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At the first stage in this research, Fe(NO3)3.9H2O and Al2O3 was used to formed 

Fe(NO3)3 catalyst using wet impregnation method. Carbon nanotubes (CNTs) was 

then grown using the prepared catalyst introduced into fluidized-bed reactor. CNTs 

grown in the fluidized-bed was later purified in acid follow by thermal oxidation. 

After purification process, carbon nanotubes (CNTs) were characterized using 

scanning electron microscope (SEM), transmission electron microscopy (TEM) and 

Raman spectroscopy. In this experiments, large quantity of agglomerates as much as 

7 g is synthesized in a different way than other authors. This agglomerates consists of 

different size of CNTs and some amorphous carbon. The causes for the failure of 

continuous CNTs synthesizing is determined through the analysis of agglomerate 

formation. A new unit (g/mole) is used to measuring CNTs yields to provide a bigger 

picture than the commonly used percentage yields.  
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Peringkat pertama dalam penyelidikan ini, Fe(NO3)3.9H2O dan Al2O3 telah 

digunakan untuk membentuk pemankin Fe(NO3)3 dengan menggunakan kaedah “wet 

impregnation”. CNT kemudiannya disintesis dengan menggunakan pemangkin yang 

disediakan dan dimasukkan ke dalam reaktor lapisan terbendalir. CNTs yang 

disintesis kemudiannya direndam di dalam asid diikuti dengan pengoksidaan terma 

untuk penulenan. Selepas proses penulenan, CNT telah dicirikan dengan 

menggunakan mikroskop SEM, TEM dan spektroskopi Raman. Dalam eksperimen 

ini, sebanyak 7 g gumpalan CNT telah disintesis dengan cara yang berlainan 

daripada penulis lain. Gumpalan ini terdiri daripada saiz CNT yang berlainan dan 

juga karbon amorfus. Punca-punca bagi kegagalan mensintesis CNT secara 

berterusan telah ditentukan melalui analisis pembentukan gumpalan. Unit baru 

(g/mol) telah digunakan untuk mengukur hasil CNT untuk memberikan gambaran 

yang lebih besar berbanding unit peratusan yang biasa digunakan oleh penulis lain.  
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CHAPTER 1  

I
TRODUCTIO
 

 

This thesis is divided into five chapters that describe the research performed during 

the study. In this chapter, it serves as an introduction for continuous production of 

carbon nanotubes (CNTs) in a fluidized-bed chemical vapour deposition (FB-CVD). 

It presented a brief discussion to the background of study, research problems, 

objectives, scopes and benefits contribute by this research to scientific community.  

 

1.1. Background of study 

 

Prior to the 90’s, research in CNT is mostly theoretical and did not reach to most part 

of the world. Following the discovery of CNT by Iijima and co-worker in 1991, 

research in CNT have been growing at a very fast pace ever since (Iijima, 1991). 

Thing fascinating about CNT that catch attention of researcher from around the 

world are their superior properties. A number of these properties include having a 

wide band gap, high melting point, high tensile strength as well as high thermal 

conductivity (Fischer, 2006); these properties are the results of its small size and the 

arrangement of carbon atom within the covalently bonded network of sp
2
. Up to this 

date, success has been shown in the production of CNTs by authors performing the 

study; several methods of synthesizing CNTs have been identified and much of the 

research performed during this time are dedicated to the known synthesizing 

techniques. Much recently, continuous synthesis of CNTs has been a hot topic of 

discussion due to their ability of growing CNTs continuously. Several such 

techniques are the arc-jet plasma (Choi et al., 2006), simplified carbon-arc method 
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(Ishigami et al., 2000), floating catalyst (Mora et al., 2007) and fluidized-bed (FB) 

(Weizhong et al., 2004).  

 

Currently, FB-CVD attracted the most attention from scientific community compared 

to other methods because of their capability to grow CNTs in large quantity and easy 

for scale-up production. Its numerous advantageous over a normal CVD method are 

the absence of thermal gradient, flexible operating condition and the ability of 

continuous manufacturing (Philippe et al., 2007). This method evolves from catalytic 

cracking of hydrocarbons in fluidized-bed. The needs to satisfy high market demand 

of industrial goods such as the production of monolithic materials and fabrication of 

composites have made FB-CVD a new class of process in fluidized-bed technology. 

With the growing support from governmental and industrial sector and the needs to 

have huge quantity of CNTs, lots of attention has turn to FB-CVD for their potential 

to grow huge quantity of CNT; since research in this area do not have a long history, 

knowledge of growing CNTs in FB-CVD still have their lacking and further study 

are required before this method can be fully utilized to grow CNTs. Before the study 

of continuous CNTs synthesizing, other fully established techniques such as laser 

ablation (Kusaba et al., 2006), chemical vapour deposition (Corrias et al., 2003) and 

arc-discharge (Zhao et al., 2007) are the key research topics.  

 

1.2. Research problems 

 

Numerous difficulties in synthesizing CNTs have been solve since its discovery up to 

this date by the established synthesizing techniques, but progress in growing CNTs in 

industrial scale have been very disappointed with the results of the research capable 
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of only growing CNTs in small quantity. This problem has resulted the price of CNTs 

to be unacceptable high; Helix Material Solutions Inc. trade a gram of purified CNTs 

for 210 USD while low cost CNTs are around 28 – 83 USD a gram as of 2010.  Due 

to the high cost of CNTs, a large number of applications utilizing CNTs are unable to 

be realize, some of these application include but not less to ultracapacitor, air 

pollution filter, hydrogen storage, superconductor, artificial muscles, structural 

composites as well as waterproof fabrics (http://en.wikipedia.org/wiki/Potential_ 

applications_of_carbon_nanotubes, access on 9 October 2010). Qiu et al. (2004) 

conducted a study using fixed-bed CVD method is one of the example that grow high 

quantity of CNTs but it contain substantial amount of impurities mainly catalyst 

particles and amorphous carbon. Other methods such as arc-discharge on the other 

hand grow high purity CNTs as compare to CVD method at the cost of lower 

quantity (Zhao et al., 2007). Despite a lot of research conducted, these methods 

however, are still in their infancy of growing CNTs in commercialized scale mainly 

owing to the limited growth efficiency. The problem with fixed-bed CVD are 

inhomogeneous gas-solid mixing (Philippe et al., 2007) while for arc-discharge are 

the evaporating of hydrocarbon feedstock at the end of graphite rod (Vittori et al., 

2003) which produce a very small amount of CNTs, these limitation cause scale up 

production of CNTs difficult to achieved. The problems however are easily overcome 

using fluidized bed reactor and it show to be promising in producing large quantity 

of CNTs by continuously synthesizing. Continuous production means CNTs are 

synthesize and extract continuously and need to be in loose powder form. Before the 

process can be scale-up for continuous production, one feature identified to have a 

major influence on extracting CNTs from FB-CVD are the reactor blockage during 

long operating hours and formation of oversize agglomerates that glued itself to the 
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reactor walled. The agglomerates formation are widely known to the scientific 

communities (Corrias et al., 2003; Lan et al., 2004 and Zhang et al., 2009) but it is 

rarely research with Lan et al., (2004) presented the only paper and whether any 

study taken into consideration the formation of carbon agglomerates adhering to the 

reactor wall is currently unknown. As up to this date, there are no scientific data in 

any peer reviews available for the problem with the closest available are the study of 

CNTs formations on stainless steel by a handful of authors namely Wall et al., (2003) 

and Zhou et al., (2008). Besides it is important that a method of reducing and 

potentially prevent the blockage of reactor and carbon agglomerates adhering to the 

walled during long operating hours are studied. 

 

1.3. Objectives 

 

• To determine the reason for CNTs adhering to the reactor surfaces. 

• To observe the effects of CNTs production by manipulating the carrier gas 

and H2 flow rates. 

• To study the effect of catalyst amount on CNTs production. 

 

1.4. Scope of study 

 

This research are conducted using fluidized-bed reactor to grow CNTs using catalyst 

prepared from wet-impregnation method. The study on the influence of catalyst and 

the effect of gases used as mentioned in objectives were carried out as to determine 

its relationship to CNTs morphology and yields obtained from reactor surface. The 

most important part of this research is to study the reason behind CNTs adhearing to 
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the reactor wall and its effect on CNTs growth rate and morphology under different 

conditions. The data for mole is obtained using gas chromatography (GC). 

Morphology and characterization of both catalyst and synthesized CNTs were carried 

out using scanning electron microscope (SEM), transmission electron microscope 

(TEM), X-ray diffraction (XRD) and raman spectroscopy.  
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APPE
DIX 

 

All the calculation is made by assuming 

spherical particles 
 

Minimum fluidization, 

 

��� = ��� − ��	
���1502�  

 

Prediction error ±15% 

 

Voidage at minimum fluidization, 
 ./�� = ��������  

(Re, change Umf into U) 

 

)* = ��+����� − ��	
��  

  �� = 0.3507)*#.#+,-./��0#.#-#1 

 

Prediction error ±4% 

 

Pressure drop, 
 ∆��� = �1 −  ��	��� − ��	
!�� 

 

Bed height above minimum fluidization, 

 

 =  �� 9 ./ + 0.02./�./�� + 0.02./��<
#.B

 

 

Heterogeneous fluidization (with bubbles), 

Todes 1981 

 r = s(t − u)vwx 

 

Metal content, 
 0.138h10 × 100 = g%\]R/`Qa 
 

 

 

 

Data at hand, �� = 125�R, 63�R, 45�R � = 5.1 × 1008Q`650℃ �� = 3900{
R0+ �� = 0.53{
R0+ ) = 4.91qR�(Q*/Q\]*/Qq`\*)  R = 2
 
 

 

 

125 µm ��� = 7.80 × 100+R[0B ./�� = 0.01 )* = 15.22  �� = 0.54 ��� = 1794{
R0+ !�� = 0.49qR ∆��� = 193.6�Q 

 

65 µm ��� = 4.43 ×100+R[0B  calculated at 

29Celcius ./�� = 1.31 × 100+ )* = 1.95  �� = 0.57 ��� = 1677{
R0+ !�� = 0.56qR ∆��� = 197.4�Q 

 

45 µm ��� = 1.01 × 100+R[0B ./�� = 4.72 × 1001 )* = 0.71  �� = 0.60 ��� = 1560{
R0+ !�� = 0.65qR ∆��� = 198.9�Q 

 

Required percentage of metal content for the 

experiment (5 – 10 %) 

 h = U/(VW+)+. 9!�W y 

7.25 g 10 % 

6.52 g 9 % 
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5.80 g 8 % 

5.07 g 7 % 

4.35 g 6 % 

3.62 g 5 % 

 

Bed height achieved during particles 

fluidization 

 

125 µm  = 0.63 ��� = 1443{
R0+ ! = 0.76qR 

 

63 µm  = 0.75 ��� = 975{
R0+ ! = 1.67qR 

 

45 µm  = 0.86 ��� = 546{
R0+ ! = 5.33qR 

 

Pneumatically transport 

�J|H} = ~4Z�10�
� �� �>� �� A
��� �

B �DB�
 

 � = 1.5�J|H} 
 

 � = 1440�� + 1.96 � = 1100�� + 2.5 

 

Terminal velocity, 

 

C�.G�� = 43���+����� − ��	
�� � 

 .G� = ���5�  

 

 

∆�� = 2]����a�� + 0.057�a��
�+ ��(1 −  �)
a� + �� �
a� 

 

 ���5 − ��5 + � + ����  � + � = 0 

 

Data at hand, 

 �� = 3RR − CVk, 65�R − )a2W3 

 � = 5.1 × 1008Q`650℃ 
 �� = 1400{
R0+ − CVk �� = 3900{
R0+ − )a2W3 

 �� = 0.53{
R0+ 

 � ≈ 0.9 
 ) = 4.91qR�(Q*/Q\]*/Qq`\*) a� = 0.5R(a/4
`ℎ\]*/Qq`\*)  
 �� = 3.33 × 100�{
[0B − CVk + )a2W3 

 

 

 

Calculated requirement to removed C
T 
 � = 3.64R/[ �5 = 0.8R/[  � = 0.9965 
 ∆�� = 33.4�Q 
 

Calculated requirement to removed Al2O3 
 � = 4.51R/[ �5 = 0.22R/[  � = 1 
 ∆�� = 6.4�Q 
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