DEVELOPMENT OF NANO DELIVERY SYSTEMS FOR
ANTI-TUBERCULOSIS DRUGS USING METAL HYDROXIDES
NANOLAYERED HOSTS

SAIFULLAH

IB 2014 13
DEVELOPMENT OF NANODELIVERY SYSTEMS FOR ANTI-TUBERCULOSIS DRUGS USING METAL HYDROXIDES NANOLAYERED HOSTS

By

SAIFULLAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

October 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I dedicate my thesis to my beloved father, my paternal grandmother Mai Bhaun Bhain (Mai Amna), my beloved father Ahmed Ali Bullo, my mother, my siblings and to rest of my family.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

DEVELOPMENT OF NANODELIVERY SYSTEMS FOR ANTI-TUBERCULOSIS DRUGS USING METAL HYDROXIDES NANOLAYERED HOSTS

By

SAIFULLAH

October 2014

Chair: Prof. Mohd Zobir Bin Hussein, PhD
Faculty: Institute of Advanced Technology

Development of biocompatible and biodegradable nanodelivery systems with sustained release properties is the key research area of nanomedicine technology. Inorganic nanolayers are the promising material due to fascinating properties like ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules and even genes, etc.), high thermal stability, delivery of the intercalated anions in the sustained manner, high biocompatibility and easy biodegradation, etc. In this research, anti-tuberculosis (anti-TB) nanodelivery formulations were designed by intercalating anti-TB drugs into inorganic nanolayered hydroxide to be used as nanodelivery systems. Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (MTB) and has been lethal to humans since centuries. Chemotherapy of TB involves multi-drug therapy, frequent dosing, and side effects of anti-TB drugs and long term treatment duration of 3-24 months. These complications are responsible for patients’ noncompliance to the treatment. Drug development is very lengthy, high budget consuming and multistage process and there has been no new anti-TB drug in the market since about the last 5 decades. Research on the development of drug delivery systems is of prime importance to overcome the above scenario. Drug delivery systems (DDS) offer many advantages over the conventional chemotherapy, such as targeted delivery and protection of drugs from physico-chemical degradation, which ultimately will reduce the side effects associated with drugs. The DDS releases the drugs in a sustained manner for a longer period of time that would result in the reduction in the dosing frequency. The nano-sized DDS have the tendency to easily penetrate the bacteria and cancer cells. All of these advantages would ultimately improve the patients’ compliance to the treatment.

In this research, several anti-TB nanodelivery formulations were developed by intercalating anti-TB drugs namely para amino salicylic acid (PAS) and isoniazid (INH)
into metal hydroxide nanolayers namely zinc layered (ZLH), zinc-aluminium layered double hydroxides (Zn/Al-LDHs) and magnesium-aluminium layered double hydroxides (Mg/Al-LDHs). A total of 8 nanocomposites based on the aforementioned anti-TB drugs and metal nanolayers hydroxides were prepared. The developed nanocomposites of anti-TB drugs with metal hydroxides nanolayers (inorganic nanolayers) showed higher biocompatibility with normal human lung cell lines (the most common residing place of mycobacterium tuberculosis) and with 3T3 mouse fibroblast cells (the most sensitive cells to toxicity). The release of the intercalated anti-TB drugs was sustained in human body simulated phosphate buffer (PBS) solutions of pH 7.4 and 4.8. Therapeutic efficacy of the anti-TB nanocomposites against mycobacteria tuberculosis was found to be much better compared to para amino salicylic acid and isoniazid in their free form. The in vitro study results are extremely encouraging to conduct the further study on animal models (in vivo study) and these biocompatible anti-TB nanocomposite formulations could be very useful in coping with tuberculosis effectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PEMBANGUNAN SISTEM PENGHANTARAN NANO BAGI UBAT ANTI-TUBERKULOSIS MENGGUNAKAN PERUMAH HYDROKSIDA LOGAM BERLAPIS NANO

By

SAIFULLAH

Oktober 2014

Chairman Prof. Mohd Zobir Bin Hussein, PhD
Faculty: Institut Teknologi Maju

ACKNOWLEDGEMENTS

All praises to God Almighty who gave me strength and abilities to produce this thesis. I am very grateful to Ministry of Higher Education Commission of Malaysia for providing of fully funded PhD scholarship under Commonwealth Scholarship and Fellowship Plan (Ref: KPT.B.600-6/3, Vol. 68). I am especially thankful to my supervisor Professor Dr. Mohd Zobir B. Hussein for his kind supervision and guidance which made me able to work smoothly and for his support during the ups and downs my research work. I would also like to thank my supervisory committee Associate Professor Dr. Sharida Fakurazi, Professor Dr. Zulkernain Zainal and Dr. Nasiruddin Desa for their help and suggestions. My special thanks to Dr. Palanisamy Arulselvan for helping in conducting the cytotoxicity studies of my nanocomposites and suggestions. I would also like to acknowledge Professor Thomas J. Webster, Dr. Benjamin Geilich and North Eastern University Northeastern University, Boston 02115 for funding and help in conducting the Anti-mycobacterial assays of my samples. I would also like to thank Dr. Mohamed Ezzat El Zowalaty (Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia) for the analyzing antimycobacterial assay data and helping me in conducting the antimicrobial assays of my samples. My special thanks to Dr. Samer Hassan Hussein Al Ali for his help, support and suggestions during my research work. I would also like to thank Professor Dr. Mohammad Iqbal Choudhary, Professor Dr. Atta ur Rehman, Professor Dr. Khalid Ahmed Khan, Professor Dr. Abdul Malik, Dr. Fayaz Ahmed Mangi, Dr. Firdus Ilyas, Dr. Shakil Ahmed, Dr. Amir Ahmed Malah, Mr. Wajid Ali, Ms Fazana from International Center for Chemical and biological Sciences, University of Karachi -75270, Karachi Pakistan. My special thanks to my group fellows Ms Dena Dorniani, Mrs. Tumira khadiran, Mrs. Ruzanna Ibrahim, Ms Summya Megat Mohsin, Ms Julia Tan, Ms Donya Rami Mughadam and Ms Farah Naz for their moral support during my research work. I am also very thankful to my friend Mr. Musadique Ahmed Junejo, Mr. Ahmed Yar Awan, Mr. Ghiyasuddin Siddiqui, Dr. Aminu Kura, Mr. Amir Bux Baloch. I am sincerely thankful to Science officers and technicians of Institute of Advanced technology Mr. Qadri, Mrs. Sarinawani Abdul Ghani, Ms Nazira, and Mrs Norlina. My special thanks to department of Chemistry Universiti Putra Malaysia and its science and technical officers specially, Mr. Ishaaruddin, Mr. Zainal, Mrs Rosnani Amiruddin, Mrs Norfiza Tan, Ms Norhidayu and Mr. Ismail. I am also very thankful to all of my friends from Pakistan studying University Putra Malaysia specially Mr. Zulfqar Ahmed Mahar, Gilal Arfan Ahmed, Dr. Barkatullah Qureshi, Dr. Ubedullah Kaka, Mr. Mohammad Ishaque Mastoi, Fahad Nazir Khoso, Mr. Ghulam Mujtaba Khushq, Dr. Allah Wadhayo Gandhai, Dr. Asmatullah Kakak, Dr. Mohammad Zubair, Mr. Aftab, I am very thankful for the support of my family specially my Mother, my brothers, Mr. Shafi mohammad Bullo, Mr. Abid Ali Bullo, Mr. Mohammad Awais Bullo, my sisters, my nephew Mr. Huzaifa Bullo (Yaari), and rest of my family. I am specially thankful for the moral support of my Cricket Club New Pind Friends Eleven especially to my Captain Mr. Gulzar Ahmed Niazi, Mr. Dilshad Ahmed Awan, Mr. Sajid Ali Qureshi, Mr. Ameer Ali Baloch, Mr. Gul Bashah, Mr.
I certify that a Thesis Examination Committee has met on 9 October 2014 to conduct the final examination of Saifullah on his thesis entitled "Development of Nanodelivery Systems for Anti-Tuberculosis Drugs using Metal Hydroxides Nanolayered Hosts" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

**Mahiran binti Basri, PhD**
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

**Md Zuki bin Abu Bakar @ Zakaria, PhD**
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

**Taufiq Yap Yun Hin, PhD**
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

**Hassan Ahmad, PhD**
Professor
Rajshahi University
Bangladesh
(External Examiner)

\[Signature\]

**NORITAH OMAR, PhD**
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 October 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows

**Mohd. Zobir bin Hussein, PhD**  
Professor  
Institute of Advanced Technology  
Universiti Putra Malaysia  
(Chairman)

**Zulkarnain bin Zainal, PhD**  
Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Member)

**Sharida Fakurazi, PhD**  
Associate Professor  
Institute of Bioscience  
Universiti Putra Malaysia  
(Member)

**Mohd Nasir Desa, PhD**  
Senior Lecturer  
Faculty of Medicine  
Universiti Putra Malaysia  
(Member)

---

**BUJANG BIN KIM HUAT, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institution;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other material as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________  Date: _____________________

Name and Matric No.:  Saifullah (GS31655)
Declaration by Members of Supervisory committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: 
Name of 
Chairman of 
Supervisory Committee:

Signature: 
Name of 
Member of 
Supervisory Committee:

Signature: 
Name of 
Member of 
Supervisory Committee:

Signature: 
Name of 
Member of 
Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of study
1.2 Problem statement
1.3 Objectives
1.4 Significance of study
1.5 References

2 LITERATURE REVIEW (Part-A)

2.1 Controlled-release approaches towards the chemotherapy of tuberculosis
2.2 Copyright Permission from Dove Press
2.3 Abstract
2.4 Introduction
2.5 Types of tuberculosis
2.5.1 Drug susceptible tuberculosis
2.5.2 Multidrug Resistant tuberculosis
2.5.3 Extensively resistant tuberculosis
2.6 Para amino salicylic acid
2.7 Isonicotinic acid hydrazine (Isoniazid)
2.8 Macrophages and survival mechanism of tuberculosis bacteria in macrophages
2.8.1 Macrophages
2.8.2 Inhibition of phagosome lysosome fusion
2.8.3 Inhibition of phagosomal acidification
2.8.4 Protection against oxidative radicals
2.8.5 Tryptophan aspartate-containing coat on the phagosome wall
2.9 Responding to tuberculosis intelligently with limited chemotherapy options
2.10 Drug Delivery Systems for chemotherapy tuberculosis
2.11 Drug Delivery Systems for pulmonary tuberculosis chemotherapy
2.12 Drug delivery systems for the targeted and slow delivery of anti-TB drugs
  2.12.1 Inhalable large porous particles (LPPs) of capreomycin
  2.12.2 Inhalable rifampin-containing mannitol microparticles
  2.12.3 Inhalable microparticles of polylactic acid
  2.12.4 Tuneable systems for the controlled release of drugs into the lungs
  2.12.5 Glucan particles (GPs) as a targeted delivery system to macrophages
  2.12.6 Plant proteins as drug delivery system
  2.12.7 Gelatin nano-vehicles
  2.12.8 Chitosan-montmorillonite (MMT) hydrogel
  2.12.9 Nanocomposite hydrogels of polyvinyl alcohol: sepiolite
  2.12.10 Bioceramic systems for osteoarticular tuberculosis
  2.12.11 Advantages of drug delivery system in tuberculosis chemotherapy
2.13 Conclusion
2.14 Acknowledgments
2.15 Disclosure
2.16 References

LITERATURE REVIEW (PART-B)
2.17 Inorganic nanolayers structure, preparation and Biomedical applications
2.18 Abstract
2.19 Introduction
2.20 Structure of the inorganic metal nanolayers
  2.20.1 Structure of brucite
  2.20.2 Structure of layered double hydroxides
  2.20.3 Structure of layered hydroxides
2.21 Miscellaneous applications of layered Double hydroxides
2.22 Drug delivery applications of layered double hydroxides
2.22.1 Layered double hydroxides in anticancer formulations
2.22.2 Layered double hydroxides in antimicrobial formulations
2.22.3 Layered double hydroxides as antimicrobial biomaterial
2.22.4 Layered double hydroxides in gene delivery
2.22.5 Layered double hydroxides as gene protective biomaterial
2.23 Sustained Release from inorganic nanolayers
2.24 Zeta potential
2.25 Cellular Uptake of layered double hydroxides
2.25.1 Cellular uptake mechanism
2.25.2 Mechanism of leaving the cell
2.26 Cytotoxicity assay
2.27 Biocompatibility of layered double hydroxides
2.28 Conclusive discussion
2.29 References

3 SUSTAINED RELEASE FORMULATION OF AN ANTI-TUBERCULOSIS DRUG BASED ON PARA AMINO-SALICYLIC ACID-ZINC LAYERED HYDROXIDE NANOCOMPOSITE
3.1 Copyright permission from Biomed Central Springer
3.2 Abstract
3.3 Introduction
3.4 Materials and methods
3.4.1 Materials
3.4.2 Preparation
3.4.3 Controlled release study
3.4.4 Cell culture
3.4.5 Methyl tetrazolium (MTT) assay
3.4.6 Characterization
3.4.7 Controlled release of P.aminosalicylic acid
3.4.8 Cell culture
3.4.9 MTT assay for cytotoxic study
3.4.10 Characterization
3.5 Results and Discussion
3.5.1 Powder X-ray diffraction
3.5.2 Spatial orientation of intercalated para amino salicylic acid
4 DEVELOPMENT OF A HIGHLY BIOCOMPATIBLE ANTI-TUBERCULOSIS NANODELIVERY FORMULATION BASED ON PARA-AMINO SALICYLIC ACID ZINC LAYERED HYDROXIDE NANOCOMPOSITE

4.1 Copyright permission from Hindawi 100
4.2 Abstract 102
4.3 Introduction 103
4.4 Materials and methods 104
4.4.1 Preparation of zinc layer hydroxides 104
4.4.2 Preparation Para aminosalicylic acid-zinc layered hydroxide nanocomposite 104
4.4.3 Material characterization 105
4.4.4 Controlled-release study 105
4.4.5 Bacterial studies 106
4.5 Results and discussion 108
4.5.1 X-ray Diffraction (XRD) analysis 108
4.5.2 Spatial Orientation of para aminosalicylic acid 109
4.5.3 Infrared spectroscopy 110
4.5.4 High Performance liquid chromatographic analysis 112
4.5.5 Elemental analysis 112
4.5.6 Thermogravimetric analysis 113
4.5.7 Surface morphology 114
4.5.8 In vitro release 116
4.5.9 Kinetics study of in vitro release 116
4.5.10 Particle size analysis 118
4.5.11 Antimycobacterial and antimicrobial assays 119
4.5.12 Cytotoxic study 122
4.6 Conclusion 125
4.7 Acknowledgement 125
4.8 Funding 125
4.9 References 126
DEVELOPMENT OF A BIOCOMPATIBLE NANO DELIVERY SYSTEM FOR TUBERCULOSIS DRUGS BASED ON A ISONIAZID-MG/AL LAYERED DOUBLE HYDROXIDES

7.1 Copyright Permission from Dove Press
7.2 Abstract
7.3 Introduction
7.4 Materials and Methods
7.4.1 Preparation of isoniazid-magnesiumaluminum layered double hydroxides by ion exchange method
7.4.2 Preparation of isoniazid-magnesiumaluminum layered double hydroxides by co-precipitation method
7.4.3 Material Characterization
7.4.4 Sustained Release Study
7.4.5 Mycobacterial Antimicrobial Susceptibility Testing Using MGIT
7.4.6 Non-Mycobacterium Antimicrobial Susceptibility Testing
7.4.7 Statistical analysis
7.4.8 Cell Culture

xv
xvi
8.4.5 Quantification of INH by HPLC analysis 209
8.5.6 Thermal Study 210
8.4.7 In vitro release study 212
8.4.8 Kinetic study of in vitro release 213
8.4.9 Surface morphology 215
8.4.10 Antituberculosis and antimicrobial activity 216
8.4.11 Cytotoxicity study on human normal lung normal lung cells MRC-5 and 3T3 fibroblast cells 219
8.5 Conclusion 222
8.6 Acknowledgments 223
8.7 Funding 223
8.8 References 224

9 CONCLUSION AND RECOMMENDATIONS 228
9.1 Selection of best nanodelivery system from the designed carriers 230
9.2 Recommendations 231

APPENDICES 232
Appendix A 232
Appendix B 233
Appendix C 234
Appendix D 235
Appendix E 236

BIODATA OF STUDENT 237
LIST OF PUBLICATIONS 238
**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>49</td>
</tr>
<tr>
<td>2.6</td>
<td>58</td>
</tr>
<tr>
<td>2.7</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>112</td>
</tr>
<tr>
<td>4.2</td>
<td>113</td>
</tr>
<tr>
<td>4.3</td>
<td>117</td>
</tr>
<tr>
<td>5.1</td>
<td>139</td>
</tr>
<tr>
<td>5.2</td>
<td>140</td>
</tr>
<tr>
<td>5.3</td>
<td>145</td>
</tr>
<tr>
<td>6.1</td>
<td>162</td>
</tr>
<tr>
<td>7.1</td>
<td>180</td>
</tr>
<tr>
<td>7.2</td>
<td>181</td>
</tr>
<tr>
<td>7.3</td>
<td>185</td>
</tr>
<tr>
<td>8.1</td>
<td>208</td>
</tr>
<tr>
<td>8.2</td>
<td>209</td>
</tr>
<tr>
<td>8.3</td>
<td>214</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>8.4</td>
<td>Percentage inhibition of the INH nanocomposites on microorganisms growth</td>
</tr>
<tr>
<td>9.1</td>
<td>Summary of Research</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of para aminosalicylic acid</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of isonicotinic acid hydrazine</td>
</tr>
<tr>
<td>2.3</td>
<td>Detailed structure of a macrophage showing a typical process of phagocytosis</td>
</tr>
<tr>
<td>2.4</td>
<td>Important factors of the survival mechanisms Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>2.5</td>
<td>Structure of capreomycin</td>
</tr>
<tr>
<td>2.6</td>
<td>Scanning electron micrograph of spray-dried capreomycin dry powder</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic representation of rifampin (Rif) loaded into Glucan particles</td>
</tr>
<tr>
<td>2.8</td>
<td>Different forms of Zein</td>
</tr>
<tr>
<td>2.9</td>
<td>Application of inorganic nanolayers schematic representation</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic representation of the brucite structure</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic representation of the structure of LDH</td>
</tr>
<tr>
<td>2.12</td>
<td>Structures of zinc hydroxide nitrate side view (a) and top view (b)</td>
</tr>
<tr>
<td>2.13</td>
<td>Confocal microscopic images of intracellular localization in NSC 34 cells</td>
</tr>
<tr>
<td>2.14</td>
<td>Release profiles of levodopa from the nanocomposite at pH 7.4 and pH 4.8</td>
</tr>
<tr>
<td>2.15</td>
<td>Endocytosis uptake mechanisms</td>
</tr>
<tr>
<td>2.16</td>
<td>Molecular structure of trypan blue</td>
</tr>
<tr>
<td>3.1</td>
<td>Powder X-ray diffraction patterns for Zinc oxide, Free PAS and PAS-zinc layered hydroxides nanocomposite</td>
</tr>
<tr>
<td>3.2</td>
<td>Three dimensional structure of PAS and its spatial orientation between the layers</td>
</tr>
<tr>
<td>3.3</td>
<td>FTIR spectra of free para amino salicylic acid (A) and PAS</td>
</tr>
<tr>
<td>3.4</td>
<td>TGA-DTG thermograms of para amino salicylic acid (A) and PAS-zinc layered hydroxide nanocomposites</td>
</tr>
<tr>
<td>3.5</td>
<td>Scanning electron micrographs of ZnO and PAS-ZLH nanocomposite</td>
</tr>
<tr>
<td>3.6</td>
<td>Surface area analysis isotherm</td>
</tr>
<tr>
<td>3.7</td>
<td>In vitro release of PAS from PAS-ZLH nanocomposite</td>
</tr>
<tr>
<td>3.8</td>
<td>Kinetic Model fitting of in vitro release</td>
</tr>
<tr>
<td>3.9</td>
<td>Cytotoxic effect of PAS, ZnO and PAS-ZLH on fibroblast cells3T3 for 24 hours</td>
</tr>
<tr>
<td>3.10</td>
<td>Cytotoxic effect of PAS, ZnO &amp; PAS-ZLH on fibroblast cells -3T3 for 48 hours.</td>
</tr>
<tr>
<td>3.11</td>
<td>Cytotoxic effect of PAS, ZnO &amp; PAS-ZLH on fibroblast cells -3T3 for 72 hours.</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>4.1</td>
<td>X-ray Diffraction pattern of zinc layered hydroxide (ZLH) and PAS-ZLH nanocomposite</td>
</tr>
<tr>
<td>4.2</td>
<td>Spatial orientation of PAS in interlayers of ZLH (nanocomposite A)</td>
</tr>
<tr>
<td>4.3</td>
<td>Infrared spectrum of para aminosalicylic acid and its nanocomposite</td>
</tr>
<tr>
<td>4.4</td>
<td>Thermogravimetric analysis–thermograms of PAS-ZLH</td>
</tr>
<tr>
<td>4.5</td>
<td>FESEM micrographs of ZLH and PAS-ZLH (nanocomposite A)</td>
</tr>
<tr>
<td>4.6</td>
<td>In vitro release of PAS from PAS-ZLH (nanocomposite A)</td>
</tr>
<tr>
<td>4.7</td>
<td>Kinetic Fitting data for PAS in vitro release from PAS-ZLH</td>
</tr>
<tr>
<td>4.8</td>
<td>Hydrodynamic size of the PAS-ZLH nanocomposite</td>
</tr>
<tr>
<td>4.9</td>
<td>Minimum inhibitory concentrations of PAS-ZLH</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of PAS-ZLH (nanocomposite A) on the inhibition of microbial growth using plate colony counting method at two concentrations</td>
</tr>
<tr>
<td>4.11</td>
<td>PAS-ZLH (Nanocomposite A) against mouse fibroblast cells 3T3</td>
</tr>
<tr>
<td>4.12</td>
<td>Cytotoxicity of samples on Lung Cells MRC-5 of PAS-ZLH (nanocomposite A) and the carrier ZLH after 24 hours incubation,</td>
</tr>
<tr>
<td>4.13</td>
<td>Human normal Lung Cells MRC-5 treated with PAS-ZLH (nanocomposite A) and the carrier ZLH for 48 hours</td>
</tr>
<tr>
<td>4.14</td>
<td>Human normal Lung Cells MRC-5 treated with PAS-ZLH (nanocomposite A) and the carrier ZLH for 72 hours</td>
</tr>
<tr>
<td>5.1</td>
<td>X-ray diffraction patterns of PAS-D (A), PAS-I (B) and free PAS</td>
</tr>
<tr>
<td>5.2</td>
<td>Three-dimensional structure of PASA (A) and molecular structural models</td>
</tr>
<tr>
<td>5.3</td>
<td>FTIR Spectra of (A) (PAS), (B) PAS-D, and (C) PAS-I</td>
</tr>
<tr>
<td>5.4</td>
<td>TGA-DTG thermograms of PAS (A), PAS-D (B), and PAS-I (C)</td>
</tr>
<tr>
<td>5.5</td>
<td>Scanning Electron micrographs of PAS-Zn/Al-LDHs</td>
</tr>
<tr>
<td>5.6</td>
<td>Release profiles of PAS from PAS-Zn/Al-LDHs</td>
</tr>
<tr>
<td>5.7</td>
<td>Fitting the data of PAS release from PAS-Zn/Al-LDHs</td>
</tr>
<tr>
<td>5.8</td>
<td>Cytotoxicity of samples on 3T3 fibroblast cells treated for 24 Hours</td>
</tr>
<tr>
<td>5.9</td>
<td>Cytotoxicity of samples on 3T3 fibroblast cells treated for 48 Hours</td>
</tr>
<tr>
<td>5.10</td>
<td>Cytotoxicity of samples on 3T3 fibroblast cells treated for 72 Hours</td>
</tr>
<tr>
<td>5.11</td>
<td>Cytotoxicity of samples on human lung fibroblast MRC-5 cells treated for 24 hours</td>
</tr>
<tr>
<td>5.12</td>
<td>Human lung fibroblast MRC-5 lung cells treated for 48 hours</td>
</tr>
<tr>
<td>5.13</td>
<td>Cytotoxicity of samples on human lung fibroblast MRC-5 cells treated for 72 hours</td>
</tr>
<tr>
<td>6.1</td>
<td>X-ray diffraction patterns of nanocomposite</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.2</td>
<td>HPLC Calibration curves of para aminosalicylic acid</td>
</tr>
<tr>
<td>6.3</td>
<td>Minimum inhibitory concentrations PAS nanocomposites</td>
</tr>
<tr>
<td>6.4</td>
<td>Effect of PAS nanocomposites (1mg) on the inhibition of microbial growth</td>
</tr>
<tr>
<td>6.5</td>
<td>Effect of PAS nanocomposites (2mg) on the inhibition of microbial growth</td>
</tr>
<tr>
<td>6.6</td>
<td>Cytotoxicity of samples on human lung fibroblasts MRC-5</td>
</tr>
<tr>
<td>7.1</td>
<td>Powder X-ray Diffraction patterns of isoniazid and nanocomposites</td>
</tr>
<tr>
<td>7.2</td>
<td>Molecular size of isoniazid and its spatial orientation the interlayer</td>
</tr>
<tr>
<td>7.3</td>
<td>FTIR Spectra of isoniazid and its Mg/Al-LDHs nanocomposites</td>
</tr>
<tr>
<td>7.4</td>
<td>Thermograms for isoniazid and its nanocomposites with Mg/Al-LDHs</td>
</tr>
<tr>
<td>7.5</td>
<td>In vitro release of isoniazid from nanocomposites with Mg/Al-LDHs</td>
</tr>
<tr>
<td>7.6</td>
<td>Pseudo second order kinetics of the isoniazid release from Mg/Al-LDHs</td>
</tr>
<tr>
<td>7.7</td>
<td>FESEM micrographs of isoniazid and its nanocomposites with Mg/Al-LDHs</td>
</tr>
<tr>
<td>7.8</td>
<td>Minimum inhibitory concentration of INH nanocomposites</td>
</tr>
<tr>
<td>7.9</td>
<td>Effect of INH nanocomposites (1mg) on the inhibition of microbial growth</td>
</tr>
<tr>
<td>7.10</td>
<td>Effect of INH nanocomposites (2mg) on the inhibition of microbial growth</td>
</tr>
<tr>
<td>7.11</td>
<td>Viability of fibroblast cells-3T3 when treated for 24 hours</td>
</tr>
<tr>
<td>7.12</td>
<td>Viability of fibroblast cells-3T3 when treated for 48 hours</td>
</tr>
<tr>
<td>7.13</td>
<td>Viability of fibroblast cells-3T3 when treated for 72 hours</td>
</tr>
<tr>
<td>7.14</td>
<td>Viability of human lung fibroblast MRC-5 cells when treated for 24 hours</td>
</tr>
<tr>
<td>7.15</td>
<td>Cytotoxicity of samples on human lung fibroblast MRC-5 cells treated for 48 hours</td>
</tr>
<tr>
<td>7.16</td>
<td>Cytotoxicity of samples on human lung fibroblast MRC-5 cells treated for 72 hours</td>
</tr>
<tr>
<td>8.1</td>
<td>XRD pattern for the isoniazid (INH) and its Zn/Al-LDHs nanocomposites</td>
</tr>
<tr>
<td>8.2</td>
<td>Spatial orientation of isoniazid between the inorganic interlayers</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>8.3</td>
<td>FTIR Spectra of isoniazid (INH) and nanocomposites A and B</td>
</tr>
<tr>
<td>8.4</td>
<td>Calibration curve obtained with standard concentrations of isoniazid</td>
</tr>
<tr>
<td>8.5</td>
<td>Thermogravimetric analysis of INH and its Zn/Al-LDHs nanocomposites</td>
</tr>
<tr>
<td>8.6</td>
<td>Release of isoniazid from its Zn/Al-LDHs nanocomposites</td>
</tr>
<tr>
<td>8.7</td>
<td>Pseudo-second-order kinetics of the isoniazid release from INH-Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.8</td>
<td>FESEM micrographs for the surface morphology of INH-Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.9</td>
<td>The MICs of INH, Zn/Al-LDHs and the nanocomposites A and B against TB</td>
</tr>
<tr>
<td>8.10</td>
<td>Antimicrobial activity using 1mg of INH and its Zn/Al-LDHs Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.11</td>
<td>Antimicrobial activity using 2 mg INH and its Zn/Al-LDHs nanocomposites</td>
</tr>
<tr>
<td>8.12</td>
<td>Cytotoxicity of samples on 3T3 fibroblast cells treated for 24 hours</td>
</tr>
<tr>
<td>8.13</td>
<td>Viability of fibroblast cells when treated for 24 hours against INH-Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.14</td>
<td>Viability of fibroblast cells when treated for 48 hours against INH-Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.15</td>
<td>Viability of fibroblast cells when treated for 72 hours against INH-Zn/Al-LDHs</td>
</tr>
<tr>
<td>8.16</td>
<td>Viability of human lung fibroblast MRC-5 cells when treated for 24 hours</td>
</tr>
<tr>
<td>8.17</td>
<td>Viability of human lung cells treated for 48 and 72 hours</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Inorganic nanolayers are the two dimensional nanomaterial whose structure is made up of infinite layers and the thickness of their layers in nanoscale range. Layered double hydroxides (LDHs) and layered hydroxide salts (LHS) are the types of inorganic nanolayered material having thickness in nanoscaled range (1-100nm)[1]. Drug delivery, gene delivery, biosensing science and bioimaging technology are the key tools of the modern-day biomedical sciences. Different materials are used for the application of the above mentioned biomedical tools but there are certain issues related to different materials such as cytotoxicity, lack of biodegradation and different types of material is used for individual application [2]. Inorganic nanolayers have many advantages for biomedical applications. It has been proven to be very high in vitro and in vivo biocompatibility, biodegradable, tendency to release the intercalated drugs in a sustained manner and is single material can be applied as drug delivery, gene delivery, biosensing and in bioimaging sciences [3-6]. Inorganic metal nanolayered hydroxides have been widely applied for the delivery of various pharmaceutical drugs and have found to be promising in improving the bioavailability of drugs, better biocompatibility and therapeutic efficacy [6-8].

1.2 Problem statement

Tuberculosis (TB) is an airborne infectious disease caused by the bacterium Mycobacterium tuberculosis (MTB). Tuberculosis can be classified in two types based of the infections, (1) Pulmonary tuberculosis, when MTB infect the lungs and (2) Extra pulmonary tuberculosis when MTB infect other organs of humans except lungs such as liver, spleen, kidneys, tonsils, intestine, brain and bones etc [9]. Tuberculosis has been lethal to humans for centuries till today and according the most recent global TB report (2013) by world health organization (WHO) there are about 8.6 million people were new cases of TB and approximately 1.3 million human died from the disease in the year 2012 [10]. Chemotherapy of TB is complicated by number of factors such as multidrug prescription, frequent dosage, adverse side effects anti-TB drugs and long treatment duration (6-24months). All of these factors result in the patients’ noncompliance to the chemotherapy of tuberculosis and patients’ noncompliance is the most common cause for the treatment failure. And unfortunately no new anti-TB drug has been introduced in the market in last 5 decades as the drug development is very lengthy and budget consuming process [10]. In this scenario when there has been no new anti-TB drug introduced in the market. We need to make better utilization of currently available anti-TB drugs. We can do this by reducing the adverse effect of the drugs, improving the
bioavailability of drugs and by reducing the concentration of dosages and by decreasing the dosing frequency of drugs. We can achieve all these important properties with biocompatible and biodegradable drug delivery systems having sustained release properties. Inorganic nanolayered metal hydroxides have all of these characteristics to be applied as drug delivery systems for anti-TB drugs.

1.3 Objectives

Following are the objectives of the study

1. To prepare anti-TB nanodelivery formulation based anti-TB drugs Isoniazid and Para aminosalicylic acid using metal layered hydroxides host (ZLH, Zn/Al-LDHs and Mg/Al-LDHs). To characterize the designed anti-TB nanodelivery systems using different analytical techniques (XRD, FT-IR, HPLC, CHNS, UV/Vis and FESEM)
2. To determine the \textit{in vitro} release of these anti-TB drugs in human body simulated PBS solution from the nanolayered host.
3. To determine their \textit{in vitro} cytotoxicity on human normal lung cell MRC-5 and 3T3 fibroblast cells.
4. To determine their therapeutic effect against mycobacteria tuberculosis and other Gram positive and Gram negative bacteria.

1.4 Significance of study

This study was carried out to design sustained release formulations of anti-TB drugs with biocompatible capabilities for the anti-tuberculosis drugs namely para aminosalicylic acid and isoniazid with inorganic nanolayers. The sustained release nanocomposites formulations have the potential to enhance the bioavailability of drug for longer period of time by sustained release of the drugs, thereby would reduce the dosing frequency of the drugs, protect the drug from physico-chemical degradations inside the body, and reduce the adverse effects to the drugs. All of these advantages would improve the patients’ compliance to the treatment of tuberculosis and would make the chemotherapy of tuberculosis patients’ friendly.
1.5 References

4. Wang, Q. O'Hare, D., Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical reviews 2012, 112 (7), 4124-55.
8.8 References

25. Wang, Q. O'Hare, D., Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical reviews 2012, 112 (7), 4124-55.
38. Chih-Chun Wen, H.-M. C., Swei-Shen Chen, Li-Ting Huang, Wei-Ting Chang, Wen-Chi Wei, Li-Chen Chou, Palanisamy Arulselvan, Jin-Bin Wu, Sheng-Chu Kuo and Ning-Sun Yang, Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines. Journal of biomedical science 2011, 18, 44.


CHAPTER 9

CONCLUSION AND RECOMMENDATIONS

In this research different anti-tuberculosis (anti-TB) nanodelivery formulations were designed and synthesized by intercalation of anti-tuberculosis drugs namely para-aminosalicylic acid (second line anti-TB drug) and isoniazid (first line anti-TB drug) using the metal layered hydroxides (inorganic nanolayers) as hosts. Zinc layered hydroxides, zinc aluminium layered double hydroxides, and magnesium aluminium layered hydroxides were used as metal layered hydroxides host.

Para amino salicylic was successfully intercalated into zinc layered hydroxides using zinc oxide and zinc nitrate hexahydrate as precursors. Para amino salicylic acid was also intercalated into zinc aluminium layered double hydroxides by using coprecipitation and ion exchange methods.

Isoniazid was successfully intercalated into zinc aluminium layered double hydroxides applying coprecipitation and ion exchange methods. Isoniazid was also successfully intercalated into magnesium aluminium layered double hydroxides using ion exchange and coprecipitation methods.

The anti-TB drugs para-aminosalicylic acid and isoniazid from the metal layered hydroxides hosts (inorganic nanolayers) were found to be release in two stages manner initially fast followed by more stable slow release. However, the overall release of these drug was found to be sustained. The in vitro sustained release of the designed anti-TB nanodelivery formulations would enhance the bioavalibility of these drugs in body for longer period of time.

Both of these drug tare thermally stabilized by the metal layered hydroxides (inorganic nanolayers) due to the electrostatic interactions between the negatively charged drug and positively charged nanolayers. In addition the metal layered hydroxides would protect the drug from physico-chemical degradations inside the body and this would also result in the reduction in the adverse affects associated with these drugs.

The anti-mycobacterial and antimicrobial studies were conducted for the therapeutic comparative studies. The minimum inhibitory concentration (MIC) of free para amino salicylic acid (PAS) against mycobacteria tuberculosis was found to be 5.0 µg/mL. The effective MICs for the PAS-Zn/Al-LDHs (prepared by co precipitation method), PAS-Zn/Al-LDHs (prepared by ion exchange method), PAS-Zinc layered hydroxides (using ZnO precursor) and PAS-Zinc layered hydroxides (using zinc nitrated hexahydrated) were found to be 1.97 µg/mL, 1.98 µg/mL, 0.83 µg/mL, and 1.40 µg/mL respectively against bacteria mycobacterium tuberculosis. The efficacy of PAS was improved 2.5 times by PAS-Zn/Al-LDHs (prepared by co precipitation method), PAS-Zn/Al-LDHs (prepared by ion exchange method). The efficacy of PAS was also found to be enhanced 5 times by PAS-Zinc layered hydroxides (using ZnO precursor) and it was increased 4 times by the PAS-Zinc layered hydroxides (using zinc nitrated hexahydrated).
Furthermore PAS based nanocomposites were also found active against Gram positive and Gram negative bacteria.

The MICs of the free drug, isoniazid against mycobacteria tuberculosis was found to be 2.3 µg/mL and in comparison to this, effective MICs of isoniazid-Mg/Al-LDHs prepared by ion exchange and coprecipitation methods were found to be 0.37 µg and 0.44 µg, respectively. The therapeutic efficacy of isoniazid was enhanced about 5 times by its nanodelivery formulations with Mg/Al-LDHs compared to the free isoniazid.

The effective MICs of isoniazid zinc aluminium layered double hydroxides (INH-Zn/Al-LDHs) prepared by coprecipitation and ion exchange methods were found to be 0.91 µg and 0.62 µg against the mycobacteria tuberculosis. Comparison of MIC of free drug isoniazid with effective MICs of nanocomposites revealed that the therapeutic efficacy were enhanced by about 2.5 times and 3.7 time by isoniazid-Zn/Al-LDHs prepared by coprecipitation and ion exchange methods, respectively.

The enhanced efficacies of para amino salicylic acid and isoniazid in metal layered hydroxides intercalated forms can be attributed to the nanoscaled size, which helps the better internalization inside the mycobacteria tuberculosis and sustained release of these drugs for longer period of time.

The all of above mentioned nanocomposites-based para aminosalicylic acid and isoniazid showed approximately four fold higher biocompatibility with human normal lung fibroblast cells MRC-5 and 3T3 fibroblast cells for up to 72 hours longer incubation period at the highest concentration of 50 µg/mL. Only exception to this was PAS-zinc layered hydroxides (prepared using ZnO precursor), which was found to show cytotoxicity in time concentration dependent manner with 3T3 fibroblast cells. However PAS-zinc layered hydroxides (prepared using ZnO precursor) was found to be highly biocompatible to human normal lung cells.

It can be concluded that metal layered hydroxides (inorganic nanolayers) fulfilled all the criteria of ideal drug delivery systems for anti-TB drugs and also for the other drugs due their high biocompatibility which would reduce the side effects, tendency to release the drugs in sustained manner, can protect the drugs from physico-chemical degradation, and enhances the therapeutic efficacy of the drugs.

The current research opens the horizon for the patient friendly tuberculosis treatment with high efficacy, low adverse affects and better therapeutic efficacy which would results in enhancement of patients; compliance to the chemotherapy of tuberculosis.
Table 9.1  Summary of the Research

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(% Drug Loading)</th>
<th>Sustained Release Period</th>
<th>(%) Viability of Human normal lung cells After 72 hours of incubation</th>
<th>MIC nanocomposites against bacteria M. tuberculosis</th>
<th>Effective MIC M. tuberculosis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid (INH)</td>
<td>-</td>
<td>1-2 hours only</td>
<td>20</td>
<td>2.3 µg/mL</td>
<td>2.3 µg/mL</td>
<td></td>
</tr>
<tr>
<td>INH-Mg/Al-LDHs (by coppt)</td>
<td>10.34%</td>
<td>3-5 days</td>
<td>86</td>
<td>3.60 µg/mL</td>
<td>0.37 µg/mL</td>
<td>Saifullah et al. 2014 (International Journal of nanomedicine)</td>
</tr>
<tr>
<td>INH-Mg/Al-LDHs (L.Exchange)</td>
<td>12.35%</td>
<td>3-5 days</td>
<td>86</td>
<td>3.60 µg/mL</td>
<td>0.44 µg/mL</td>
<td></td>
</tr>
<tr>
<td>INH-Zn/Al-LDHs (Co-ppt)</td>
<td>21.00%</td>
<td>4-6 days</td>
<td>80</td>
<td>7.40 µg/mL</td>
<td>0.91 µg/mL</td>
<td>Saifullah et al. 2014 J.Nanobiotechnology (UR)</td>
</tr>
<tr>
<td>INH-Zn/Al-LDHs (L.Exchange)</td>
<td>31.00%</td>
<td>3-5 days</td>
<td>80</td>
<td>7.40 µg/mL</td>
<td>0.62 µg/mL</td>
<td></td>
</tr>
<tr>
<td>P. Salicylic acid (PAS)</td>
<td>---</td>
<td>1.5-2 hours</td>
<td>80</td>
<td>-</td>
<td>5.00 µg/mL</td>
<td>Saifullah et. 2013 Chemistry central. Journal</td>
</tr>
<tr>
<td>PAS-Zn/LDHs (using ZnO)</td>
<td>17.00%</td>
<td>1- 5 days</td>
<td>80</td>
<td>5.50 µg/mL</td>
<td>0.83 µg/mL</td>
<td>Saifullah et al. 2014 DDDT</td>
</tr>
<tr>
<td>PAS-Zn/LDHs (using Zn2O3)</td>
<td>22.40%</td>
<td>0.5 - 5 days</td>
<td>80</td>
<td>6.10 µg/mL</td>
<td>1.40 µg/mL</td>
<td>Saifullah et al. 2014 Scientific World J.</td>
</tr>
<tr>
<td>PAS-Zn/Al-LDHs (Copt)</td>
<td>22.00%</td>
<td>3 – 5 days</td>
<td>80</td>
<td>7.90 µg/mL</td>
<td>1.73 µg/mL</td>
<td>Saifullah et al. 2013 DDDT Saifullah et al. 2014 DDDT</td>
</tr>
<tr>
<td>PAS-Zn/Al-LDHs (L.E)</td>
<td>16.60%</td>
<td>3-5 days</td>
<td>80</td>
<td>12.40 µg/mL</td>
<td>2.00 µg/mL</td>
<td></td>
</tr>
</tbody>
</table>

9.1 Selection of best nanodelivery system from the designed carriers

Almost all of the designed showed good drug delivery characteristics such as sustained release of the intercalated drugs, better therapeutic efficacy against the pathogenic bacteria mycobacteria tuberculosis and high biocompatibility with human normal lung cells. At this stage we cannot select best nanocomposite as all of them are found excellent nanodrug delivery systems in this *in vitro* research. Further *in vivo* studies for therapeutic efficacy on TB infected animal models and cytotoxicity studies on both healthy and infected animal are required for the selection the best delivery system among these designed drug delivery systems.
9.2 Recommendations

Further works should be carried out

a) In designing the nanodelivery formulation-based on metal layered hydroxides (inorganic nanolayers) namely layered double hydroxides or layered hydroxy salts for different drugs, biomolecules, and genes etc., metal hydroxides such as magnesium hydroxides, zinc hydroxides and aluminium hydroxides can be used instead of using salts of these metal which contain competing anions.

b) Use of metal hydroxides as precursors offer easy intercalation of neutral drugs molecules, even anionic drugs would easily be intercalated and further more final product would be free from contaminant, especially competing unwanted anions like nitrates, chlorides and acetate anions etc.

c) In vivo studies of these developed anti-TB nanocomposites based on para amino salicylic acids, isoniazid and metal layered hydroxides should carried out for TB infected animals.

d) In vivo anti-inflammatory studies using these nanocomposites should be carried out to investigate the affect on the animal tissues and organs.

e) Pharmacokinetic studies can also be conducted using the developed anti-TB nanocomposites to determine extent of bioavailability of the drugs and to study the removal of degraded metal ions from the body.

f) Nanocomposites prepared by using isoniazid as active agent should be tested against different cancer cell lines and isoniazid has been reported to possess anticancer activity.
BIODATA OF STUDENT

The student SAIFULLAH was born on 18th April 1982 in District Sukkur Sindh Pakistan. He received his primary education from the “Main primary school Sukkur”, secondary education from “Government High School Sukkur” Sindh Pakistan and Higher secondary studies from Govt: Comprehensive Higher Secondary School Sukkur Sindh Pakistan. His father late AHMED ALI BULLO was a high school teacher and retired as a High School principal. Mr. Saifullah has 10 siblings and he is number 7 out of 11. He did his Bachelor of Science (Hons) degree in chemistry and Master of Science degree in the field of Organic chemistry from Shah Abdul Latif University Khairpur, Sindh Pakistan in the year 2006. Then he joined International Centre for Chemical and Biological sciences (ICCBS) as a Research Officer and served there for five years till 2011. He was awarded fully funded Common wealth scholarship for Ph.D studies by Malaysian Higher Education Commission. In September 2011, he joined the Advanced Material and Nanotechnology Research group, Institute of Advanced Technology (ITMA) Universiti Putra Malaysia, under the supervision of Professor Dr. Mohd. Zobir Hussein. His area of research during his PhD was focussed on the nanosciences and nanomedicine. All of his research work has been published in the international journals.
9.4.1 Research Publications

1. **Bullo Saifullah and Mohd Zobir B Hussein.** Inorganic nanolayers structure, preparation and biomedical application (Review article). International Journal of Nanomedicine-2014 (Accepted).


14. Mohd Zobir Hussein, **Bullo Saifullah,** Palanisamy Arulselvan, Mohamed Ezzat El Zowalaty, Sharida Fakurazi, Thomas J Webster, Benjamin M Geilich. Nanodelivery system for anti-tuberculosis drug based on Mg/Al and Zn/Al layered double hydroxides-isoniazid nanocomposites. The International Conference for Academic Disciplines 16-19 June 2014 at Casa Convalescencia, Sant Antoni Maria Claret 171, Barcelona, Spain.
Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

Bullo Saifullah1
Mohamed E El Zowalaty2,1
Palanisamy Arulselvan2
Sharida Fakurazi2,3
Thomas J Webster4,5
Benjamin M Gellich5
Mohd Zobir Hussein1

1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia; 4Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering and Program in Biotechnology, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdullah University, Jeddah, Saudi Arabia

Abstract: The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.

Keywords: Zn/Al-layered double hydroxides, zinc layered hydroxides, tuberculosis, para-aminosalicylic acid (PAS), antimicrobial agents

Introduction

Tuberculosis (TB) has been lethal to humans for centuries and despite significant technological advances, it still claims millions of new lives every year. According to a recent global TB report by the World Health Organization, about 8.6 million new cases of TB were reported with about 1.3 million deaths in 2013.1

TB is a bacterial infectious disease caused by Mycobacterium tuberculosis, which generally targets the lungs (pulmonary TB) but can also infect other body organs like the liver, spleen, kidneys, tonsils, brains, intestine, etc. and is called extrapulmonary TB.2 The aforementioned classification is based on the target site of the infection. However, TB can also be classified according to the treatment prescription, namely: 1) drug susceptible TB (DSTB) (the most common form of TB, which can be cured by the four first-line anti-TB drugs: isoniazid, rifampicin, pyrazinamide, and ethambutol), 2) multidrug-resistant TB (MDR-TB) (the form of TB when bacteria become resistant to multiple anti-TB drugs, especially against isoniazid and rifampicin); MDR-TB is treated with second-line anti-TB drugs, namely para-aminosalicylic acid (PAS), cycloserine, amoxicillin, ciprofloxacin, thiacetazone, and cyclopentolate),3 and 3) extensively resistant TB, where the bacteria become resistant to first-line anti-TB...
Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide

Bullo Saifullah\textsuperscript{1}  
Palanisamy Arulselvam\textsuperscript{2}  
Mohamed Ezzat El Zowality\textsuperscript{2,3}  
Sharida Fakurazi\textsuperscript{2,4}  
Thomas J Webster\textsuperscript{5,6}  
Benjamin M Gellich\textsuperscript{5}  
Mohd Zobir Hussein\textsuperscript{1}

\textsuperscript{1}Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology,  
\textsuperscript{2}Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;  
\textsuperscript{3}Department of Environmental Health, Faculty of Public Health and Tropical Medicine,垫那大学,垫那,垫那,垫那,垫那;  
\textsuperscript{4}Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;  
\textsuperscript{5}Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA;  
\textsuperscript{6}Center of Excellence for Advanced Materials Research, King Abdullah University, Jeddah, Saudi Arabia

This article was published in the following Dove Press journal:  
International Journal of Nanomedicine  
9 October 2014  
Number of times this article has been viewed

Abstract: The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. This results show significant promise for the further study of these nanocomposites for the treatment of TB.

Keywords: tuberculosis, isoniazid, Mg/Al LDH, nanodelivery system

Introduction

\textit{Mycobacterium tuberculosis} (MTB) causes pulmonary tuberculosis (TB) when the bacterium infects the lungs, and extrapulmonary TB where it infects other organs such as the kidneys, liver, spleen, intestine, tonsils, bones, and brain.\textsuperscript{1} Patient non-compliance is the most common challenge in the treatment of TB; this is due to long treatment duration, adverse effects of anti-TB drugs, multilonging prescriptions, and frequent dosing.\textsuperscript{2} TB has been a threat to human beings for centuries; the latest global TB report states that there were \textbf{8.6} million people infected with TB in 2014 and \textbf{1.3} million died from the disease in 2012.\textsuperscript{3}

Isoniazid (INH) is one of the most powerful anti-TB drugs among four first-line anti-TB drugs; namely rifampin, isoniazid, pyrazinamide, and ethambutol.\textsuperscript{4} Patients are required to take a \textbf{306} mg dose of isoniazid daily for 6 months in combination with other anti-TB agents.\textsuperscript{5} However, there are many undesirable side effects associated with isoniazid such as hepatotoxicity, jaundice, hyperacuteliver failure, and hydralazine hypotension.\textsuperscript{6,7} Due to these adverse affects, the isoniazid dosage concentration is limited, and when the disease is treated with subtherapeutic doses, it can possibly develop resistance to that particular drug.\textsuperscript{8} Unfortunately, there have been no new anti-TB drugs introduced to the market over the past 5 decades.

Biocompatible drug delivery systems have been the focus of numerous studies since they can improve the efficacy of existing drugs.\textsuperscript{9} For example, drug delivery...
Research Article

Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

Bullo Saifullah,1 Palanisamy Arulselvan,2 Mohamed Ezzat El Zowalaty,2,3 Sharida Fukurazi,2,4 Thomas J. Webster,5,6 Benjamin Gelich,5 and Mohd Zobir Hussein1

1 Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3 Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia
4 Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
5 Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA 02115, USA
6 Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Mohd Zobir Hussein; mzobir@upm.edu.my

Received 26 March 2014; Accepted 15 May 2014; Published 23 June 2014

Academic Editor: You Qiang

Copyright © 2014 Bullo Saifullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against Mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.46 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells 3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly, the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.

1. Introduction

Tuberculosis (TB) has remained lethal to humans for centuries and is of great public health concern. There were about 1.4 million human deaths from TB and about 8.7 million people infected in 2012 [1, 2]. TB is also the second greatest killer of humans in the world by a single infectious agent after HIV/AIDS [1]. The situation has become even more dire by the reemergence of multidrug-resistant TB (MDR-TB) and in 2012, approximately 450,000 people developed MDR-TB and there was about 37% deaths of MDR-TB [1].

Chemotherapy of TB has been complicated by multdrug prescriptions, dosing frequency, longer treatment duration, and adverse side effects associated with anti-TB drugs [3, 4]. Since the drug development is lengthy, costly, and time consuming, it should not be surprising that no new anti-TB drug has reached the market in over 5 decades with the last anti-TB drug approved (rifampicin) in 1963 [3–5]. To cope
Controlled-release approaches towards the chemotherapy of tuberculosis

Bullo Saifullah1
Mohd Zobir B Hussein1,2
Samer Hasan Hussein Al Ali1
1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Abstract: Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is notorious for its lethality to humans. Despite technological advances, the tubercle bacillus continues to threaten humanity. According to the World Health Organization's 2011 global report on TB, 8.3 million cases of TB were reported in 2010, with a loss of 1.7 million human lives. As drug-susceptible TB requires long-term treatment of between 6 and 9 months, patient noncompliance remains the most important reason for treatment failure. For multidrug-resistant TB, patients must take second-line anti-TB drugs for 18–24 months and many adverse effects are associated with these drugs. Drug-delivery systems (DDSs) seem to be the most promising option for advancement in the treatment of TB. DDSs reduce the adverse effects of drugs and their dosing frequency as well as shorten the treatment period, and hence improve patient compliance. Further advantages of these systems are that they target the disease area, release the drugs in a sustained manner, and are biocompatible. In addition, targeted delivery systems may be useful in dealing with extensively drug-resistant TB because many side effects are associated with the drugs used to cure the disease. In this paper, we discuss the DDSs developed for the targeted and slow delivery of anti-TB drugs and their possible advantages and disadvantages.

Keywords: Mycobacterium tuberculosis, drug-delivery system, targeted delivery, anti-TB drug, TB, patient compliance

Introduction: Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, remains a most lethal disease in humans. The tubercle bacillus has tremendous ability to cope with the human immune system and has developed the ability to survive and do well within macrophage phagosomes. Despite technological advances, TB continues to threaten humans. According to the World Health Organization’s 2011 global report on TB 2011 World Health Organization (WHO) report, 8.3 million TB cases were reported in this year, approximately 1.35 million of which were fatal with an additional 0.35 million fatalities in individuals with HIV. TB remains among the three major causes of death among females aged 15–44 years old and approximately 320,000 women died due to TB in 2010. The identification and initial treatment of multidrug-resistant TB (MDR-TB) remain the most important aspects to be addressed. Furthermore, TB’s resistance to contemporary TB antibiotics is due to its dormant form in the host cells. It is known that rifampin, isoniazid, and ethambutol (but not pyrazinamide) require bacteria to reproduce in order to perform their function. It is thought that the bacteria’s ability to remain dormant allows them to be phenotypically resistant to prescribed antibiotics.
Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

Bullo Saifullah ¹, Mohd Zobir Hussein¹, Sarmer Hasan Hussein-Al-Al², Palanisamy Arulesivan³ and Sharida Faikurrizzi¹,⁴

Abstract

Background: Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and is a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6–24 months which is a major cause for patients non compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti tuberculosis drug on the market for more than 50 years, as the drug development is very lengthy and budget consuming process.

Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavailability of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physico chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB.

Result: An anti tuberculous drug, 4 amino salicylic acid (4 ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4 ASA is stabilized in the interlayers by electrostatic interaction. The release of 4 ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal MDR TB cells shows it reduces cell viability in a dose- and time dependent manner.

Conclusions: Sustained release formulation of the nanocomposite, 4 ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less toxic to the cell is a step forward for a more patient friendly chemotherapy of Tuberculosis.

Keywords: Para Amino salicylic acid (PAS/4 ASA), MDR TB, Zinc layerd hydroxide, Nanocomposite, 3T3 cell lines

¹Correspondence: mzbri@putra.upm.edu.my

¹Materials Synthesis and Characterization Laboratory (MSDL), Institute of Advanced Technology (IAT), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Full list of author information is available at the end of the article

© 2013 Saifullah et al; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

Bullo Saifullah1
Mohd Zohir Hussein1
Samer Hasan Hussein-Al-Ali2
Palanisamy Arulselvan1
Sharida Fukarazi1,4
1Materials Synthesis and Characterization Laboratory, 1Laboratory of Molecular Biomedicine, 2Laboratory of Vaccines and Immunotherapeutics, 3Department of Human Anatomy, University Putra Malaysia, Serdang, Selangor, Malaysia

Abstract: We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc-aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.9% and 16.6% for PASA-D and PASA-I, respectively. In vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT] assay) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.

Keywords: drug-delivery system, slow-release nanocarrier, tuberculosis, biocompatible nanocomposites

Introduction
Layered double hydroxides (LDHs) have a hydroxalite-like structure in which some of the divalent cations are replaced by trivalent cations, which results in positively charged brucite-like sheets stacked on top of one another, resulting in a layered structure. The positive charge of these brucite-like nanosheets is neutralized by the anions and water molecules.1 A variety of anions can be accommodated between the layers to counter balance the positive charge and this tendency makes them versatile to be used for different applications. The anions can be inorganic, like hydroxides, nitrates, and sulfates, and organic, like drugs, amino acids, dyes, polymers, and DNA etc.2,3 LDHs are represented by the general formula (M1+,M2+)(OH)nx+yH2O, in which M1+ is a divalent metal ion, M2+ is a trivalent metal ion, and anions are used to neutralize the positive charge of the sheets. The LDHs have many applications, such as their use for extraction of toxic waste from water,1 in catalysis,4 and as a flame retardant,5 and they have also been used in chiral separation.6 Recently, the most important application of LDHs has been investigated, particularly slow-release drug-delivery systems. Different drugs have been intercalated recently into nanosheets of LDHs, such as anticancer drugs, anthistamines, antibiotics, and antimicrobials.7-9

245
9.4.2 Conferences /Workshops/ Posters/ Proceedings


3. **Mohd Zobir Hussein, Bullo Saifullah et al.** Nanodelivery system for anti-tuberculosis drug based on Mg/Al and Zn/Al layered double hydroxides-isoniazid nanocomposites. The International Conference for Academic Disciplines 16-19 June 2014 at Casa Convaleescencia, Sant Antoni Maria Claret 171, Barcelona, Spain.


5. Workshop on Advanced Materials and Nanotechnology 2013 (WAMN), Organized by Institute of Advanced Technology (ITMA), University Putra Malaysia (UPM), 10-11 September 2013.

6. Nanomaterials and Nanodelivery Workshop 2013. Organized by Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia 25th April.


8. Animal Cell Culture Workshop 25-27th June 2012. Organized by Laboratory of Vaccines and Immunotherapeutics Institute of Bioscience (IBS), University Putra Malaysia (UPM).

9. Workshop on Advanced Materials and Nanotechnology 2011 (WAMN2011). Organized by Institute of Advanced Technology (ITMA), Faculty of engineering & Faculty of Science UPM, 16-17th November 2011.
UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: FIRST SEMESTER 2014/2015

TITLE OF THESIS / PROJECT REPORT:
DEVELOPMENT OF NANO DELIVERY SYSTEMS FOR ANTI-
TUBERCULOSIS DRUGS USING METAL HYDROXIDES
NANOLAYERED HOSTS.

NAME OF STUDENT: SAIFULLAH

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (✓)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

✓ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

☐ PATENT (Part of it is possible) Embargo from 19/Nov/2014 until 18/Nov/2015 (date) (date)

(Signature of Student) (Signature of Chairman of Supervisory Committee)

Date: 19-11-2014 Date: 19 Nov 2014

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]