for all fungi isolated from *Grammatophyllum* spp. thus mapping the specificity of mycorrhiza on their host plant in the phylogeny tree.
REFERENCES

88

