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ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSIC BIOMASS USING 

EXTRACT FROM THE TERMITE Coptotermes curvignathus HOLMGREN 

 

By 

 

WONG SIN-YEE 

 

August 2015 

 

 

Chairman :  H’ng Paik San, PhD 

Faculty :  Forestry 

 

 

Termites are by far the most successful wood-degraders on Earth, tunnelling and 

chewing on woody biomass for millions of years. To disintegrate the tough linear 

chains of cellulose, termites are loaded with different species of microorganisms in 

their relatively tiny guts. These gut microbes would collaborate to produce digestive 

enzymatic juice for degrading wood into consumable end products such as sugars, 

hydrogen, ethanol and acetate. By efficiently catalysing the conversion of 

lignocellulosic biomass, the key to generate customised cocktails lies within the 

termites’ digestive enzymes. This study aimed to identify and evaluate the cellulolytic 

enzymes activities in the whole extracts of local wood-feeding termites (Coptotermes 

curvignathus) for enzymatic hydrolysis with biomass such as oil palm trunk (OPT) and 

cassava pomace. The enzymatic hydrolysis was controlled at three different sets of 

temperature (27˚C ± 2˚C, 32˚C ± 2˚C and 37˚C ± 2˚C) and evaluated based on reaction 

time (hours). Conversion of biomass was measured in reducing sugar yield and 

cellulase activities of the reaction. Ultimately the results showed that the fresh extracts 

of termite Coptotermes curvignathus contained reducing sugar and activities of endo-β-

D-1,4-glucanase, exo-β-D-1,4-glucanase and β-D-1,4-xylanase that could potentially 

increase the digestion of lignocellulosic biomass. The highest reducing sugar recorded 

was 7.36 ± 0.65 g/L in the enzymatic hydrolysis with OPT occurring at the reaction 

temperature of 37˚C, while the highest enzyme activities recorded were endocellulase 

(31.58 ± 5.48 U/g) in incubated termite extract, exocellulase (14.94 ± 4.71 U/g) in 

hydrolysis with OPT, and xylanase (89.60 ± 20.87 U/g) in hydrolysis with cassava, all 

occurring at the incubation temperature of 32˚C. 
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HIDROLISIS ENZIM BAGI BIOJISIM LIGNOSELULOSA DENGAN 

MENGGUNAKAN EKSTRAK DARI ANAI-ANAI Coptotermes curvignathus 

HOLMGREN 

 

Oleh 

 

WONG SIN-YEE 

 

Ogos 2015 

 

 

Pengerusi :  H’ng Paik San, PhD 

Fakulti :  Perhutanan 

 

 

Anai-anai merupakan pemakan kayu yang paling berjaya di bumi setakat ini, 

disebabkan keupayaan mereka membuat terowong dalam kayu dan mengunyah 

biojisim berkayu sejak berjuta-juta tahun yang lalu. Untuk menghancurkan rantaian 

selulosa yang sangat tahan lasak, perut anai-anai yang kecil diisi dengan pelbagai jenis 

spesies mikroorganisma. Mikrob-mikrob perut ini akan berkerjasama untuk 

menghasilkan jus enzim pencernaan bagi mencernakan kayu untuk menghasil produk 

akhir yang berguna seperti gula, hidrogen, etanol dan asetat. Sebagai pemangkin bagi 

penukaran lignoselulosa yang cekap, kunci untuk menjanakan koktel pencernaan yang 

bersesuaian terletak pada enzim anai-anai tersebut. Penyelidikan ini bertujuan untuk 

mengenalpasti dan menilai aktiviti enzim selulosa yang terdapat di ekstrak keseluruhan 

anai-anai tempatan (Coptotermes curvignathus) bagi menjalankan hidrolisis enzim 

dengan biojisim lignoselulosa seperti batang kelapa sawit dan sisa ubi kayu. Proses 

hidrolisis enzim tersebut dikawal pada tiga set suhu yang berlainan (27˚C ± 2˚C, 32˚C 

± 2˚C and 37˚C ± 2˚C) dan dinilai berdasarkan tempoh eksperimen (jam). Penukaran 

biojisim tersebut pula diukur melalui penghasilan gula dan kegiatan aktiviti selulase. 

Keputusan kajian tersebut menunjukkan bahawa ekstrak anai-anai Coptotermes 

curvignathus yang segar mengandungi gula dan aktiviti-aktiviti selulase seperti endo-β-

D-1,4-glucanase, exo-β-D-1,4-glucanase dan β-D-1,4- xylanase yang berpotensi untuk 

meningkatkan pencernaan biojisim lignoselulosa. Kandungan gula yang paling tinggi 

dicatatkan adalah 7.36 ± 0.65 g/L yang terdapat di hidrolisis enzim dengan batang 

kelapa sawit pada suhu 37˚C, manakala aktiviti enzim yang paling tinggi dicatatkan 

merupakan endocellulase (31.58 ± 5.48 U/g) yang terdapat di ekstrak anai-anai, 

exocellulase (14.94 ± 4.71 U/g) yand terdapat di hidrolisis dengan batang kalapa sawit, 

dan xylanase (89.60 ± 20.87 U/g) yang terdapat di hidrolisis dengan ubi kayu, 

semuanya terjadi pada suhu 32˚C. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 General 

 

1.1.1 Ensuring Sustainability 

 

In the alarming wake of global warming, rising food and fuel costs, much interest has 

been shifted to use alternative resources for green energy conversion, such as the use of 

wasteful lignocellulosic biomass, because the existing practice of deriving energy from 

edible crops such as corn, beets or sugar cane will threaten the food supply (Held, 

2012). Examples of green energy include the colourless and biodegradable ethanol or 

ethyl alcohol (C2H5OH). It is one of the most commonly used biofuels worldwide, 

especially in Brazil and the United States (U.S.), and can be harvested by fermenting 

the sugary components of cellulosic plants (Bon and Ferrara, 2007; Chin and H’ng, 

2013). Burning of bioethanol results in reduced carbon emission compared to fossil 

fuels and therefore will not burden the natural resources.  

 

However, major setback of the process is due to the recalcitrant nature of 

lignocellulosic structures. Cellulose being the basic components of plant cell wall, is a 

tough linear chain of glucose joined by β-1,4-glycosidic and hydrogen bonds wrapped 

in the matrix of insoluble lignin and hemicelluloses (Jeffries, 1994; Tokuda et. al., 

1997; Rubin, 2008). Common industrial degradation methods of lignocelluloses depend 

heavily on acid treatments (Sun and Cheng, 2002). Employment of enzymes in 

deconstructing lignocelluloses is relatively stable. 

 

 

1.1.2 The Nature will find its Own Way 

 

Among the wild battle of survival, termites have evolved to find food in the woods. 

These insects survive strictly on a cellulose-rich diet, which is attributed to the 

significant decomposition activities of symbiotic microbes in their gut. The cellulose in 

their food is turned into consumable acetate in just a day (Martin, 1983). To 

disintegrate these tough polysaccharides, termites are loaded with different species of 

microorganisms in their relatively tiny guts (Brune and Friedrich, 2000; Nadin, 2007; 

Wong et. al., 2014). Different species of microbes in termite gut have different needs 

and release different end-products, but they share a common goal – that is to degrade 

lignocelluloses. Termites provide the needed settlement for the microbes and feed on 

wood, while the microbes digest the food for their hosts in return. Such exchange 

reflects a mutual symbiotic relationship that benefits both the host and the symbiont.  

 

By efficiently catalysing the conversion of cellulose into acetate, glucose and ethanol, 

the key to generate customised cocktails lies within the termites’ digestive enzymes. In 

recent years, significant progress has been made to isolate cellulolytic strains from 

termites and optimise the digestion efficiency of cellulose. Thus, the local wood 

feeding termite Coptotermes curvignathus is known to have the ability to kill immature 

palm (Lim and Silek, 2001; Yeoh and Lee, 2007, Chan et. al., 2011), posing as a good 

candidate to study its incredible digestion capability. 
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1 .2 Problem Statement and Justification 

 

Microbial strategies for degrading lignocelluloses are diverse, yet the fundamental 

understanding of the enzymes involved is limited. More findings should highlight the 

isolation of cellulolytic strains from termites, detail the evaluation of the enzymatic 

activities and conduct genetic modification or immobilisation of the microbes which 

produce the desired enzymes. In evaluating the effectiveness of the enzyme application, 

comparison between two biomass substrates was attempted. Hence, oil palm trunk 

(OPT) and cassava pomace were used in this experiment as the raw materials and 

respective biomass substrates for enzymatic hydrolysis with the whole enzymatic 

extracts of local wood-feeding termites, Coptotermes curvignathus. 

 

Resources such as OPT and cassava pomace are readily available in Malaysia as a 

wasteful residue from the industry. According to the Malaysian Oil Palm Statistics, the 

oil palm plantations now covered 5.23 million hectares in 2013 (MPOB, 2014). 

National Biomass Strategy Blueprint also revealed that the Malaysia’s palm oil 

industry is expected to generate about 100 million dry tonnes of solid biomass by the 

year 2020 (AIM, 2013). Consequently large quantities of oil palm plantation residues 

are produced annually the during replanting activities, averagely every 25 years, 

whereby the unproductive oil palm trees are replaced with young tree. Current waste 

practise is to leave the huge mass to rot and return to the field as fertiliser.  

 

In addition, cassava processing, especially in concentrated areas, is regarded as a major 

polluting factor (FAO, 2001). Thailand, Indonesia, India, China, Vietnam, Malaysia 

and the Philippines all produce cassava starch, yet the conventional forms of processing 

are water intensive, generate huge amounts of organic effluents and visible dust wastes. 

If left untreated, this will be displayed in the form of stagnant ponds and emit strong 

odours. These agricultural residues are generally found in the vicinity of factories or 

plantations. In a growing nation such as Malaysia, there are clearly more than enough 

biomass residues that can be utilised for more lucrative purposes. In other words, both 

materials contain relatively high starch and total sugar contents that can be easily 

converted into sugar and fermented to bioethanol. 

 

As mentioned, wood-feeding termites exhibit an incredible degradation capability via 

their specialised intestinal symbiotic association. By combining the termites’ enzymes 

and lignocellulosic biomass, researchers may yield breakthrough solutions for 

renewable energy production. Therefore, the cellulolytic activities in the enzyme 

extracts of lower termite (Coptotermes curvignathus) were analysed. The reducing 

sugar yield and specific enzymatic activities such as endocellulase, exocellulase and 

xylanase, based on reaction hours, were presented in this study. Several bio-reaction 

parameters, such as temperatures and reaction hours, were studied in detail and their 

significances were analysed. Upon treating OPT or cassava pomace with the termites’ 

enzymes, the reducing sugar yield, cellulase activities and degradation rate were also 

evaluated in this study. 
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1.3 Research Objectives 

 

Based on the mentioned scenario, the main objective of this study is to evaluate the 

cellulolytic enzyme activities in the whole extracts of local wood-feeding termites 

(Coptotermes curvignathus) for enzymatic hydrolysis with OPT and cassava pomace. 

Therefore, this study aims to achieve the following objectives: 

 

1. To determine the chemical compositions of OPT and cassava pomace. 

 

2. To determine the reducing sugar yield and cellulase activities (endo-β-D-1,4-

glucanase, exo-β-D-1,4-glucanase and β-D-1,4-xylanase) in the whole extracts 

of local wood-feeding termites (Coptotermes curvignathus) controlled at three 

different sets of temperature (27˚C ± 2˚C, 32˚C ± 2˚C and 37˚C ± 2˚C) and 

based on reaction time (hours). 

 

3. To determine the reducing sugar yield, cellulase activities and degradation rate 

of OPT or cassava pomace upon enzymatic hydrolysis with the termite’s 

extract. 
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