BIOFORTIFICATION OF SOILLESS CULTURE USING BENEFICIAL
MICROBES AND COMPOST FOR CULTIVATION OF CHILLI (CAPSICUM
ANNUUM) UNDER DEFICIT FERTIGATION

MOHD FAUZIHAN BIN KARIM

ITA 2012 16
BIOFORTIFICATION OF SOILLESS CULTURE USING BENEFICIAL MICROBES AND COMPOST FOR CULTIVATION OF CHILLI (CAPSICUM ANNUUM) UNDER DEFICIT FERTIGATION

By

MOHD FAUZIHAN BIN KARIM

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

June 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

BIOFORTIFICATION OF SOILLESS CULTURE USING BENEFICIAL MICROBES AND COMPOST FOR CULTIVATION OF CHILLI (CAPSICUM ANNUUM) UNDER DEFICIT FERTIGATION

By

MOHD FAUZIHAN BIN KARIM

June 2012

Chairman: Mohd Razi bin Ismail, PhD
Institute: Institute of Tropical Agriculture

Water and fertilizer are crucial in determining plant growth and production. The use of beneficial microbes is one of several approaches that have potential to be an alternative as plant growth promoters even at under water limited conditions. In the present study, attempts were made to enhance the growth of chilli using *Azospirillum brasilense* Sp7, *Bacillus sphaericus* UPMB10, *Rhizobium* sp. UPMR31 and mycorrhizal fungi inoculated in the root rhizosphere. Preliminary study were carried out using *Azospirillum brasilense* Sp7, *Bacillus sphaericus* UPMB10, *Rhizobium* sp. UPMR31 as plant enhancer to evaluate the efficacy of the microbes under serial degrees of deficit fertigation. The results showed increase in yield and plant biomass in inoculated plants compared to non-inoculated plants when subjected to 80%, 60%, 40% and 20% deficit fertigation. The inoculation effect also increased with amendment of empty fruit bunch into growing media of coconut dust fiber.
Generally with decreasing level of water, greater losses in yield were observed. However, in the second experiment, inoculation of Sp7, UPMR31 and mycorrhiza reduced the extent of growth suppression and the bacterial treated plants accumulated more fruit yield and plant dry weight than the untreated plants especially when compost was added. Besides that, microbial inoculation was capable to maintain the physiological status in plants such as photosynthesis and relative water content. In the 3rd experiment, *Azospirillum brasilense* Sp7 had increased the growth rate of plants and it could be seen in different stages of growth. Inoculation reduced the antioxidant enzymes activities in inoculated plants but increased the proline content. At the end of the study, it was concluded PGPR is able to increase plant’s tolerance to deficit fertigation stress especially with the presence of empty fruit bunch compost as the strategy to increase the efficiency of fertigation management.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGUKUHAN KAEDAH MEDIA TANPA TANAH MENGGUNAKAN MIKROB BERFAEDAH DAN KOMPOS KE ATAS TANAMAN CILI (CAPSICUM ANNUUM) DI BAWAH TEGASAN FERTIGASI

By

MOHD FAUZIHAN BIN KARIM

Jun 2012

Pengerusi: Mohd Razi bin Ismail, PhD
Institut: Institut Pertanian Tropika

Air dan baja sangat penting sebagai penentu kepada pertumbuhan dan pengeluaran hasil tanaman. Penggunaan mikrob berfaedah adalah salah satu daripada beberapa pendekatan yang berpotensi menjadi satu alternatif sebagai penggalak kepada pertumbuhan pokok walaupun di bawah keadaan air yang terbatas. Dalam kajian ini, percubaan dibuat untuk meningkatkan pertumbuhan tanaman cili dengan menggunakan mikrob Azospirillum brasilense Sp7, Bacillus sphaericus UPMB10, Rhizobium sp. UPMR31 dan kulat mikoriza yang diinokulasi di sekitar rizosfera akar. Kajian permulaan dijalankan menggunakan Azospirillum brasilense Sp7, Bacillus sphaericus UPMB10, Rhizobium sp. UPMR31 sebagai penggalak pertumbuhan untuk menilai keberkesanan mikrob tersebut di bawah beberapa paras kekurangan air. Keputusan menunjukkan peningkatan hasil dan biojisim pokok yang diinokulasi dengan mikrob berbanding dengan pokok yang tidak diinokulasi di bawah paras 80 %, 60 %, 40 % dan 20% kekurangan fertigasi.
Kesan penginokulatan juga meningkat dengan tambahan kompos buah tandan kelapa sawit kosong ke dalam media penanaman habuk sabut kelapa.

Secara umumnya dengan mengurangkan kadar pemberian air, penurunan kadar pertumbuhan telah direkodkan. Dalam eksperimen kedua, apabila pokok dirawat dengan Sp7, UPMR31 and mikoriza, tahap ketahanan pertumbuhan pokok dikurangkan dan pokok yang mendapat rawatan bakteria telah meningkatkan hasil buah dan berat kering yang tinggi berbanding pokok yang tidak diberi rawatan dan ia lebih jelas dengan kehadiran kompos. Selain itu, inokulasi mikrob juga mampu mengekalkan status fisiologi seperti fotosintesis dan kandungan air relative dalam tumbuhan. Dalam eksperimen ketiga, Azospirillum brasiliense Sp7 dapat meningkatkan kadar pertumbuhan pokok dan ia boleh dilihat di pelbagai peringkat pertumbuhan. Di samping itu, kadar aktiviti antioksida yang rendah didapati pada pokok yang diberi rawatan mikrob tetapi meningkatkan kandungan proline. Di akhir kajian, ia dapat disimpulkan bahawa pengunaan PGPR mampu meningkatkan toleransi tumbuhan untuk menghadapi keadaan tegasan fertigasi terutamanya dengan kehadiran kompos tandan kosong kelapa sawit sebagai strategi untuk meningkatkan kecekapan pengurusan fertigasi.
ACKNOWLEDGEMENTS

First of all, thank to Allah S.W.T the Almighty God for His blessing and guidance on me and my family in this life. I would like to express my deep appreciation and most sincere gratitude to my supervisor Prof. Dr. Razi bin Ismail, for his invaluable guidance and advices, endless support, patience and encouragement throughout the duration of this study and also for his critical, constructive criticism and helpful suggestion during the preparation of my thesis.

I gratefully acknowledge my supervisory committee members, Assoc. Prof. Dr. Halimi Mohd Saud and Assoc. Prof. Dr. Radziah binti Othman for generosity in providing me strains and mycorrhiza. Their invaluable time and ideas throughout the study and thesis completion are much appreciated.

Not forget to my friends Nur Ruzanna binti Rahman, A’fifah binti Abdul Razak, Mariaton Kibtiyah binti Nazri, Azim bin Haris, Aizat Shamin bin Noran and Rohaizad bin Mislan for their endless support during my stressful time of study.

Also allow me to grant my full love to my beloved parent Karim Bin Mujimin and Siti Safa’ah binti Amin, my grandfather, Hj. Mujimin bin Sarimin and also my younger brother and sister, Ahmad Zaidi bin Karim and Siti Syazwani binti Karim for their prayers and full support.
I certify that a Thesis Examination Committee has met on 08/06/2012 to conduct the final examination of Mohd Fauzihan bin Karim on his thesis entitled “Biofortification of Soilless Culture Using Beneficial Microbes and Compost for Cultivation of Chilli (Capsicum annuum) Under Deficit Fertigation” in accordance with the universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Y. Bhg. Datin Siti Nor Akmar binti Abdullah, Phd
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Puteri Edaroyati bt Megat Wahab, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Shuhaimi bin Mustafa, PhD
Associate Professor
Halal Products Research Institute
Universiti Putra Malaysia
/Internal Examiner

Hasnah Md. Jais, PhD
Associate Professor
School of Biological Sciences
Universiti Sains Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Razi bin Ismail, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Halimi bin Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Radziah binti Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD FAUZIHAN BIN KARIM

Date: 8th June 2012
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENT v
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER

1.0 INTRODUCTION 1

2.0 LITERATURE REVIEW
2.1 Soilless culture practice 4
2.2 Coconut coir dust 5
2.3 Empty fruit bunch 7
2.4 Biofortification 9
2.5 Deficit irrigation/ fertigation 9
2.6 Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi 11
2.7 Stress alleviation by PGPR and mycorrhizal fungi 12
2.8 Reactive Oxygen Species (ROS) 15
2.9 Antioxidant enzymes 16

3.0 EFFECT OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) AND COMPOST AMENDMENT ON GROWTH OF CAPSICUM ANNUUM UNDER DIFFERENT FERTIGATION LEVELS
3.1 Introduction 19
3.2 Objectives 20
3.3 Materials and methods
3.3.1 Microbial preparation 20
3.3.2 Site preparation 21
3.3.3 Deficit fertigation application 22
3.3.4 Fruit fresh weight, plant biomass and leaf area determination 23
3.3.6 Statistical analysis 23
3.4 Results
3.4.1 Fruit fresh weight and total fruit number 24
3.4.2 Total leaf dry weight 26
3.4.3 Total stem dry weight 26
3.4.4 Total root dry weight 27
3.4.5 Total leaf area 27
4.0 GROWTH OF CAPSICUM ANNUUM AS AFFECTED BY MYCORRHIZAL FUNGI AND PLANT GROWTH PROMOTING RHIZOBACTERIA UNDER DIFFERENT MEDIA AND DEFICIT FERTIGATION

4.1 Introduction
4.2 Objectives
4.3 Materials and methods
4.3.1 Bacterial and mychorrhizal preparation
4.3.2 Site preparation
4.3.3 Fruit fresh weight, fruit dry weight and plant biomass
4.3.4 Photosynthesis and stomatal conductance
4.3.5 Relative water content
4.4 Results
4.4.1 Fruit fresh and dry weight
4.4.2 Total leaf dry weight
4.4.3 Total stem dry weight
4.4.4 Total root dry weight
4.4.5 Relative water content
4.4.6 Photosynthesis
4.4.7 Stomatal conductance
4.5 Discussion
4.6 Conclusions

5.0 EFFECT OF AZOSPIRILLUM BRASILENSE INOCULATION ON GROWTH, NUTRIENT UPTAKE AND BIOCHEMICAL ACTIVITIES OF CAPSICUM ANNUUM UNDER TWO FERTIGATION LEVELS

5.1 Introduction
5.2 Objectives
5.3 Materials and methods
5.3.1 Microbial and rain shelter preparation
5.3.2 Plant morphology
5.3.3 Nutrient analysis
5.3.4 Proline determination
5.3.5 Enzyme extraction
5.3.6 Catalase (EC 1.11.1.6)
5.3.7 Ascorbate Peroxidase (EC 1.11.1.11)
5.3.8 Guaiacol Peroxidase (EC 1.11.1.7)
5.3.9 Total Protein
5.4 Result
5.4.1 Fruit yield
5.4.2 Root morphology
5.4.3 Total biomass
5.4.4 Plant root: shoot 61
5.4.5 Water use efficiency and irrigation use 62
efficiency
5.4.6 Relative chlorophyll content 63
5.4.7 Total leaf area 64
5.4.8 Proline accumulation 65
5.4.9 Antioxidant enzymes activities 65
5.4.10 Minerals uptake 67

5.5 Discussion 70
5.6 Conclusion 74

6.0 GENERAL DISCUSSION AND CONCLUSIONS
 6.1 General discussion 76
 6.2 Conclusions 79

REFERENCES 81
APPENDICES 103
BIODATA OF STUDENT 117
<table>
<thead>
<tr>
<th>Table</th>
<th>LIST OF TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Effect of microbial inoculation on total fruit fresh weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels of deficit fertigation.</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of microbial inoculation on total fruit number of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels deficit fertigation.</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of microbial inoculation on total leaf dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels of deficit fertigation.</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of microbial inoculation on total stem dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels of deficit fertigation.</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of microbial inoculation on total root dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels of deficit fertigation.</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of microbial inoculation on total leaf area (cm<sup>2</sup> plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at different levels of deficit fertigation.</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of microbial inoculation on total fruit fresh weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of microbial inoculation on total fruit dry weight (% DW FW<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of microbial inoculation on total leaf dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of microbial inoculation on total stem dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of microbial inoculation on total root dry weight (g plant<sup>-1</sup>) of Capsicum annuum amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.</td>
<td>44</td>
</tr>
</tbody>
</table>
4.6 Effect of microbial inoculation on relative water content (%) of *Capsicum annuum* amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation.

4.7 Effect of microbial inoculation on photosynthesis (µmol m\(^{-2}\) s\(^{-1}\)) of *Capsicum annuum* amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation. Values are mean from four replications (n=4).

4.8 Effect of microbial inoculation on stomatal conductance (mmol H\(_2\)O m\(^{-2}\) s\(^{-1}\)) of *Capsicum annuum* amended with EFB (+EFB) and without EFB (-EFB) at 0% and 40% deficit fertigation. Values are mean from four replications (n=4).

5.1 List of treatments

5.2 Effect of inoculation, EFB compost and fertigation levels on nutrient composition of *Capsicum annuum*. T\(_1\) (SP7+EFB with 0% DF), T\(_2\) (SP7+EFB with 40% DF), T\(_3\) (non-inoculated+EFB with 0% DF), T\(_4\) (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4).
5.1 Effect of inoculation, EFB compost and fertigation levels on fruit fresh weight of *Capsicum annuum*. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4). Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.2 Effect of inoculation, EFB compost and fertigation levels on root length, root surface and root tips of *Capsicum annuum* at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.3 Effect of inoculation, EFB compost and fertigation levels on total biomass of *Capsicum annuum* at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.4 Effect of inoculation, EFB compost and fertigation levels on root:shoot of *Capsicum annuum* at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.5 Effect of inoculation, EFB compost and fertigation levels on WUE of *Capsicum annuum* at different stages. IUE is shown at maturation/harvesting stage. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).
5.6 Effect of inoculation, EFB compost and fertigation levels on relative chlorophyll content of Capsicum annuum at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.7 Effect of inoculation, EFB compost and fertigation levels on leaf area on Capsicum annuum at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.8 Effect of inoculation, EFB compost and fertigation levels on leaf proline on Capsicum annuum. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.9 Effect of inoculation, EFB compost and fertigation levels on leaf CAT, APX and GPX activity on Capsicum annuum at different stages. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF). Values are given as mean±S.E (n=4) except vegetative stage (n=6) for each treatment. Means followed by the same letter are not significantly different (LSD, p≤0.05).

5.10 Plant morphology at vegetative stage with inoculation, EFB compost and fertigation levels on Capsicum annuum. T₁ (SP7+EFB with 0% DF), T₂ (SP7+EFB with 40% DF), T₃ (non-inoculated+EFB with 0% DF), T₄ (non-inoculated+EFB with 40% DF) and Control (non-inoculated with 0% DF).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylate</td>
</tr>
<tr>
<td>AM</td>
<td>arbuscular mycorrhizal-fungi</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APX</td>
<td>Ascorbate peroxidase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CD</td>
<td>Coconut coir dust</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>DI</td>
<td>Deficit irrigation</td>
</tr>
<tr>
<td>DF</td>
<td>Deficit fertigation</td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunch</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GPX</td>
<td>Guaiacol peroxidase</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole-acetic acid</td>
</tr>
<tr>
<td>IUE</td>
<td>Irrigation use efficiency</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Milimoles</td>
</tr>
<tr>
<td>µM</td>
<td>Micromoles</td>
</tr>
<tr>
<td>PGPR</td>
<td>Plant growth promoting rhizobacteria</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>S</td>
<td>Second</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to volume</td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

In 2010, the area of chilli cultivation in Malaysia is estimated about 2850 hectares with 32780 tonnes/year or 11.5 tonnes/ha/year of yield (DOA, 2011). However since 1998, Malaysia has been allocating a large budget to import chilli from other countries in order to meet local demand, and the value is increasing by the years (Appendix 1). Statistical data from FAO (2010) shows that Malaysia becomes one of the major importers of chilli in the world since ten years ago. The simplistic approach to increase crop production is to increase the cultivated area for chilli. However, various constraints such as rapid urbanization, suburban housing and industrialization programs which are heading on agricultural land have disturbed the food production chains from field to the market. In fact, the existing market gardens are also being forced out. The previous government policy which gave priority on industrialization programs has changed the interest of people from agriculture to manufacturing sector.

Currently, most of the cultivated area for vegetables is soil-based system and widely used by growers. Nevertheless due to the difficulty to get good soil quality and risk of soil-borne pathogens has slowly force the farmers to find other alternative such as soilless culture media which using non-soil materials as growing medium. Soilless culture media are commonly cultivated under protected environment and it is still scarce in the country. In Malaysia, the system only covered small portion from 86000 hectares of total vegetables production area in 2010 (DOA). Advancement in the knowledge of rhizosphere manipulation and technologies in soilless culture will ensure the continuality of yield production and may promote the system to be used
widely. However, beginning cost for glass house and rain shelter structures are always become controversial. Rising cost for variable inputs especially fresh water and chemical fertilizers also requires a large investment and because of that, more effective methods need to be discovered.

Nowadays, environmental stresses present the most limiting factors to food productivity. Environmental stress impact not only on crops which are presently being cultivated, but also become significant barriers to the introduction of crop into new land. Water deficit is one of the most important environmental factors limiting crop productivity. Water deficit develop when water loss by transpiration exceeds absorption by root. Plants generally experience some degree of water deficit in the open field or under protected environment.

Rhizobacteria symbiotically colonize plant roots and consume root exudates and lysates (Antoun and Prevost, 2006; Pieterse et al., 2002). Certain strains are referred to as plant growth-promoting rhizobacteria (PGPR), which can be used as biofertilizers (Kennedy et al., 2004). The PGPR can directly benefit plant growth by increasing nitrogen uptake through nitrogen fixation process, synthesis of phytohormones, solubilization of minerals, and iron chelation (Bowen and Rovira, 1999). Some PGPR may suppress soil-borne pathogens by producing siderophores, antimicrobial metabolites, or competing for nutrients and/or niches (Nelson, 2004). Indirectly, some PGPR stimulate an increase in resistance to pathogens and pests that feed on leaves by activating the formation of physical and chemical barriers in the host, a phenomenon referred to as induced systemic resistance (Bostock, 2005; Persello-Cartieaux et al., 2003; Ryu et al., 2003).
Many plants respond positively to inoculation with bacteria and mycorrhiza. Legumes are well-known example of plant benefiting from inoculation by its symbiotic partner, rhizobia, and have been exploited in many parts of the world (Shamsuddin et al., 1988). Mycorrhiza too has been reported to benefit many different species of plant crops. Meanwhile, plant growth promoting rhizobacteria (PGPR) have been shown to benefit vegetables and cereal crops (Okon and Labandera-Gonzales, 1994). These PGPR include *Azospirillum*, *Pseudomonas*, *Bacillus* and *Agrobacterium* species. The mechanism to promote plant growth include fixation of atmospheric dinitrogen, production of indole acetic acid (IAA) ad production of siderophores (Kloepper et al., 1980). In addition, since ten to fifteen years ago, PGPR and mycorrhiza have been previously used as a part of plant defence mechanism against various types of environmental stresses especially water deficit and drought.

1.1 Objectives

The objectives of this study were:

1. To evaluate the effectiveness of selected microbes on growth and yield of *Capsicum annuum* under different level of fertigation regimes.

2. To evaluate the effect of empty fruit bunch compost amendment on plant growth, physiological activities and nutrient status.

3. To determine the catalase, ascorbate peroxidase, guiacol peroxidase and proline activities in plant tissue in response to deficit fertigation.
REFERENCES

BIODATA OF STUDENT

Mohd Fauzihan Bin Karim, the author was born on December 14, 1985 in Johor, Malaysia. He completed his primary and secondary studies in Kuala Terengganu after his family have moved to the city. By getting the colourfull result in SPM, he managed to enter at Negeri Sembilan Matriculation College. Upon finishing his foundation study, he succeeded to pursue bachelor degree in Universiti Putra Malaysia (UPM), where he completed his Bachelor of Agricultural Science in the year 2008. He started to forward his higher education, Master of Science in the field of Environmental Plant Physiology at University Putra Malaysia under the supervisory of Professor Dr Mohd Razi Bin Ismail in the same year.