Dedication

To the author’s heartfelt loving daughter, wife and parents
Water is becoming increasingly scarce and it is important to find methods to reduce water consumption. It is a well-known fact that in most run-of-the-river irrigation projects, the water demands seldom satisfactorily match the erratic flows in the river. In large-scale irrigation schemes like the Tanjung Karang Rice Irrigation Scheme, allocation of water resources is more difficult due to the variability of water use, typical irrigation supply and the pattern of water availability. Due to unreliable water supply in the absence of storage reservoir for the scheme, there is a need for daily prediction and allocation of the available water resources equitably and efficiently to improve the system management. A study was attempted to develop Geographical Information System (GIS) integrated with water allocation model for ensuring equitable supply and efficient use of available water resources.

A mathematical model was developed for the equitable and allowable water delivery through tertiary canals. The relationship was also developed for determining the available daily discharge for irrigation supply at Tengi River Headworks (TRH) in the main canal with respect to the upstream discharge at the Bernam River
Headworks (BRH). The discharge variation regression equation was used to compute discharges downstream using known discharge records at the upstream point. It was found to be reliable for estimating daily available discharges for irrigation supply at the downstream point. New performance indicators were also developed to evaluate the irrigation delivery performance. The crop-water relationship model was developed based on different water allocation rules under field condition.

A water balance model was studied. The model is able to determine the crop water requirements of rice at specific periods. The Penman-Monteith method was applied for estimating daily reference crop evapotranspiration. Autoregressive model was applied to forecast reference crop evapotranspiration and water diverted to the irrigation system at the upstream of the scheme since daily records were not available. A First-order Markov chain model was used to simulate the occurrence of rainfall, and a skewed normal distribution was applied to fit the amount of rainfall for a rainy day. Results obtained showed that these stochastic models could satisfactorily be used to generate daily records for the area.

A comprehensive modelling framework was developed for equitable water allocation in tertiary units considering the optimal utilisation of limited water resources as the season advances. It was embedded into the user-friendly interactive tool known as Rice Irrigation Management Information System (RIMIS). ArcObjects and Visual Basic for Application (VBA) programming languages were used to develop RIMIS inside the powerful ArcGIS 8.3 software. RIMIS is comprised of six modules, several sub-modules and functions. The “Detailed Scheme Information” module describes a new framework for creating generic graphical user interfaces with ArcObjects and VBA for database access of spatial and non-spatial data recorded in a
geo-database. It provides appropriate information interactively for irrigation engineers or water managers towards solving the irrigation water management issues as the season advances. The “Equitable Irrigation Deliveries” module simulates irrigation deliveries incorporated with allowable and design irrigation supply based on the tertiary canal’s command areas, stochastic daily rainfall and evapotranspiration and available water resources for irrigation supply. It allows the manager to enhance the decision-making for delivering the right amount of water to the fields for the upcoming irrigation period. The “Optimisation of Irrigation System” module is intended for optimal utilisation of available water resources through proportional allocation to all irrigable areas. The simulation model was tried with different parameters and criteria using optimal allocation policy. The “Monitoring Irrigation Deliveries” module gives information on the uniformity of water distribution and the shortfall or excess; and what decisions to adopt for the next day. The “Post-Season Analysis” module uses daily or periodic information to evaluate the season’s irrigation management performance. The “Hydro-climatologic Simulation Module” integrates several sub-modules for hydrological simulation models.

The RIMIS is a new development in Malaysia. It was evaluated for its decision-making capability on equitable water allocation along with trade-offs in water use by the scheme for two irrigation seasons in 2003 and 2004. The RIMIS was found to be practically acceptable and an effective tool for providing a more equitable distribution of available water resources for irrigation supply or more crops with less water.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMODELAN PENGAGIHAN AIR
UNTUK SKIM PENGAIRAN PADI BERSUMBER AIR SUNGAI MENGGUNAKAN GIS

Oleh

MD. ROWSHON KAMAL

Mac 2006

Pengerusi: Profesor Ir. Mohd Amin Mohd Soom, PhD

Institut: Institut Teknologi Maju

Air semakin berkurangan dan adalah penting untuk mencari kaedah bagi mengurangkan penggunaan air. Adalah menjadi pengetahuan umum bahawa dalam projek pengairan bersumber air larian sungai, keperluan pengairan jarang dapat dipenuhi oleh aliran tak menentu air sungai. Dalam sistem pengairan yang berskala besar seperti skim Pengairan Padi Tanjong Karang, pengagihan sumber air adalah lebih susah kerana perbezaan penggunaan air, kebiasaan bekalan air pengairan, dan corak kebolehdapatan bekalan air. Oleh kerana bekalan yang tidak menentu dengan tiadanya takungan simpanan air untuk rancangan pengairan, ada keperluan untuk ramalan dan pengagihan air yang sedia ada secara saksama dan cekap untuk meningkatkan sistem pengurusan. Satu kajian telah dilakukan untuk membangunkan satu sistem maklumat geografi yang diintegrasi dengan model pengagihan air untuk memastikan bekalan yang saksama dan penggunaan cekap sumber air yang ada.

Satu model matematik telah dibangunkan untuk penghantaran saksama air pengairan yang dibenarkan kepada kawasan dipengaruhi saluran taliair tersier. Hubungan telah
dibangunkan untuk menentukan aliran masuk harian yang ada bagi pengambilan di saluran utama bekalan pengairan di tempat kerjatrus Sungai Tengi (STH) dengan mengambil kira aliran masuk harian di kerjatrus Sungai Bernam (BRH). Persamaan regresi variasi kadar alir telah digunakan untuk mengira kadar alir di hulu (BRH) dengan mengambil kira rekod kadar alir di hilir (TRH). Persamaan tersebut telah didapati boleh dipercayai untuk menganggar kadar alir sebagai bekalan air pengairan di hilir. Petunjuk prestasi yang baru juga telah diperkenalkan bersama dengan petunjuk yang lain untuk memantau pengagihan harian air pengairan. Model hubungan tanaman-air telah dibangunkan berdasarkan peraturan pengagihan air yang berbeza mengikut keadaan sawah.

Satu rangka kerja pemodelan bersepadu telah dibangunkan bagi pengagihan air yang saksama dalam unit tersier melalui penggunaan optimum sumber air yang terhad untuk sepanjang musim. Ia diletak di dalam satu sistem maklumat mesra pengguna yang interaktif sebagai alat pengurusan yang dikenali sebagai Sistem Maklumat Pengurusan Pengairan Padi (RIMIS). Bahasa membuat program ArcObjects dan

RIMIS adalah suatu perisian yang baru dibangunkan di Malaysia. Ia telah dinilai bagi dua musim dalam tahun 2003 dan 2004 untuk menganggar keupayaannya sebagai alat untuk membuat keputusan. Berdasarkan penilaian, RIMIS telah didapati boleh diterima secara praktik dan suatu alat yang berkesan untuk mengagihkan air pengairan yang sedia ada secara saksama, atau meningkatkan pengeluaran tanaman padi dengan air yang kurang.
ACKNOWLEDGEMENTS

All praise be to Almighty Allah who enabled the author to complete the research work. The author would like to express his intense gratitude and indebtedness to his supervisor, Professor Ir Dr Mohd Amin Mohd Soom, Faculty of Engineering, Universiti Putra Malaysia, for his persistent guidance, invaluable suggestions, spontaneous support, and constant encouragement in the successful completion of this thesis. The author is also grateful to his committee members, Associate Professor Dr. Abdul Rashid Mohamed Shariff and Associate Professor Dr. Lee Teang Shui for their constructive advice and critical comments.

Heartfelt thanks are extended to the Government of Malaysia for financial support through the Intensification of Research in Priority Areas (IRPA) Program, Ministry of Science, Technology, and Environment, Malaysia and also the Malaysian Centre for Remote Sensing (MACRES). His heartfelt gratitude is also extended to Prof. Dr Aini Ideris in this regard. Deep appreciation is due to the staff of Department of Irrigation and Drainage (DID), and the Malaysian Meteorological Services (MMS) for providing the necessary data. The author is also grateful to the experts in Arcobjects and Visual Basic for Application (VBA) Programming Languages especially to Nazmus Saadat as well as field experts at the Tanjung Karang Irrigation Scheme who were consulted on numerous occasions in the process of developing the Rice Irrigation Management Information System (RIMIS).

The author would like to express a special gratitude to his wife Dilruba and daughter Hridita for their support, patience and encouragement. It was through their love and sacrifice of numerous evenings and weekends without a husband and a father that the time necessary for research and study was made available. He expresses his greatest gratitude to his parents, relatives and friends for their love, affection and encouragement.

Finally, thanks to almighty Allah without Whom nothing can be achieved.
I certify that an Examination Committee has met on the 10th March 2006 to conduct the final examination of Md. Rowshon Kamal on his Doctor of Philosophy thesis entitled “Modelling Water Allocation for a Run-of-the-River Rice Irrigation Scheme using GIS” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. Wan Ishak Wan Ismail, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thamer Ahmed Mohammed, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mazlan Hashim, PhD
Professor
Faculty of Geoinformation Science and Engineering
Universiti Teknologi Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

IR. MOHD AMIN MOHD SOOM, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

ABDUL RASHID MOHAMED SHARIFF, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

IR. LEE TEANG SHUI, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MD. ROWSHON KAMAL

Date: 20 April 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1.1. Background
1.2. Statement of the Problem
1.3. Objectives of the Study
1.4. Scope of the Study

II LITERATURE REVIEW

2.1. Rice Irrigation Development and Challenges in Malaysia
2.1.1. History of Rice Production in Malaysia
2.1.2. History of Irrigation Development in Malaysia
2.1.3. State of the Art for the Irrigation Water Management
2.2. Issues of Irrigation and Water Resources Management
2.2.1. Water Balance Model
2.2.2. Crop Evapotranspiration (ET)
2.2.3. Irrigation Water Allocation
2.2.4. Irrigation Water Delivery Performance
2.2.5. Canal Operations in the Irrigation Process
2.2.6. Overall Irrigation System Efficiency (Es)
2.3. GIS in Irrigation and Water Resources Management
2.4. Hydrologic Models in Water Resources Management
2.4.1. Stochastic Daily Rainfall Model
2.4.2. Autoregressive Model (ARM)
2.4.3. Time Series Analysis Principles
2.5. Simulation and Optimisation Model in Irrigation and Water Resources
2.5.1. Simulation Techniques
2.5.2. Optimisation Techniques
2.6. Irrigation and Water Management Tools
2.7. Summary
III METHODOLOGY

3.1. Study Area, Data Acquisition and Processing 69
 3.1.1. Location of the Study Area 69
 3.1.2. Data 70
 3.1.3. History and General Information of the Scheme 71
 3.1.4. Soil Characteristics 78
 3.1.5. Source of Irrigation Water 78
 3.1.6. Climate 82
 3.1.7. Reference Crop Evapotranspiration (ETo) 90
 3.1.8. Irrigation Seasons of the Scheme 92
 3.1.9. Available Discharges at the Intake Point of the Main Canal 96
 3.1.10. Canal Networks and Water Distribution 94

3.2. Development of the Water Allocation Model 97
 3.2.1. Modelling Available Inflow at Intake Point in the Main Canal 97
 3.2.2. Modelling Equitable Irrigation Water Delivery for Tertiary Offtakes 100
 3.2.3. Modelling Effective Rainfall (ER) 104
 3.2.4. Crop Water Model and Recommended Irrigation Supply 106
 3.2.5. New Irrigation Delivery Performance Indicators 112
 3.2.6. Optimisation Model 116

3.3. Design, Development and Operation of the RIMIS 123
 3.3.1. RIMIS Module: Detailed Scheme Information 127
 3.3.2. RIMIS Module: Equitable Irrigation Deliveries 130
 3.3.3. RIMIS Module: Monitoring Irrigation Deliveries 134
 3.3.4. RIMIS Module: Optimisation Irrigation System 136
 3.3.5. RIMIS Module: Post-season Analysis and Evaluation 138
 3.3.6. RIMIS Module: Hydro-meteorological Simulation Models 140

3.4. Summary 148

IV RESULTS AND DISCUSSIONS 149

4.1. Application of RIMIS Module: Detailed Scheme’s Information 149
4.2. Application of RIMIS Module: Equitable Irrigation Deliveries 157
4.3. Application of RIMIS Module: Monitoring Irrigation Deliveries 169
 4.3.1. Rice Relative Water Supply (RRWS) 171
 4.3.2. Cumulative Rice Relative Water Supply (CRRWS) 176
 4.3.3. Ponding Water Index (PWI) 180
 4.3.4. Irrigation Delivery Performance Using RWS and RRWS Concept 181
 4.3.5. Irrigation Delivery Performance by CRWS and CRRWS Concept 184
4.4. Application of RIMIS Module: Optimisation of Irrigation System 186
4.5. Application of RIMIS Module: Hydro-climatological Simulation Models
 4.5.1. Daily Reference Crop Evapotranspiration (ETo) 199
 4.5.2. Forecasting Daily Discharges in Main Canal 201
 4.5.3. Stochastic Daily Expected Rainfall Sequences 205
4.6. Application of RIMIS Module: Post-season Analysis and Evaluation
 4.6.1. Yield of Tanjung Karang Rice Irrigation Scheme 211
 4.6.2. Daily Irrigation Delivery Performance 212
 4.6.3. Daily Rainfall (RF) and Effective Rainfall (ER) 214
 4.6.4. Irrigation Requirements (IR) 216
4.7. Model Calibration and Validation
 4.7.1. Available Water and Scheme Irrigation Demand 219
 4.7.2. Observed and Simulated Discharges at BRH 223
 4.7.3. Observed and Estimated Discharges at TRH 225
4.8. Summary 228

V SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 229
 5.1. Summary 229
 5.2. Conclusions 231
 5.3. Recommendations 237

REFERENCES 238
APPENDICES 251
BIODATA OF THE AUTHOR 275