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In this study, firstly, consideration is given to the traditional maximum likelihood 

estimator and the Bayesian estimator by employing Jeffreys prior and Extension of 

Jeffreys prior information on the Weibull distribution with a given shape under right 

censored data. We have formulated equations for the scale parameter, the survival 

function and the hazard functionunder Bayesian with extension of Jeffreys prior. 

Next we consider both the scale and shape parameters to be unknown under 

censored data. It is observed that the estimate of the shape parameter under the 

maximum likelihood method cannot be obtained in closed form, but can be solved 

by the application of numerical methods. With the application of the Bayesian 

estimates for the parameters, the survival function and hazard function, we realised 

that the posterior distribution from which Bayesian inference is drawn cannot be 
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obtained analytically. Due to this, we have employed Lindley’s approximation 

technique and then compared it to the maximum likelihood approach. 

 

We then incorporate covariates into the Weibull model. Under this regression model 

with regards to Bayesian, the usual method was not possible. Thus we develop an 

approach to accommodate the covariate terms in the Jeffreys and Modified of 

Jeffreys prior by employingGauss quadrature method. 

 

Subsequently, we use Markov Chain Monte Carlo (MCMC) method in the Bayesian 

estimator of the Weibull distributionand Weibull regression model with shape 

unknown. For the Weibull model with right censoring and unknown shape, the full 

conditional distribution for the scale and shape parameters are obtained via Gibbs 

sampling and Metropolis-Hastings algorithm from which the survival function and 

hazard function are estimated. For Weibull regression model of both Jeffreys priors 

with covariates, importance sampling technique has been employed. Mean squared 

error (MSE) and absolute bias are obtained and used to compare the Bayesian and 

the maximum likelihood estimation through simulation studies. 

Lastly, we use real data to assess the performance of the developed models based on 

Gauss quadrature and Markov Chain Monte Carlo (MCMC) methods together with 

the maximum likelihood approach. The comparisons are done by using standard 

error and the confidence interval for maximum likelihood method and credible 

interval for the Bayesian method.    
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The Bayesian model for Weibull regression distribution with known and unknown 

shape using right censored data for Jeffreys prior and modified Jeffreys priors 

obtained by Gauss quadrature method are better estimators compared to maximum 

likelihood estimator (MLE). Moreover, the extention of the Bayesian model for 

Weibull regression distribution using right censored data via Markov Chain Monte 

Carlo (MCMC) give better result than maximum likelihood estimator (MLE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

v 
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KELANGSUNGAN HIDUP BAYESIAN DAN ANGGARAN BAHAYA 

UNTUK REGRESSION WEIBULL DENGAN DATA DITAPIS 

MENGGUNAKAN DIUBAH SUAI JEFFREYS SEBELUM 

 

Oleh 

AL OMARI MOHAMMED AHMED 

Mei 2013 

 

Pengerusi: Profesor Noor Akma Ibrahim, PhD 

Fakulti: Sains 

Dalamkajianini, 

pertamanyadipertimbangkanpenganggarkebolehjadianmaksimumtradisionaldanpeng

anggarBayesan yang menggunakan prior Jeffreysdankembanganmaklumat prior 

Jeffreysbagi data tertapissebelahkanan yang bertaburanWeibulldengan parameter 

bentukdiberikan. Kami telah merumuskan persamaan bagi parameter skala, fungsi 

mandirian dan fungsi bahaya dibawah Bayesan dengan kembangan prior Jeffreys. 

Seterusnya kami mempertimbangkan apabila kedua-dua parameter bentuk dan skala 

tidak diketahui bagi data tertapis ini. Diperhatikan bahawa bentuk tertutup tidak 

boleh diperolehi apabila kaedah kebolehjadian maksimum digunakan untuk 

menganggar parameter bentuk, walau bagaimanpun ianya boleh diselesaikan dengan 

menggunakan kaedah berangka. Bagi menganggar parameter, fungsi mandirian dan 

bahaya menggunakan kaedah Bayesan, taburan posterior dari mana inferens 
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Bayesan diperolehi tidak boleh diperolehi secara analitik. Yang demikian kami 

gunakan teknik penghampiran Lindley dan membandingkannya dengan pendekatan 

kebolehjadian maksimum. 

Kami kemudiannya menggabungkan kovariat ke dalam model Weibull. Dibawah 

model regresi ini dengan Bayesan, kaedah biasa tidak boleh digunakan. Oleh itu, 

kami bangunkan suatu pendekatan untuk mengambilkira kovariat dalam Jeffreys 

prior dan mengubah suai Jeffreys prior dengan menggunakan kaedah kuadratur 

Gauss. 

Seterusnya kami gunakan kaedah Rantai Markov Monte Carlo (RMMC) dalam 

anggaran Bayesan bagi taburan Weibull dan regresi Weibull dengan parameter 

bentuk tidak diketahui. Bagi model Weibull dengan tapisan sebelah kanan dan 

parameter bentuk tidak diketahui, taburan bersyarat yang penuh bagi parameter 

skala dan bentuk diperolehi melalui pensampelan Gibbs dan algoritma Metropolis-

Hastings dari mana fungsi mandirian dan bahaya dianggar. Untuk model regresi 

Weibull menggunakan kedua-dua prior Jeffreys, teknik pensampelan kepentingan 

digunapakai. Ralat kuasadua min dan kepincangan mutlak diperolehi dan digunakan 

untuk membandingkan anggaran Bayesan dengan kebolehjadian maksimum melalui 

kajian simulasi. 

Akhir sekali kami gunakan data sebenar untuk menilai prestasi model yang telah 

dibangunkan berdasarkan kaedah kuardratur Gauss dan Rantai Markov Monte Carlo 

bersama pendekatan kebolehjadian maksimum. Perbandingan dilaksanakan dengan 

menggunakan ralat piawai dan selang keyakinan bagi kaedah kebolehjadian 

maksimum dan selang kredibel bagi kaedah Bayesan. 
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Model Bayesian untuk taburan regresi Weibull dengan bentuk yang diketahui dan 

tidak diketahui menggunakan data tertapis kekanan untuk Jeffreys prior dan  

Jeffreys prior diubahsuai, yang diperoleh  melalui  kaedah kuadratur Gauss adalah 

penganggar yang lebih baik berbanding dengan penganggar kebolehjadian 

maksimum (maximum likelihood estimation, MLE). Selainitu, kembangan model 

Bayesian untuktaburanregresiWeibullmenggunakan data tertapis yang betulmelalui 

MCMC bolehmemberikanhasil yang lebihbaikdaripada MLE. 
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CHAPTER1 

INTRODUCTION 

1.1 Background 

One of the most appealing classical statistical techniques used for fitting statistical 

models to data as well as providing estimates for the parameters of a model is the 

maximum likelihood estimation (MLE) method. It is for investigating the 

parameters of a model. There are two major points for which this method intends to 

achieve. The first point is that, it provides some sensible computational analysis in 

our quest to fitting statistical model to data. The second point is that it gives very 

good response in a computational point of view. The logic or reasoning behind 

maximum likelihood parameter estimation is to discover those parameters that grow 

up the probability of a sample data. Statistically, it is considered that maximum 

likelihood estimation gives good estimates and has very good statistical properties 

but with some few exceptions. Forthrightly, the maximum likelihood estimation 

method is considered as multifaceted as a result of which it has been employed in 

many models with different data sets. In addition to this, it provides very efficient 

ways of measuring uncertainty via confidence bounds. Maximum likelihood 

estimation contains distinctively deep mathematical implementation, although it has 

a simple methodology (Croarkin& Tobias, 2002). 

 

On the other hand, Bayesian estimation approach has recently become a generally 

acceptable method in estimating parameters which is now in rivalry with other 

methods. Inthe past, the Bayesian approach was discouraging due to the necessity of 

numerical integration. However, as a result of the radical change in the computer-
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intensive sampling methods of estimation, the Bayesian method is now vigorously 

pursued by researchers for its comprehensive approach to the estimation of complex 

models. In Bayesian, inference is based on the posterior estimate, and the posterior 

estimate is simply the combination of ones prior knowledge and the availability of 

the data (the likelihood). When the prior is well defined, the Bayesian approach 

tends to be very precise because the prior brings in more information and the 

posterior estimate is based on the combined sources of information (prior and 

likelihood estimation). 

 Bayesian analysis can be used as a substitute for hypothesis testing as it is applied 

in the classical stand point where p-values are constructed in the data space. The p-

value is simply the measure of consistency by calculating the probability of which 

the results are observed from the data sample, with the assumption that the null 

hypothesis is true. Those who use this test, mostly interpret the p-values as being 

associated to the hypothesis space; which is observed as a range for the parameter 

and the data given. In interpreting probabilities of this nature, it is observed that this 

is more suitably interpreted using the Bayesian approach. The classical approach to 

confidence interval for the estimation of parameters is consciously perceived 

because in the analogy, say 95% confidence interval, we have that when the sample 

is repeated several times there is the likelihood that the true parameter will fall 

within the range approximately 95% of the time. We also perceived that the true 

parameter may not be observed after drawing only one sample data because the 

parameter under investigation is constant. This contradicts the Bayesian analogy in 

that we see the parameter as being random and can therefore conclude after having 

observed a sample data say 95%, of the Bayesian credible interval contain the true 

parameter with approximately 95% certainty (Congdon, 2001). 
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1.1.1. Right Censoring Data  

One of the special features of survival data is censored observations. There are 

several types of censoring mechanisms and here we will consider right censoring 

which is made up of Type-I and Type-II. Type-I censoring is where a study is 

designed to end at some pre-specified given time and an event is said to have taken 

place if and only if the event occurs before or at the specified time. Censoring times 

vary according to individuals. We make use of the following notations for right 

censoring.Consider an individual under study, with the assumption that X represents 

the lifetime of the individual and C (C for “right” censoring time) the fixed 

censoring time. X is taken to be independent and identically distributed with 

probabilitydensity function f (x) and survival function S (x). In a situation where 

Xgoes beyond C, where C is the censored time, then the individual is said to have 

survived. The data described above can be represented by T and�, where�denotesthe 

lifetime if the event occurs,that is� � 1 orif it iscensored,� =0. The observed time T 

isthe minimum of the failure and censored times that isT = min(X, C). 

 

Another type of right censoring is Type-II censoring. In this type of censoring the 

experiment continues till the r-th failure takes place or occurs wherer is a pre-

specified integer with r<nwithn as the sample size. This censoring is mostly applied 

in engineering for testing durability of equipments. Suppose all n units are put on a 

life test at the same time, the test is terminated when the pre-specified number r out 

of the n units have failed. One of the advantages of this censoring is that it reduces 

cost and maximizes judicious use of time since testing all the n units may take a 

longer time for all to fail thereby resulting in high cost. Since Type-II censored data 
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consist of a specified r lifetimes out of n, it makes the statistical treatment very 

simple to deal with because the theory of order statistics is employed directly to 

determine the likelihood and other inferential techniques. Here, it should be noted 

that r is the number of failures and n - r the number of censored observations as in 

Klein and Moeschberger (2003). 

 

1.1.2 Parametric Maximum Likelihood Estimation 

 

   The likelihood function of the sample data is simply the mathematical expression 

of maximum likelihood estimation and the likelihood of a set of data can be said to 

be the probability of acquiring that particular set of data with respect to the chosen 

probability model. This mathematical expression has in it the unknown distribution 

parameters. The parameter value that maximizes the likelihood is referred to as 

the Maximum Likelihood Estimate or MLE. ( Croarkin& Tobias, 2002) 

We introduce the concept of maximum likelihood estimation with probability 

density function (pdf), where we have set ofrandom lifetimes 1, , nt t�  and the vectors 

of the unknown parameters 1( , , )nθ θ θ= � , then the likelihood function ( ; )L tθ  is 

given as  

1

( ; ) ( ; )
n

i
i

L t f tθ θ
=

= ∏ .                       (1.1) 

In trying to determine the MLE’s of the parameters that maximizes the likelihood 

function, we take the natural logarithm of the likelihood function, differentiate it 

with respect to the unknown parameters and set the resulting equation to zero. In the 

Weibull model, the scale parameter can easily be determined but with regards to the 
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shape parameter there is the need to employ a numerical approach which in most 

cases is determined by Newton-Raphson method, as stated by Croarkin& Tobias 

(2002). 

For a regression model with maximum likelihood estimation, we introduce the 

covariate parameters through the parameter as given below 

exp( )ixθ β ′= , 

where, 0 1 2( , , , , )nβ β β β β′ = �  is the vector of the parameters of covariate and                                                           

1 2(1, , , , )i i i inx x x x= � is the vector of covariates. 

Then the likelihood function of the covariates ( ; )L tβ ′ , is given as  

1

( ; ) ( , )
n

i
i

L t f tβ β
=

′ ′= ∏ .                       (1.2) 

The maximum likelihood estimation of the parameters of covariatecan be obtained 

in a similar manner in the estimation of the likelihood functionas given in equation 

(1.1). In dealing with the Weibull model, the scale parameter is replaced by the 

covariate. The parameter of the covariate with respect to the shape parameter cannot 

be determined analytically, therefore, there is the need to employ a numerical 

approach which in most cases is determined by Newton-Raphson method. 

 

1.1.3 Survival and Hazard Functions 
 

The essential or elementary measurable property that is employed to characterise 

time-to-event phenomena is the survival function. It is the probability that an 
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individual will survive past time t (where an individual is experiencing the event 

after time t). It is defined as 

( ) Pr( )S t T t= > .                                                   (1.3) 

With regards to equipment or items failure in a manufacturing industry, S (t) is 

known as the reliability function. If T is taken to be a continuous random variable, it 

implies that S (t) is also continuous, and an absolutely decreasing function. The 

survival function is a complement of the cumulative distribution function since T is 

a continuous random variable, which is, S (t) =1- F (t), where F (t) = Pr (T �t). The 

survival function is also the integral of the probability density function, f (t), where 

( ) Pr( ) ( )
t

S t T t f t dt
∞

= > = � .                           (1.4)      

Consequently, 

( )
( )

( )
dS t

f t
d t

−= . 

Observe that f (t) dtcan be considered as the “approximate” probability which 

indicates that the event will occur at time t with f (t) taken as a nonnegative function 

where the area classified within f (t) is equal to one (Klein and Moeschberger, 2003). 

 

An important measurable quantity that is central in survival analysis is the hazard 

function. The hazard function is called the instantaneous failure rate in reliability, 

the concentrated or intensity function in stochastic processes, in epidemiology it is 

known as the age-specific failure rate, in demography it is the force of mortality, the 

inverse of the Mill’s ratio is what it is known in economics, or simply as the hazard 

function. The hazard function is defined as 
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0

[ | ]
( ) lim

t

P t T t t T t
h t

t∆ →

≤ < + ∆ ≥=
∆

.                             (1.5)      

Having considered T as the continuous random variable, then, the cumulative hazard 

function denoted by H(t) is a relative quantity and given as 

0

( ) ( ) ln[ ( )] .
t

H t h u du S t= = −�  

As a result, the continuous lifetime is 

0

( ) exp[ ( )] exp[ ( ) ].
t

S t H t h u du= − = −�  

 

From (1.5), one may observe that h (t) �t can be expressed as the “approximate” 

probability about an individual with age t which is experiencing the event at the next 

moment in time. The hazard function is very useful in ascertaining the desired 

failure distribution to make use of substantial facts or information surrounding the 

technicalities of the failure and to explain accordingly the way certain occurrences 

change with time.  

 

 The hazard function has many shapes and that the only limitation is that h (t) should 

be nonnegative, that is h (t) � 0. 
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1.1.4 Bayesian Estimation 

Ifnitems are put on test with the assumption that their recorded lifetimes form a 

random sample with size n chosen from a particular population and having ( | )f t θ  

as the probability density function and density function is conditioned on the 

parameter, then the joint conditional density with respect to the sampling vector 

1 2( , , , )nT T T T= � is 

1

( | ) ( | ),
n

i
i

f t f tθ θ
=

= ∏ (1.6) 

If 1 2( , , , )nt t t t= � , is the lifetime, then ( | )f t θ  can be considered as a function of � 

and not of t. If the above condition is satisfied, then we can express this 

mathematically as ( ; )L tθ  which is known as the likelihood function of t given �. To 

emphatically establish the significance of ( | )f t θ  methodologically, we have 

( | ) ( ; )f t L tθ θ= . 

We can consider �as an interpretation of a random vector � which has g(�) as the 

prior density known as the prior model. In Bayesian inference the prior model is of 

significance which the details about how g(�) can be chosen will be discussed later 

in this section. The joint densities with respect to Tand � is found by simply 

applying the multiplication theorem of probabilities as 

( , ) ( ) ( | )f t g f tθ θ θ= .(1.7) 

The marginal density of the lifetimecan be expressed as 

( ) ( ) ( | ) .Df t g f t dθ θ θ= � (1.8) 
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with the integral taken over D of �, the admissible range. The conditional density 

of�, given the datat, is found by using Bayes’ theorem 

( , ) ( ) ( | )
( | )

( ) ( )
f t g f t

g t
f t f t

θ θ θθ = = ,(1.9) 

where ( | )g tθ  is known as the posterior density of �. The posterior model is used in 

the Bayesian perspective to make inferences about the parameter �and for 

hypotheses testing on �. We shall in most occasions henceforth refer to the posterior 

distribution simply as “posterior” and the prior distribution as the “prior”. In Bayes 

theorem if ( | )f t θ  is regarded as the likelihood function that is ( | )L t θ , then (1.6) 

can be rewritten as 

( | ) ( ) ( | )g t g L tθ θ θ∝ .(1.10) 

 

Equation (1.7) implies that there is a direct proportionality between the product of 

the prior distribution and the likelihood function against the posterior distribution. 

The necessity of the proportionality constant needs to be emphasised in that it 

ensures that the posterior density integrates to one, which is known as the marginal 

density of T. 

 

In Bayesian estimation approach a loss function is always crucial since it gives an 

indication about the loss incurred in using θ̂ when the true state of nature isθ . If 

θ̂ θ= then we have a zero loss. As a result of which the loss function ˆ( , )θ θ� is 

mostly taken to be  

�( , ) ( ) ( )hθ θ θ ϕ θ θ= −� ,                                        (1.11) 
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with (.)ϕ  been the non–negative function of the error ˆθ θ− such that (0) 0ϕ =  and 

h(�) is a non–negative weighting function that shows comparatively the seriousness 

of a given error for different values of �. If we assume this loss function, the 

function h(�) can be considered as a constituent of the prior g(�) in Bayesian 

estimation. Due to the aforementioned reason, the function h (�) in (1.8) is mostly 

seen as a constant. With one–dimensional parameter say �, the loss function can be 

expressed mathematically as 

�

( , )
B

Aθ θ θ θ= −� ,                                      (1.12) 

where A, B> 0. This loss function is called the quadratic or squared-error loss if and 

only if B = 2, but with B = 1, (1.9) assumes a linear form and becomes proportional 

to the absolute value of the estimation error known as the absolute–error loss. 

The Bayesian estimator, for any specified prior g(�), will be the estimator that 

minimizes the posterior risk given by 

 

2 2
�

[ ( ) | ] ( ) ( | )DE A t A g t dω θ θ θ θ θ− = −� .(1.13) 

provided this expectation exists.  After adding and subtracting ( | )E xω and 

simplifying, we have 

2 2�[ ( ) | ] [ ( | )] ( | ),E A t A E t AVar tω θ θ ω ω− = − + (1.14) 

which is minimized when 

ˆ ( | ) ( | ) .DE t g t dθ ω θ θ θ= = �                            (1.15) 
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With the squared–error loss function the Bayesian estimator is simply the posterior 

mean of ω  given t. 

 

Prior distributions can be divided into several distinct ways. The most common 

categorisation is by simply dichotomizing the prior into “proper” and “improper”. 

Proper prior is simply a prior that assumes a positive weight age of the values of the 

parameters to a total of one. Hence a proper prior is a weight function that meets the 

condition of probability mass function or a density function. Improper prior on the 

other hand any weight function that integrates or sums over the possible values of 

the parameter to a value other than one, say K. If we assume K to be a finite value, 

then an improper prior can persuade or influence a proper prior by normalizing the 

function. Other categorizations of priors according to properties, for instance, non–

informative, or by distributional forms, e.g., beta, gamma or uniform distributions 

(Rinne, 2009). 

 

When covariate is added to the Bayesian method, the survival function and hazard 

function will frequently depend both on time t and on covariates ix , which may be 

fixed throughout the observation period or may be time varying,see Congdon(2001). 

 

The Bayesian using prior estimator under loss function for survival and hazard 

functions with covariate is the integration over all parameters of covariate for the 

survival function of the regression model combining with the posterior as shown 

below, 

0( ) ( ) ( | )D D M i nS t S t x d dβ β β′= ∏� �� � ,(1.16)
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0( ) ( ) ( | )D D M i nh t h t x d dβ β β′= ∏� �� � ,                           (1.17) 

where the ( ) and ( )M MS t h t is the survival function and hazard function respectively 

for the maximum likelihood estimation, and ( | )ixβ′∏  is the posterior density 

function of the Bayesian method. 

 

1.1.5Jeffreys Prior and Extension of Jeffreys Prior. 

 

Non-informative prior is one of the categories of the prior distribution. It refers to a 

situation where there is very limited knowledge or information available to the 

researcher. With non-informative prior there is little or no influential information 

that is added to the actual data available. What this means is that we have an 

occurrence of a set of parameter values in which the statistician believes that the 

choice of a parameter is equally likely.Jeffreys prior and Extension of Jeffreys prior 

are used to avoid any hyper parameter specification. Both areinvariant under 

reparametrization, because of the relation to the Fisher information, when we have 

large information, we minimize the influence of the prior such that it is as non-

informative as possible. Priors like Jeffrey are considered a default procedure and in 

practice should be used if we have a lot of data and few parameters. Moreover, 

Jeffreys prior and Extension of Jeffreys prior are very useful for data that do not 

have any prior information available and give better result in many cases than 

classical estimation. 
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Another type of prior is theuniform prior distribution that is considered uniformly 

distributed over the interval of interest. Box &Tiao(1973) gives the following 

definition: 

 

If ( )φ θ  is a one–to–one transformation of �, then a prior is locally proportional to 

( ) /d dφ θ θ is non–informative for the parameter �if, in terms of φ , the likelihood 

curve is data translated; that is, the data tonly serve to change the location of the 

likelihood ( | )L t θ . 

A general rule to find a non–informative prior has been proposed by Jeffreys (1961), 

known as Jeffreys’ rule: 

( ) constant  ( )g Iθ θ= ,                              (1.18) 

for a one–dimensional prior, I(�) is the Fisher information. 

For a multi–dimensional prior, |I(�)| is the determinant of the information matrix. 

Another type of prior is the conjugate prior distribution. For a given sampling 

distribution, say ( | )f t θ , the posterior distribution g(�| t) and the prior g(�) are 

members of the same family of distributions (Rinne, 2009). 

Extension of Jeffreys prior is a non-informative prior distribution on parameter 

space that is proportional to the negative expectation of the determinant of the Fisher 

information in the power of a constant c. Consider c to be a positive real number, 

then the Jeffreys prior can be said to be a special case of extension of Jeffreys’ prior 

information. As will be shown later, the extension of Jeffreys prior gives better 

results than Jeffreys prior for certain values of csee Al-Kutubi and Ibrahim (2009). 
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1.2 Problem Statements 

Bayesian methods have become relatively common for analyzing survival data. The 

Bayesian approach has been employed in most areas today, like the medical, 

engineering, accounting, public health and many other fields. The common principle 

of Bayesian updating is to combine our prior knowledge on the parameters which is 

known as prior distribution. It also takes into consideration the observed data that is 

available to us. In survival analysis, we often encounter data that contain right 

censored observations; as a result, it is always imperative that the researcher 

identifies a method which can be used for the analyses so that inferences can be 

drawn. This makes the Bayesian approach attractive to many researchers.  

Jeffreys prior and extension of Jeffreys prior are very useful for data that do not 

have any prior information available and give better result in many cases when 

compared to the classical estimation approach. Modified Jeffreys prior with 

covariate, which we are going to develop by introducing it in the power of a function 

and this gives better results than the classical method in many cases. 

 

The Bayesian model with Jeffrey prior information for the Exponential distribution 

can be seen in Al-Kutubi and Ibrahim (2009). As far as the Bayesian model is 

concerned, the extension of Jeffreys prior information has not been used in the 

analysis of Bayesian Weibull distribution. 

 

Sinha (1986) used Lindley’s approximation technique to estimate the survival and 

hazard functions of Weibull distribution with Jeffreys prior information, and there 

were extensively large number of researchers using this technique such as 
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Nassar&Eissa (2005) andPerda&Constantinescu(2010). However, the model as 

found in Lindley’s approximation technique forextension of Jeffreys prior 

information with unknown shape using right censored data,has not been used in the 

analysis of Bayesian Weibull distribution. 

 

Singh et al. (2002) and Singh et al. (2005) obtained the Bayesian model with 

Jeffreys prior information by using Gauss quadrature formula to estimate the 

parameter with complete and Type-II censored data, wherein the Bayesian model, it 

have been seen no incorporate the covariate into the Jeffreys prior and modified 

Jeffreys priorto estimate the parameters of covariate, the shape parameter, the 

survival function and hazard function of Weibullregression model with known and 

unknown shape. 

 

It is quite difficult to fit survival models with the Bayesian approach but with the use 

of techniques like MCMC, fitting complex survival models can be straightforward. 

Also, with the availability of software, it is easy to implement. Kundu&Howlader 

(2010) obtained Bayesian model using Markov Chain Monte Carlo for constructing 

the Bayesian estimation and credible intervals. None in the literature review so far 

has the Bayesian model to estimate the parameters and the survival and hazard 

functions of the Weibull regression distribution using right censored data with 

Jeffreys prior via Markov Chain Monte Carlo (MCMC). 
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1.3 Research Objectives 

In view of the importance of the Bayesian model discussed in section 1.2 the 

following objectives will be addressed: 

 

1. To extend the Bayesian model for Weibull distribution with known shape 

using right censored data obtained by extension of Jeffreys prior information. 

 

2. To extend the Lindley’s approximation technique for Weibull distribution 

with unknown shape using right censored data obtained by Bayesian using 

Jeffreys prior and extension of Jeffreys prior information.  

 

3. To develop the Bayesian model for Weibull regression distribution with 

known and unknown shape using right censored data for Jeffreys prior and 

modified Jeffreys priors obtained by Gauss quadrature method. 

 

4. To extend the Bayesian model for Weibull regression distribution using right 

censored data with Jeffreys prior and modified Jeffreys prior via Markov 

Chain Monte Carlo (MCMC). 

 

5. To assess the performance of all developed models with its maximum 

likelihood counterparts through simulation study.  
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1.4 Outline of Thesis 

In chapter 2, we present review of related literature to our work. The mathematical 

expressions and techniques for estimating parameters under maximum likelihood 

and Bayesian with right censored data are discussed. Other than that, discussion on 

different distributions that have made use of the above censoring scheme have also 

been considered especially those that employed maximum likelihood and Bayesian 

estimators with respect to Markov Chain Monte Carlo, Lindley and the Gauss 

quadrature rule. 

 

Chapter 3 presents the maximum likelihood estimator that is used to estimate the 

scale parameter, the survival function and hazard function of Weibull distribution 

given shape. Also, the scale parameter, the survival function and hazard function of 

Weibull distribution given shape are estimated using Bayesian with Jeffreys prior 

and extension of Jeffreys. The Bayesian estimates are obtained by using Lindley’s 

approximation and are compared to its maximum likelihood counterpart. The 

comparison criteria is the mean squared error (MSE) and absolute bias. The 

performance of these three estimators are assessed through simulation by 

considering various sample sizes, several specific values of Weibull parameters and 

several values of extension of Jeffreys prior.  

 

Chapter 4 deals withthe Bayesian using Jeffreys prior and modified Jeffreys priors 

with covariate obtained under the Gauss quadrature numerical approximation 

method and that of the maximum likelihood estimator. The parameters of the 
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covariate, the survival function and hazard function of the Weibull regression 

distribution given shape with right censored data are estimated. We have also 

considered a case where the shape parameter is unknown with covariates and made 

use of the same censoring scheme and numerical approximation as stated above. The 

comparison criteria is the mean squared error (MSE) and absolute bias. The 

performance of these three estimators are assessed with and without covariate by 

using simulation considering various sample sizes, several specific values of 

Weibull shape parameter. We have in this chapter analyzed real data set and have 

obtained standard errors and confidence/credible intervals for both the maximum 

likelihood estimator and that of the Bayesian for the purpose of comparison.   

 In chapter 5we consider the estimation of the scale and shape parameters, the 

survival function and hazard function of Weibull distribution with right censored 

data under Bayesian with Jeffreys and extension of Jeffreys prior by using Markov 

Chain Monte Carlo (MCMC) method. Here Gibbs sampling technique is used to 

estimate the scale parameter and Metropolis- Hastings algorithm for the shape 

parameter. Importance sampling techniqueis used to solve the covariate with 

Jeffreys prior and modified Jeffreys prior and compared with the maximum 

likelihood estimator. 

Finally in chapter 6, conclusions of the research work are given and several 

considerations for further research are stipulated 
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