

UNIVERSITI PUTRA MALAYSIA

EFFECT OF AGEING ON PHYSICO-CHEMICAL PROPERTIES OF NON-DAIRY ICE CREAM MIX

WAN ROSNANI AWG ISA.

FSMB 20049

EFFECT OF AGEING ON PHYSICO-CHEMICAL PROPERTIES OF NON-DAIRY ICE CREAM MIX

WAN ROSNANI AWG ISA

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia,
in Fulfilment of the Requirements for the
Degree of Master of Science
APRIL 2004

Dedication

To my husband Kamal Azidy for his support throughout this study and also to my son Muhamad Faiz, my daughter Aina Nabilah and Ain Nadhirah.

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

EFFECT OF AGEING ON PHYSICO-CHEMICAL PROPERTIES OF NON-DAIRY ICE CREAM MIX

By

WAN ROSNANI AWG ISA

April 2004

Chairman : Associate Professor Mohd Yazid Abdul Manap, Ph. D.
 Faculty : Food Science and Biotechnology

The rheological characteristics of ice cream mix prepared from palm oil (PO), palm kernel oils (PKO) and their blends with anhydrous milk fat (AMF) at 30:70, 50:50 and 70:30 ratios during ageing were studied. The experimental ice cream mixes were compared with a control sample prepared from AMF. Ice cream mix containing 33.44% total solids including 10% fat, 11.09% milk solid-non fat (MSNF), 12% sugar, 0.35% commercial blend of emulsifier/stabiliser and water. The rheological properties such as the flow behaviour, Newtonian viscosity (η_{0}) and compliance $\left(\mathrm{J}_{\mathrm{o}}\right)$ were measured after ageing at $4^{\circ} \mathrm{C}$ for $0,0.5,1,1.5,2$ and 24 hr and determined using a controlled stress rheometer (Haake RS 100). The Power Law and Casson equation was employed to estimate the yield stress (τ_{0}) of an ice cream mixes. The correlation coefficients (r) for the regression analyses of the square root of the shear stress-shear rate data were represented well by the

Casson model ($r>0.99$) for all the samples, indicating goodness of fitted. The shapes of the curves of consistency coefficients $\left(\mathrm{K}_{\mathrm{c}}\right)$ were quite similar for all the experimental samples. The flow behaviour index (n) of the ice cream mixes prepared with palm fraction (PO and PKO) and their blends were less than 1.0 (range 0.04-0.08) indicating that the mixes were pseudoplastic fluid. The η_{0} at shear rate 20^{-1} indicated that the degree of viscosity in the control sample was higher.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PENUAAN KEATAS SIFAT- SIFAT FIZIKAL-KIMIA CAMPURAN AIS KRIM BUKAN TENUSU

Oleh

WAN ROSNANI AWG ISA

April 2004

Pengerusi : Profesor Madya Mohd Yazid Abdul Manap, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Sifat-sifat reologi campuran ais krim daripada minyak kelapa sawit (PO), minyak isirong sawit (PKO) dan campurannya dengan lemak susu anhidrous (AMF) pada nisbah 30:70, 50:50 dan 70:30 semasa penuaan dikaji. Campuran ais krim mengandungi 33.44% jumlah pepejal termasuk 10% lemak, 11.09% pepejal susu tanpa lemak (MSNF), 12% gula, 0.35% pengemulsi/penstabil dan air. Sifatsifat reologi seperti pelakuan aliran, kelikatan Newtonian (η_{0}) dan komplian (J_{0}) diukur selepas penuaan pada $4^{\circ} \mathrm{C}$ untuk $0,0.5,1,1.5,2$ dan 24 jam dan dikenalpasti menggunakan rheometer kawalan tekanan (Haake RS 100) Persamaan Power Law dan Casson digunapakai untuk menganggarkan hasil tekanan (τ_{0}) campuran ais krim. Korelasi koofisi (r) untuk analisa regrasi data punca ganda dua tekanan shea- kadar shea adalah diwakili dengan baik oleh model Casson (r >0.99) untuk semua sampel, menunjukkan padanan yang
terbaik. Bentuk graf konsistensi koofisi $\left(\mathrm{K}_{\mathrm{c}}\right)$ adalah hampir sama untuk semua sampel kajian. Indek pelakuan aliran (n) campuran ais krim yang disediakan dari pecahan minyak kelapa sawit (PO dan PKO) dan campurannya adalah kurang daripada 1.0 (range 0.04-0.08) menunjukkan mereka adalah cecair pseudoplastik. η_{o} pada kadar shea 20^{-1} menunjukkan darjah kelikatan yang tinggi pada sampel kawalan.

ACKNOWLEDGEMENTS

All praise to God, the Most Gracious and Merciful, for giving me the strength, health and determination to complete my research studies.

My utmost gratitude, honor and sincere appreciation to my supervisor Prof Madya Dr. Mohd Yazid bin Abd Manap for his invaluable guidance, encouragement, constructive suggestion and criticism and patience throughout the study and during the preparation of this thesis.

My heartfelt appreaciation and gratitude go to the members of my supervisory committee Dr. Nor Aini bt Idris and Dr. Dzulkifly bin Mat Hashim for their generous guidance, valuable comments during the study and for reviewing my manuscript and making valuable comment, cooperation and assistance throughout my research studies.

I am really thankful and indebted to the Malaysian Palm Oil Board who has given me the time and financial support to pursue my studies.

Finally, I wish to thank my family, relatives, friends and all the staff at Malaysian Palm Oil Board especially Mrs. Chow Mei Chin for the use of Haake Rheometer RS 100 and to the Faculty of Food Science and Biotechnology, University Putra Malaysia who had contributed in one way or another towards the success of this study. May God bless you always.

TABLE OF CONTENT

Page
DEDICATION i
ABSTRACT ii
ABSTRAK iv
ACKNOWLEDGEMENTS vi
APPRCVAL vii
DECLARATION ix
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xvi
CHAPTER
1 INTRODUCTION 1
2 LITERATURE REVIEW 5
Fats and Oils 5
Crystallization of fats 6
Polymorphism of fats 8
Rheology of fats 11
Ice Cream 16
Definition 17
Composition and formulation 17
Structure of ice cream mix 19
Fats in ice cream 20
Processing variable 26
Changes in the ice cream mix during ageing 27
3 PHYSICAL PROPERTIES OF FAT USED IN THE PREPARATION OF ICE CREAM MIX 31
Introduction 31
Materials and Methods 33
Materials 33
Experimental design 34
Blend preparation 34
Preparation of an ice cream mix 34
Determination of slip melting point (SMP) 36
Determination of solid fat content (SFC) 36
Determination of the triacylglyceride composition (TAG) 37
Determination of fatty acid composition (FAC) 38
Thermal analysis by differential scanning calorimetry (DSC) 38
Statistical analysis 39
Results and Discussion 39
Effect of blending on the slip melting point (SMP) 39
Effect of blending on the solid fat content (SFC) 41
Effect of blending on the triacylglyceride (TAG) and fatty acid composition (FAC) 45
Effect of blending on the melting and crystallization profile 50
Summary 56
4 RHEOLOGICAL PROPERTIES OF ICE CREAM MX PREPARED FROM PALM OIL:ANHYDROUS MILK FAT BLEND 59
Introduction 59
Materials and Method 64
Materials 64
Blend preparation 65
Determination of flow properties of ice cream mix 65
Determination of creep compliance of ice cream mix 65
Rheological equations 66
Results and Discussion 67
Effect of ageing on the flow properties of an ice cream mix 67
Effect of ageing on the creep compliance of an ice cream mix 84
Summary 94
5 RHEOLOGICAL PROPERTIES OF ICE CREAM MIX PREPARED FROM PALM KERNEL OIL:ANHYDROUS MILK FAT BLEND 95
Introduction 95
Materials and Method 98
Materials 98
Blend preparation 99
Determination of flow properties of ice cream mix 99
Determination of creep compliance of ice cream mix 99
Rheological equations 100
Results and Discussion
Effect of ageing on the flow properties of an ice cream mix 101
Effect of ageing on the creep compliance of an ice cream mix 115
Summary 123
6 CONCLUSION AND RECOMMENDATIONS 125
BIBLIOGRAPHY 129
APPENDICES 135
BIODATA OF THE AUTHOR 140

LIST OF TABLES

Table
 Page

1 General composition of various types of ice cream $\quad 18$
2 Fatty acids composition (FAC) of milk fat, coconut oil, palm kernel oil, palm oil and tallow22

Solid fat content (SFC) of milk fat, coconut oil, palm kernel oil, palm oil and tallow23

4 Solid fat content (SFC) of ice cream fats prepared from different types of oils24

5 Balanced ice cream mix formulation used throughout the study35
$6 \quad$ Slip melting point (SMP) of different fats at 16 hr and I hr tempering time40

7(a) Triacylglyceride (TAG) and fatty acid composition (FAC) of palm oil (PO), palm kernel oil (PKO) and anhydrous milk fat (AMF)46

7(b) Triacylglyceride (TAG) and fatty acid composition (FAC) of palm oil (PO), anhydrous milk fat (AMF) and PO:AMF blends at different ratios

7(c) Triacylglyceride (TAG) and fatty acids composition (FAC) of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO:AMF blends at different ratios48

Consistency coefficient (k) of palm oil (PO), anhydrous milk fat (AMF) and PO:AMF blends at different ratios82
$9 \quad$ Shear rate index (n) of palm oil (PO), anhydrous milk fat (AMF) and PO:AMF blends at different ratios82

Creep compliance parameters of ice cream mixes prepared from palm oil (PO), anhydrous milk fat (AMF) and PO:AMF blends at different ratios

Consistency coefficient (k) of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO:AMF blends at different ratios

12 Shear rate index (n) of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO:AMF blends at different ratios

13 Creep compliance parameters of ice cream mixes prepared with palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO:AMF blends at different ratios

Casson yield stress of anhydrous milk fat (AMF), palm kernel oil (PKO) and PKO:AMF blends at different ratios137

18 Consistency index (K_{c}) of anhydrous milk fat (AMF), palm kernel oil (PO) and PKO:AMF blends at different ratios137

Viscosity of anhydrous milk fat (AMF), palm oil (PO) and PO:AMF blends at different ratios138

20

Viscosity of anhydrous milk fat (AMF), palm kernel oil
(PKO) and PKO:AMF blends at different ratios 138

LIST OF FIGURES

Figure Page
1 Typical microstructure of an ice cream mix emulsion 19
2(a) Solid fat content profiles of palm oil (PO), palm kernel oil (PKO) and anhydrous milk fat (AMF) 42
2(b) Solid fat content profiles of palm oil (PO), anhydrous milk fat (AMF) and PO: AMF blends at different ratios 43
2(c) Solid fat content profiles of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios 44
3(a) Heating thermograms of palm oil (PO), palm kernel oil (PKO) and anhydrous milk fat (AMF) 51
3(b) Cooling thermograms of palm oil (PO), palm kernel oil (PKO) and anhydrous milk fat (AMF) 52
3(c) Heating thermograms of palm oil (PO), anhydrous milk fat (AMF) and PO: AMF blends at different ratios 54
3(d) Cooling thermograms of palm oil (PO), anhydrous milk fat (AMF) and PO: AMF blends at different ratios 55
3(e) Heating thermograms of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios 57
3(f) Cooling thermograms of palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios 58
4(a) Log stress vs log shear rate of ice cream mix prepared from palm oil (PO) 68
4(b) Log stress vs log shear rate of ice cream mix prepared from anhydrous milk fat (AMF) 69
4(c) Log stress vs log shear rate of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 30:70 ratio 70
4(d) Log stress vs log shear rate of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 50:50 ratio 71
4(e) Log stress vs log shear rate of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 70:30 ratio 72
Consistency index $\left(\mathrm{K}_{\mathrm{c}}\right)$ of ice cream mixes prepared from
palm oil (PO), anhydrous milk fat (AMF) and PO: AMF
blends at different ratios

$6 \int$Casson yield stress of ice cream prepared from palm oil (PO), anhydrous milk fat (AMF) and PO: AMF blends at different ratios	74

7(a) Log viscosity vs log shear rate (flow curve) of ice cream mix
prepared from palm oil (PO) 76

7(b) Log viscosity vs log shear rate (flow curve) of ice cream mix
prepared from anhydrous milk fat (AMF) 77

7(c) Log viscosity vs log shear rate (flow curve) of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 30:70 ratio

7(d) Log viscosity vs log shear rate (flow curve) of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 50:50 ratio

7(e) Log viscosity vs log shear rate (flow curve) of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 70:30 ratio

80
8 Viscosity of ice cream mixes prepared from palm oil (PO), anhydrous milk fat (AMF) and PO: AMF blends at different ratios at shear rate $20 \mathrm{~s}^{-1}$81

9 Stress sweep profile of a representative oil sample (palm oil,
palm kernel oil and anhydrous milk fat) at a frequency of 1 Hz 84

10(a) Creep compliance of ice cream mix prepared from palm oil
(PO) 86
10(b) Creep compliance of ice cream mix prepared from anhydrous milk fat (AMF) 87
10(c) Creep compliance of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 30:70 ratio 88
10(d) Creep compliance of ice cream mix prepared from palm oil 89(PO): anhydrous milk fat (AMF) blend at 50:50 ratio

10(e) Creep compliance of ice cream mix prepared from palm oil (PO): anhydrous milk fat (AMF) blend at 70: 30) ratio

11(a) Log viscosity vs \log shear rate of ice cream mix prepared
from palm kernel oil (PKO) 102

11(b) Log viscosity vs \log shear rate of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) 103 blends at 30:70 ratio

11(c) Log viscosity vs \log shear rate of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) blend 104 at 50:50 ratio

11(d) Log viscosity vs \log shear rate of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) 105 blend at 70:30 ratio

12 Consistency index ($\mathrm{K}_{\mathfrak{c}}$) of ice cream mixes prepared from palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios

13 Casson yield stress of ice cream mixes prepared from palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios107

14(a) Log viscosity vs \log shear rate of ice cream mix prepared
from palm kernel oil (PKO) 108

14(b) Log viscosity vs \log shear rate (flow curve) of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) blend at 30:70 ratio109

14(c) Log viscosity vs log shear rate (flow curve) of ice cream mix
prepared from palm kernel oil (PKO): anhydrous milk fat
(AMF) blend at $50: 50$ ratio

110

14(d) Log viscosity vs log shear rate (flow curve) of ice cream mix
prepared from palm kernel oil (PKO): anhydrous milk fat
(AMF) blend at 30:70 ratio
15 Viscosity of ice cream mixes prepared from palm kernel oil (PKO), anhydrous milk fat (AMF) and PKO: AMF blends at different ratios at shear rate $20 \mathrm{~s}^{-1}$

16(a) Creep compliance of ice cream mix prepared from palm kernel oil (PKO)116

16(b) Creep compliance of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) blend at 30:70 ratio
$\begin{array}{ll}\text { 16(c) } & \begin{array}{l}\text { Creep compliance of ice cream mix prepared from palm } \\ \text { kernel oil (PKO): anhydrous milk fat (AMF) blend at } 50: 50 \\ \text { ratio }\end{array}\end{array}$
16(d) Creep compliance of ice cream mix prepared from palm kernel oil (PKO): anhydrous milk fat (AMF) blend at 70:30 119 ratio

17 Flow diagram for the preparation process of ice cream mix 139

LIST OF ABBREVIATIONS

AMF	Anhydrous milk fat
C4:0	Butyric acid
C6:0	Caproic acid
C8:0	Caprilic acid
C10:0	Capric acid
C12:0	Lauric acid
C14:0	Myristic acid
C16:0	Palmitic acid
C18:0	Stearic acid
C18:1	Oleic acid
C18:2	Linoleic acid
C18:3	Linolenic Acid
C20:0	Arachidic acid
C22:0	Behenic acid
CNO	Coconut oil
cP	Centipoise
DAG	Diacylglyceride
DSC	Differential scanning calorimetry
$\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{E}_{2}$	Elastic moduli, $\mathrm{N} / \mathrm{m}^{2}$
E/S	Emulsifier/stabilizer
FA	Fatty acid
FAC	Fatty acid composition
G'	Storage modulus, Pa
G"	Loss modulus, Pa
G*	Complex modulus, Pa
GLC	Gas liquid choromatography
HMG	High melting glycerides
HTST	High temperature short time
Hz	Hertz
$\mathrm{J}, \mathrm{J}_{1}, \mathrm{~J}_{2}$	Creep compliance, Pa^{-1}

K_{C}	Casson model constant
LCT	Long chain triglycerides
LVR	Linear viscoelastic region
MAG	Monoacylglycerides
MCT	Medium chain triglycerides
n	Flow behaviour index
N	Newtonian
NA	Not available
NBD	Neutralized bleached deodourized
NMR	Nuclear magnetic resonance
MSNF	Milk solid non-fat
O/W	Oil- in- water
Pa	Pascal
PKO	Palm kernel oil
PO	Palm oil
POP	1,3-dipalmitoyl-2 oleoyl glycerol
PORIM	Palm oil Research Institute of Malaysia
PSP	1,3-dipalmitoyl-2 stearoyl glycerol
r	Correlation coefficient
SFC	Solid fat content
SMP	Slip melting point
SSS	Tristearin
TAG	Triacylglyceride
UHT	Ultra high temperature
VE	Viscoelastic
W/O	Water-in- oil
γ	Shear rate, s^{-1}
η, η_{0}	Viscosity, Pa s
α	Alpha
β	Beta
β,	Beta prime
t	Time

τ_{0}	Yield stess
$\mu \mathrm{m}$	Micrometer
$\mu \mathrm{l}$	Microliter
δ	Delta
\leq	Less than
$>$	More
$<$	Less
$\%$	Percentage

CHAPTER 1

INTRODUCTION

Ice cream mix is an oil-in-water emulsion. It is formulated using fat, milk solid non-fat (MSNF), sugar, emulsifier and stabiliser. The fat phase in the form of minute globules is dispersed into the aqueous phase in the ice cream mix. Each globule is coated with a layer of adsorbed milk proteins, which keep the mix stable during ageing, whipping and freezing stages of manufacturing process that contribute to the development of the ice cream structure. The quality of the mix components, together with factors such as processing condition, type of emulsifying agent and the flavour added affect the quality of the end product. The composition of the mix affects the rheological properties during ageing, the amount of air incorporated in the mix and the ice crystal formation during freezing. In a normal process of ice cream making, the accepted time for ageing the mix is about six hr. However, prolonged ageing is require to achieve the stabilisation of the mixture and this could be costly and time consuming. In a commercial production, the ageing time could be reduced or eleminated to reduce the cost without adverse effect on the stability of the mix.

Dairy fats are widely used in the production of ice cream. They are primarily derived from milk, cream, butter and anhydrous milk fat. Milk fat is the major fat component in ice cream, contains 70% saturated fatty acids and a high percentage of
cholesterol. Most countries require the use of dairy fat, but some countries like the United Kingdom and Finland allow the use of vegetable fats in ice cream. In the United States, a product made with vegetable fat must be labelled as "Mellorine". In most Asian countries which have a limited supply of milk, the price differential between animal and vegetable fats has led to the growing use of vegetable fat as a fat substitute in dairy products especially in ice cream.

Palm oil and palm kernel oil are already being used as fat ingredient in local ice cream manufacture. These oils are also being used in formulating the ice cream with incorporating of other oils by ice cream manufacturers worldwide. Besides being comparatively cheaper than milk fat, the range of palm oil and its fraction continue to increase. These oil could be tailored to meet the specific technological requirements such as the melting point, solid fat content, fatty acid, triacylglycride composition and iodine value. Moreover, palm oil and its fractions have the advantages of abundant supply and a uniform quality, longer storage time and better consistency at room temperature compared to milk fat. They have a natural colour, bland taste and are similar in their physical properties which allow them to be used as a milk fat substitute with no marked changes in flavour or consistency.

Substitution of palm-based fat in an ice cream formulations may affect the rheological properties as well as the viscosity of the mix. Changes in viscosity are related to the changes in processing condition such as the rate of freezing and the growth of ice crystals during freezing. Such changes affect the texture of the end

