

UNIVERSITI PUTRA MALAYSIA

LUNG INJURIES INDUCED BY INDEN0(1,2,3-CD)PYRENE IN RATS ON GARLIC SUPPLEMENTATION

SANAZ MOVASSAGH

FPV 2007 7

LUNG INJURIES INDUCED BY INDENO(1,2,3-CD)PYRENE IN RATS ON GARLIC SUPPLEMENTATION

By

SANAZ MOVASSAGH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2007

DEDICATED

TO

MY BELOVED PARENTS

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

LUNG INJURIES INDUCED BY INDENO(1,2,3-CD)PYRENE IN RATS ON GARLIC SUPPLEMENTATION

By

SANAZ MOVASSAGH

April 2007

Chairman: Associate Professor Noordin Mohamed Mustapha, PhD

Faculty : Veterinary Medicine

The impact of air pollution on health and economic well-being of nation is an important worldwide issue. Indeno[1,2,3-*cd*]pyrene (IP) is a particulate matter amongst environmental pollutants found in the Malaysian haze episodes and was claimed to induce deleterious effects on humans or animals. However, such claims have never been scientifically substantiated. In manifesting the noxious effects of haze and in view of developing strategies and bringing about a remission of such effects in humans, the symptoms of both acute exposure and chronic response to IP were studied on the pulmonary system of rats.

The acute exposure studies were conducted to evaluate the histopathological and ultrastructural changes and detection of apoptotic cells in the lung of rats following treatment with IP with or without garlic supplementation. Furthermore, the immunological responses and elastolytic enzymes activities were also determined. The IP-treated rats received 13 ng (6.5 μ l) of IP that was instilled intra-tracheally without garlic supplementation. Rats from the garlic (G) group were fed the basal ration

containing garlic incorporated at the rate of 80 mg/kg body-weight/rat/day while those from the G+IP group fed on garlic diet for two weeks before instillation with IP. All animals were sacrificed at 8, 16, 24 and 32 hours (hrs) post-instillation (p.i.) and according to the respective interval design. Histopathological alterations were studied on haematoxylin-eosin (H&E) stained sections and ultrastructural changes revealed by transmission electron microscope (TEM). Apoptosis assessment was made on terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis and caspase 3 colorimetric assay. The broncho-alveolar lavage (BAL) assays, ELISA method and alveolar macrophages (AMØ) activities assay were used to detect the elastolytic enzymes activities and lung defense.

Histopathological, ultrastructural, TUNEL and caspase 3 assays findings showed apoptosis which advances with time in the pneumocytes and bronchial epithelium of all IP-treated rats euthanised at the respective time. In addition, inflammation, necrosis and epithelisation were also observed in the IP group. Likewise, the IP group had the highest elastase-like and neutrophil elastase specific activities but the lowest IgA and IgG levels, AMØ phagocytosis, and intracellular killing activities of AMØ in the BAL. Supplementation with garlic was able to minimize the deleterious effect of IP.

In the chronic response studies, in addition to the other parameters measured in the acute study, an assessment on the level of glutathione S-transferase (GST) was also made. Similarly, there was an additional treatment group that was instilled with IP once at the beginning of the study and fed with garlic during the whole period of experiment (IP+G) to assess the effect of consumption of garlic during the response to IP.

The microscopic and ultrastructure studies revealed evidence of apoptosis, inflammation, necrosis and epithelisation in the lung of rats treated with IP. In addition, rats treated with IP had the lowest levels of IgA, IgG, alveolar macrophages activities and GST specific activity in the lung. Furthermore, there was a dreadful effect on elastolytic enzymes activities present in the IP-treated rats.

In contrast, the IP-treated groups fed with garlic showed significant improvement towards normal histology of the lung or trachea. However, it was found that regularly consumption of garlic during the response to IP have a better result than a prophylactic regime before response.

In conclusion, IP poses as an environmental hazard to the lungs of rats triggering deleterious changes either due to short exposure or long term response and garlic has a great potential in alleviating these adverse effects.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KECEDERAAN PARU-PARU TERARUH INDENO(1, 2, 3-CD)PYRENE PADA TIKUS YANG MENERIMA TAMBAHAN BAWANG PUTIH

Oleh

SANAZ MOVASSAGH

April 2007

Pengerusi: Profesor Madya Noordin Mohamed Mustapha, PhD

Fakulti : Perubatan Veterinar

Kesan pencemaran udara pada kesihatan manusia dan status ekonomi negara menjadi salah satu isu penting di seluruh dunia. Indeno[1,2,3-*cd*]pyrene (IP) adalah antara bahan partikel dari pencemar alam sekitar yang ditemui semasa episod jerebu yang melanda Malaysia dan dipercayai boleh mengakibatkan kesan yang merbahaya kepada manusia dan haiwan. Walaubagaimanapun, dakwaan tersebut tidak pernah dibuktikan secara saintifik. Untuk menunjukkan kesan berbahaya jerebu dan untuk menyelidik strategi bagi mengurangkan kesan tersebut pada manusia, simptom-simptom pendedahan akut dan kronik terhadap IP dikaji ke atas sistem pulmonari tikus.

Kajian mengenai pendedahan akut telah dijalankan untuk menilai perubahan histopatologi dan ultrastruktur dan pengenalpastian sel-sel apoptosis pada paru-paru tikus setelah diberi rawatan dengan IP. Selain daripada itu, tindakbalas imunologi dan aktiviti enzim elastolitik telah ditentukan. Tikus dari kumpulan rawatan IP telah diberi 13 ng (6.5 μ l) IP secara instilasi intra-trakea tanpa suplementasi bawang putih. Tikus dari kumpulan bawang putih (G) diberi makanan komersial dengan penambahan bawang

kadar yang bersamaan dengan pengambilan sebanyak 80 mg/kg berat badan/tikus/sehari manakala tikus dari kumpulan G+IP telah diberi makan diet yang mengandungi bawang putih selama dua minggu sebelum pemberian IP. Kesemua tikus tersebut telah dibunuh pada 8, 16, 24 dan 32 jam (hrs) pasca-pemberian (p.i.) dan mengikut rekabentuk kajian masing-masing. Perubahan secara histopatologikal telah dikaji pada hirisan tisu yang telah diwarnakan dengan haematoxylin-eosin (H&E) manakala perubahan ultrastruktur dikaji dengan menggunakan elektron mikroskop transmisi (TEM). Penilaian apoptosis telah dibuat berdasarkan analisis pelabelan potongan hujung TUNEL dan penilaian caspase 3 kalorimetrik. Penilaian cecair bronko-alveolus (BAL), kaedah ELISA dan aktiviti makrofaj alveolus telah dilakukan untuk mengkaji enzim elastolitik dan pertahanan peparu.

Penemuan histopatologi, ultrastruktur TUNEL dan penilaian caspase 3 menunjukkan tahap apoptosis yang berbeza pada pneumosit and epitelium bronkiol pada semua tikus yang diberi rawatan IP yang dibunuh mengikut jangkamasa yang telah ditetapkan pasca pemberian. Di samping itu, inflamasi, nekrosis dan epitelialisasi telah diperhatikan dalam kumpulan IP. Disamping ini, kumpulan IP telah menunjukkan aktiviti spesifik elastase yang tertinggi dan aktiviti spesifik elastase neutrofil tetapi tahap aktiviti yang rendah bagi IgA dan IgG, fagositosis AMØ dan pemusnahan intrasel aktiviti AMØ dalam BAL. Supplementasi dengan bawang putih telah meminimumkon kesan pemusnahan IP.

Dari kajian pendedahan kronik, perubahan pada peparu kumpulan IP selama tiga bulan telah dinilai melalui tahap enzim penanda, glutathion S-transferase (GST). Begitu juga

bagi kumpulan yang diberi IP pada permulaan kajian dan diberi makan bawang putih sepanjang tempoh kajian dijalankan (IP+G) untuk menilai kesan pengambilan bawang putih sepanjang pendedahan terhadap IP.

Dalam kajian mikroskopik dan ultrastruktur menunjukkan bukti apoptosis, inflamasi, nekrosis dan epitelialisasi di dalam peparu tikus yang dirawat dengan IP. Selain daripada itu, tikus yang diberi IP mempunyai tahap IgA, IgG dan aktiviti makrofaj alveolus serta aktiviti spesifik khas GST dalam peparu yang paling rendah. Tambahan lagi, terdapat kesan yang dahsyat pada aktiviti enzim elastolisis dalam kumpulan IP.

Sebaliknya, kumpulan yang menerima rawatan IP yang diberi makan bawang putih menunjukkan keadaan yang lebih baik dalam semua perubahan histologi pada peparu dan trakea. Oleh yang demikian, pengambilan bawang putih yang kerap semasa pendedahan terhadap IP menunjukkan keputusan yang lebih baik berbanding yang menerima pemakanan kurang sebelum pendedahan.

Kesimpulannya, kehadiran IP dalam alam sekitar adalah merbahaya kepada paru-paru tikus yang bertindak sebagai organ target di mana ia mencetuskan perubahan yang berbahaya untuk pendedahan jangkamasa pendek mahupun panjang dan didapati bawang putih mempunyai potensi yang amat baik dalam mengurangkan kesan merbahaya tersebut.

ACKNOWLEDGEMENTS

The highest praise and gratefulness to ALLAH, who shines my soul towards truth and faith, and fills my mind with knowledge and wisdom. To him do I entrust myself, to him be in grace, and with him be in success, immunity and comfort.

It was such a great honor to work under Associate Professor Dr. Noordin Mohamed Mustapha supervision who guided me throughout this research with his patience, continuing guidance and support by giving greater latitude of freedom in conducting this study as well as completion of this thesis. I never can repay him back all his favour.

I would like to extend my gratitude and thanks to my supervisory committee members, Professor Dr. Mohd Zamri Saad and Assoc. Professor Dr. Hassan Hj. Mohd Daud for their contribution and advices during this research. I also gratefully acknowledge Professor Dato' Dr. Sheikh Omar Abdul Rahman for his concern, encouragement and his valuable time to guide me toward completion of my study.

My sincere thanks are due to Ministry of Science, Technology and Innovation (MOSTI) for the financial support through IRPA grant for this research. My deep appreciations to all the staff of the Faculty of Veterinary Medicine and Institute of Bioscience for their cooperation and facilities throughout this work.

I highly appreciate all my colleagues, friends, family and husband for their support and kindness, especially to Dr. Mazlina binti Mazlan for her taintless helps during this study.

TABLE OF CONTENTS

CHAPTER

Ι	GENERAL INTRODUCTION	1
	Air Pollution and Haze	1
	The Impacts of Haze on Human Health	2
	Haze Episodes in Malaysia	3
	Objectives of the Study	7
II	REVIEW OF LITERATURE	8
	Introduction	8
	Chemical Carcinogens	10
	Polycyclic aromatic hydrocarbons	11
	Indeno[1,2,3-cd]pyrene	13
	Metabolism	14
	Toxicity	15
	Indeno[1,2,3-cd]pyrene as a Carcinogen	16
	Pathology of Cancer Induced by Indeno[1,2,3-cd]pyrene	17
	Target Oragn Toxicity	18
	Lung	19
	The pulmonary Defense during Air pollution	20
	Mechanisms of Cell Death	21
	Cancer Prevention and Treatment	23
	Garlic (Allium sativum)	23
	Constituents and Beneficial Effects	24
	Anti-carcinogenic and Anti-tumour Potentials	28
	Toxicity	30
III	GENERAL MATERIALS AND METHODS	32
	Animals and Management	32
	Inoculum	33
	Garlic	33
	Experimental Design	33
	Pathology	34

Page

	Histopathology	34
	In Situ Detection of Apoptotic Cells	35
	Ultrastructural Study	36
	Lavage Fluid Assays and Immunology	37
	Broncho-alveolar Lavage (BAL)	37
	Measurment of Elastase-like Activity	38
	Measurment of Neutrophil Elastase Activity	39
	Total Protein Measurment	39
	Enzyme-Linked Immunosorbent Assay (ELISA)	40
	Assay of Alveolar Macrophages Activity	42
	Estimation of GST Activities in Lung and Liver Tissues	44
	Preparation of Cytosol	44
	Enzyme Assay	45
	Protein Determination	46
	Caspase 3 Colorimetric Assay	47
	Statistical Analysis	48
IV	EFFECT OF GARLIC ON GLUTATHIONE S-	
	TRANSFERASE	50
	Introduction	50
	Materials and Methods	51
	Results	51
	Discussion	52
v	ACUTE LUNG EXPOSURE TO INDENO[1,2,3-cd]PYRENE	
	IN RATS ON GARLIC SUPPLEMENTATION	55
	Introduction	55
	Materials and Methods	57
	Results	57
	Clinical Signs	57
	Gross Pathological Findings	58
	Histopathological Findings	58
	In Situ Detection of Apoptotic Cells	67
	Ultrastructural Findings	69
	Elastase-Like and Neutrophil Elastase Specific Activities	75
	Level of IgA in the Lung Lavage Fluid	78
	Level of IgG in the Lung Lavage Fluid	78
	Level of IgG in Serum	78
	Alveolar Macrophages Activities	80
	Caspase 3 Specific Activity	84
	Discussion	85
VI	CHRONIC LUNG RESPONSE TO INDENO[1,2,3-	
	cd]PYRENE IN RATS ON GARLIC SUPPLEMENTATION	97
	Introduction	97
	Materials and Methods	99
	Results	100

	Clinical Signs	100
	Gross Pathological Findings	100
	Histopathological Findings	101
	In Situ Detection of Apoptotic Cells	110
	Ultrastructural Findings	111
	Elastase-Like and Neutrophil Elastase Specific Activities	118
	Level of IgA in the Lung Lavage Fluid	118
	Level of IgG in the Lung Lavage Fluid	119
	Level of IgG in Serum	119
	Alveolar Macrophages Activities	120
	Glutathione S-transferase (GST) Specific Activity	121
	Caspase 3 Specific Activity	122
	Discussion	123
VII	GENERAL DISCUSSION AND CONCLUSIONS	138
REFEREN	NCES	147
APPENDICES		170
BIODATA	OF THE AUTHOR	185

LIST OF TABLES

Table		Page
1	Some important characters of indeno[1,2,3-cd]pyrene	13
2	The GST specific activity in the lung of rats at necropsy $(\mu mol/min/mg protein; Mean \pm SE)$	52
3	The GST specific activity in the liver of rats at necropsy $(\mu mol/min/mg protein; Mean \pm SE)$	52
4	The experimental design of acute exposure of indeno[1,2,3- cd]pyrene in rats	57
5	Percentage of neutrophils in the lungs of rats during acute exposure (mean \pm SE)	63
6	Percentage of alveolar macrophages in the lungs of rats during acute exposure (mean \pm SE)	63
7	Percentage of necrosis in the lungs of rats during acute exposure (mean \pm SE)	64
8	Percentage of apoptosis in the lungs of rats during acute exposure (mean \pm SE)	65
9	Percentage of epithelisation in the lungs of rats during acute exposure (mean \pm SE)	66
10	Percentage of TUNEL-positive cells in the lungs of rats during acute exposure (mean \pm SE)	69
11	The elastase-like and neutrophil elastase specific activities in the lung lavage of rats during acute exposure (units/mg protein; Mean \pm SE)	76
12	The levels of IgA and IgG in the lung lavage fluid of rats during acute exposure (OD; Mean \pm SE)	79
13	The levels of IgG in the serum of rats during acute exposure (OD; Mean \pm SE)	80
14	The alveolar macrophage (AMØ) activities in the lung lavage fluid of rats during acute exposure (Mean \pm SE)	81
15	The experimental design of chronic response to IP in rats	99

16	The lesion scores in the lungs of rats at necropsy (%; mean \pm SE)	108
17	Percentage of apoptosis in the lungs of rats at necropsy (mean \pm SE)	109
18	Percentage of TUNEL-positive cells in the lungs of rats at necropsy (mean ± SE)	111
19	The elastase-like and neutrophil elastase specific activities in the lung lavage of rats at necropsy (units/mg protein; Mean \pm SE)	118
20	The levels of IgA and IgG in the lung lavage fluid and IgG in serum of rats at necropsy (OD; Mean \pm SE)	119
21	The alveolar macrophage (AM \emptyset) activities in the lung lavage fluid of rats at necropsy (Mean \pm SE)	121

LIST OF FIGURES

Figure		Page
1	Typical PAHs with similar properties	11
2	Bioconversion pathway of garlic compounds	26
3	Photomicrograph of the lung of rat from the IP group necropsied at -8 hrs p.i. Note the presence of necrotic cells (arrows) and neutrophils (dotted arows) in the intrestitium. (H&E, X400)	58
4	Photomicrograph of the lung of rat from the IP group necropsied at 24 hrs p.i. Note the alveolar macrophages invasion in the alveolar intrestitium characterised by eccentrically placed (thin arrow) or kidney-shaped (thick arrow) nucleus (H&E, X400)	59
5	Photomicrograph of the lung of rat from the IP group necropsied at 16 hrs p.i. Note the apoptotic cells with peripheral and marginated chromatin along the nuclear membrane (arrows) (H&E, X600)	60
6	Photomicrograph of the lung of rat from the IP group necropsied at 32 hrs p.i. Note an increase in the thickness of alveolar wall due to epithelisation (encircled regions) (H&E, X200) Inset: High magnification. (H&E, X600)	60
7	Photomicrograph of the trachea of rat from the control group necropsied at 32 hrs p.i. Note the surface epithelium and lamina propria (encircled region) within normal limits (H&E, X400)	61
8	Photomicrograph of the trachea of rat from the IP group necropsied at 32 hrs p.i. Note the infiltration by mononuclear cells (predominantly lymphocytes and macrophages) in the lamina propria. (H&E, X200) Inset: High magnification (H&E, X600)	61
9	Confocal micrograph of the lung of rat at necropsy. Note the normal nuclei fluoresced red while those with fragmented DNA fluoresced green. (A) Control group showing nuclei with only red fluorescence. (B) G group (C) IP group, 8 hrs p.i. (D) IP group, 16 hrs p.i. (E) IP group, 24 hrs p.i. (F) IP group, 32 hrs p.i. (Propidium iodide, X400)	68
10	Electron micrograph of the lung of rat from the control group. Note a normal type II cell (arrow) with an evenly distributed mitochondria (M), rER (r) and lamellar bodies (L) within the cytoplasm (X 17000)	70

11	Electron micrograph of the lung of rat from the IP group killed 16 hours p.i. Note the apoptotic type II pneumocyte (arrow) depicting nuclear condensation and margination of chromatin along the nuclear membrane (X 18000)	70
12	Electron micrograph of the lung of rat from the IP group killed 32 hours p.i. Note the necrotic type II pneumocyte (arrow). The nucleus is compact (N) and lamellar bodies contain flocculent material (L). Note the congestion of sub-epithelial capillaries (C) (X 10000)	71
13	Electron micrograph of the lung of rat from the IP group killed 32 hours p.i. Note the hyperplasia of type II pneumocytes on the basement membrane (X 10000)	72
14	Electron micrograph of the lung of rat from the control group. Note thin interalveolar septa (arrow), flat pneumocyte (arrow head) (X 8000)	72
15	Electron micrograph of the lung of rat from the IP group killed 32 hours p.i. Note the sick lymphocyte with membrane-bound intra- nuclear inclusion (arrow) presented in the nuclei (X 10000)	73
16	Electron micrograph of the lung of rat from IP group killed 32 hours p.i. Note the activated neutrophil with cytoplasmic abnormal dense granules (X 10000)	74
17	Electron micrograph of the lung of rat from the IP group killed 24 hours p.i. Note the pulmonary macrophage with dense cytoplasmic granules inside the alveolar lumen (X 10000)	74
18	Electron micrograph of the lung of rat from the IP group killed 32 hours p.i. Note the secretory plasma cells in the interstitium (arrows) with dilated and fragmented cisternae of rER (X 9000)	75
19	Linear relationship between elastase-like specific activity and time in the lung lavage fluid of rats for each treatment during acute exposure	77
20	Linear relationship between neutrophil elastase specific activity and time in the lung lavage fluid of rats for each treatment during acute exposure	77
21	Linear relationship between IgG level and time in the lung lavage fluid of rats for each treatment during acute exposure	80

22	Linear relationship between phagocytosis percentage and time in the lung lavage fluid of rats for each treatment during acute exposure	82
23	Linear relationship between intracellular killing (%) and time in the lung lavage fluid of rats for each treatment during acute exposure	83
24	Photomicrograph of AMØ in the BAL fluid of rat from the IP group necropsied at 32 hrs p.i. Note the AMØ (arrow) with cytoplasmic phagocytosed bacteria (Acridine orange and Crystal violet, X1000)	83
25	The caspase 3 specific activity in the lung of rats with different treatments during acute exposure (μ mol pNA/min/mg protein; Mean + SE)	84
26	Relationship of caspase 3 specific activity and time (linear regression) in the lung of rats for each treatment during acute exposure	85
27	Colorimetric detection of caspase 3 activity based on the cleavage of chromophore pNA from the substrate	94
28	Photograph of the lung from the IP group necropsied at 90 days p.i. Note the presence of pinpoint whitish nodule (arrow) on the right apical lobe	100
29	Photograph of the lung from the IP group necropsied at 90 days p.i. Note the haemorrhagic foci on the left side (encircled region)	101
30	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note hyperplasia of the BALT, with extension of lymphoid tissue towards the epithelial lining of the bronchus (H&E, X200)	102
31	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the invasion of neutrophils (thick arrow) and macrophages (thin arrow) within the interstitium of the alveolar wall (H&E, X400)	102
32	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the presence of solid macrophages in the alveoli (arrow) (H&E, X400)	103
33	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the clusters of admixture of macrophages and lymphocytes (arrows) (H&E, X400)	103

·...

34	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the presence of fibrinous exudates (arrows) in the alveoli (H&E, X400)	104
35	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the necrotic cells (arrows) (H&E, X400)	104
36	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note an increase in the thickness of alveolar wall due to epithelisation (encircled regions) (H&E, X200) Inset: High magnification. (H&E, X600)	105
37	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note marked thickening of the epithelium with the presence of large bi-nucleated cells (arrows) and the pulmonary blood vessel with thick muscular wall (arrowhead) (H&E, X400)	106
38	Photomicrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note an abnormal enlargement of alveolar space due to emphysema (arrows). (H&E, X200) Inset: Presence of neutrophils and macrophages in the intrestitium (H&E, X400)	106
39	Photomicrograph of the trachea of rat necropsied at 90 days p.i. (A) Control group, with normal epithelium and lamina propria (dotted circle). (H&E, X600) (B) IP group, with infiltration of mononuclear cells in lamina propria (arrow). (H&E, X400) (C) Denudation of ciliated epithelium (arrows). (H&E, X400) (D) Marked hyperplasia of the surface epithelial cells and loss of cilia (arrow) (H&E, X400)	107
40	Confocal micrograph of the lung of rat necropsied at 90 days p.i. Note the normal nuclei fluoresced red while those with fragmented DNA fluoresced green. (A) IP+G group (B) G+IP group (C) IP group (D) G group (Propidium iodide, X400)	110
41	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the hyperplastic pneumocytes type II on the basement membrane (arrows) (X 9000)	112
42	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note a degenerated granular pneumocyte with remarkable proliferation of sER (s), swelling of mitochondria with the presence of opaque particle (arrow) and dilatation of lamellar bodies (L). Also note the disruption of lamellar material (X 15000)	113

43	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note a degenerated granular pneumocyte with membrane-bound intra-nuclear inclusion (arrow) presented in nuclei (X 12000)	113
44	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note secretory plasma cells contain extensive rough endoplasmic reticulum (arrows) and globulin-laden granules (arrow heads) inside the cytoplasm (X 9000)	114
45	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the eosinophil infiltration in the interstitial tissue with intra-cytoplasmic granules (arrow) (X 9000)	115
46	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the endothelial macrophage migrating into the alveolar lumen (arrow) (X 10000)	115
47	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the fibrin deposition in the alveolar lumen (arrow) (X 10000)	116
48	Electron micrograph of the lung of rat from the IP group necropsied at 90 days p.i. Note the collagen fiber production in the interstitium (arrow) (X 9000)	116
49	Electron micrograph of the trachea of rat from the IP group necropsied at 90 days p.i. Note the swelling of the epithelial cells. The nucleus scattered within the vacuolated cytoplasm (arrows) (X 9000)	117
50	The GST specific activity in the lung of rats at necropsy $(\mu mol/min/mg protein; Mean + SE)$	122
51	The GST specific activity in the liver of rats at necropsy (µmol/min/mg protein; Mean + SE)	122
52	The caspase 3 specific activity in the lung of rats with different treatments at necropsy (µmol pNA/min/mg protein; Mean + SE)	123

LIST OF ABBREVIATIONS

Ahr	aryl hydrocarbon receptor
AMØ	alveolar macrophage
ANOVA	analysis of variance
BAL	broncho-alveolar lavage
BALT	bronchial associated lymphoid tissue
BSA	bovine serum albumin
COPD	chronic obstructive pulmonary disease
CRD	completely randomized design
CV	crystal violet
DADS	diallyl disulphide
DAS	diallyl sulphide
DATS	diallyl trisulphide
ELISA	enzyme-linked immunosorbent assay
G	garlic
GSH	glutathione
GST	glutathione S-transferase
H&E	haematoxylin-eosin
hrs	hours
HSD	Tukey's studentized range
IgA	immunoglobulin A
IgG	immunoglobulin G
IP	indeno[1,2,3-cd]pyrene

OD	optic density
PAHs	polycyclic aromatic hydrocarbons
PBS	phosphate buffered saline
p.i.	post instillation
РМ	particulate matter
PMNs	polymorphonuclear leukocytes
pNA	p-nitroaniline
RBC	red blood cell
rER	rough endoplasmic reticulum
rTDT	recombinant terminal deoxynucleotidyl transferase
SAC	S-allyl cysteine
SAMC	S-allyl mercaptocysteine
SAS	statistical analysis system
s.c.	subcutaneous
SE	standard error
sER	smooth endoplasmic reticulum
SLAPN	N-Succinyl-Ala-Ala-Ala-p-nitroanilide
TAMs	tumour associated macrophages
TEM	transmission electron microscopy
TNFα	tumor necrosis factor alpha
Tr	Tricaprylin
TUNEL	terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
WR	working reagent

