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New over-relaxation methods for the solution of two-dimensional Helmholtz par-

tial differential equations (PDEs) are described. In the Helmholtz equation, when

solving the resulting PDEs using a finite difference (FD) scheme, the computations

involve large sparse systems of linear equations (SLEs). These require considerable

computation time. Hence, to overcome this problem, the development of faster it-

erative techniques is desirable.

Point iterative methods, which are based on full-, half-, and quarter-sweep dis-

cretization, are commonly used to solve the Helmholtz equation. Due to the large

scale of the resulting SLE, many studies have attempted to speed up the conver-

gence rate of the solution. Hence, Young (1971) has already elaborated and dis-

cussed the concepts behind various iterative methods. In addition, block (or group)

iterative methods, whereby the mesh points are grouped into blocks, have been

shown to reduce the number of iterations and execution time, because the solution
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at the mesh points can be updated in groups instead of pointwise. Among these

group iterative methods, Explicit Group (EG), Explicit Decoupled Group (EDG),

and Modified Explicit Group (MEG) methods have been expansively researched,

and have been shown to converge faster than their pointwise counterparts. Apart

from this approach, in order to improve the rate of convergence of these tech-

niques, conjoint accelerated methods, such as Successive Over-Relaxation (SOR),

may be applied to reduce the number of iterations. Whereas the above methods

have already been implemented with SOR, the quarter-sweep pointwise and MEG

methods have never been implemented with Modified Successive Over-Relaxation

(MSOR).

This thesis explains the construction and formulation of a quarter-sweep method

combined with MSOR, namely QSMSOR. In addition, a computational complex-

ity analysis is presented, and the method is compared with half-sweep MSOR

(HSMSOR) and full-sweep MSOR (FSMSOR). Next, the derivation of a combined

MEG and MSOR method for solving the two-dimensional Helmholtz equation it-

eratively is discussed in detail, and a computational complexity analysis of the

proposed method is conducted. The numerical results illustrate the improvement

of the MEGMSOR method over the combined EDGMSOR and EGMSOR methods

in terms of number of iterations, execution timing and maximum absolute error.

This is shown to be true for both nonhomogeneous and homogeneous problems in

second-order schemes.

In conclusion, the newly developed method is a viable alternative for solving the

Helmholtz equation iteratively.
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KAEDAH LELARAN PENGENDURAN BERLEBIHAN
BERTURUT-TURUT TERUBAHSUAI MENGGUNAKAN
SAPUAN SUKU PANTAS UNTUK MENYELESAIKAN

PERSAMAAN HELMHOLTZ DUA DIMENSI

Oleh

MOHD KAMALRULZAMAN MD AKHIR

Oktober 2012

Pengerusi: Profesor Mohamed Othman, PhD

Fakulti: Institut Penyelidikan Matematik

Kaedah Pengenduran Berlebihan baru untuk penyelesaian sistem persamaan pem-

bezaan separa (PPS) Helmholtz dua dimensi telah diterangkan. Dalam persamaan

Helmholtz, apabila menyelesaikan PPS menggunakan skema kaedah beza terhingga

(BT), pengiraan yang melibatkan sistem besar jarang persamaan linear (SPL) be-

sar, jarang. Ini memerlukan memerlukan masa pengiraan yang tinggi. Oleh itu,

membangunkan teknik lelaran yang lebih pantas adalah wajar untuk mengatasi

masalah ini.

Kaedah lelaran titik yang berasaskan pendiskretan sapuan-penuh (SP), separuh-

(SS) dan suku (SK) lazimnya digunakan untuk menyelesaikan persamaan Helmholtz.

Oleh kerana skala sistem linear yang besar, banyak kajian telah dicadangkan

untuk mempercepatkan kadar penumpuan dalam penyelesaian SPL. Oleh itu,

Young (1971) telah menghuraikan dan membincangkan pelbagai konsep kaedah
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lelaran. Di samping itu, kaedah lelaran blok (atau kumpulan), di mana titik-

titik grid dikelompokkan ke dalam blok, didapati mengurangkan bilangan lelaran

dan masa perlaksanaan yang diperlukan, kerana penyelesaian bagi titik-titik grid

dikemaskinikan dalam blok atau kumpulan tetapi bukan titik demi titik. An-

tara kaedah-kaedah lelaran berkumpulan, kaedah kumpulan tak tersirat (KTT),

kaedah kumpulan nyah pasangan tak tersirat (KNPTT) dan kaedah kumpulan

tak tersirat terubahsuai (KTTT) telah banyak dikaji dan terbukti bahawa mem-

punyai penumpuan lebih cepat berbanding kaedah titik demi titik. Selain dari

pendekatan ini, dalam usaha untuk mempercepatkan kadar penumpuan teknik-

teknik ini, kombinasi kaedah pengenduran berlebihan berturut-turut (PBB), boleh

digunakan untuk mengurangkan bilangan lelaran. Walaupun semua kaedah di

atas telah dilaksanakan dengan kaedah PBB, kaedah titik demi titik sapuan suku

dan kaedah KTTT belum pernah dilaksanakan dengan pengenduran berlebihan

berturut-turut terubahsuai (PBBT).

Tesis ini menerangkan pembangunan dan penerbitan kaedah SK bersama den-

gan PBBBT, iaitu PBBTSK. Di samping itu, analisis kekompleksan pengiraan

diperihalkan dan kaedah ini telah dibandingkan dengan kaedah PBBT sapuan

separuh (PBBTSS) dan PBBT sapuan penuh (PBBTSP). Seterusnya terbitan

kaedah PBBTKTTT dibincangkan secara terperinci untuk menyelesaikan per-

samaan Helmholtz dua dimensi secara lelaran dan analisis kekompleksan pengiraan

kaedah yang dicadangkan dibincangkan. Keputusan berangka menunjukkan pen-

ingkatan ciri-ciri kaedah PBBTKTT berbanding dengan kaedah PBBTKNPTT

dan PBBTKTT dari segi bilangan lelaran, masa perlaksanaan dan ralat mutlak

maksimum. Dalam skim peringkat kedua ini dapat ditunjukan benar bagi kedua-

dua masalah tak homogen dan homogen.
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Kesimpulannya, kaedah baru yang dibangunkan adalah alternatif yang berdaya

maju untuk menyelesaikan persamaan Helmholtz secara lelaran.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In solving science and engineering problems via numerical methods, many dis-

cretization techniques can be taken into account such as FD, boundary element

(BE), spectral element (SE) and finite element (FE) methods, which can be used

to construct approximation equations for approximating the proposed problems.

However, it is still very difficult to gain any solution in solving these problems,

either analytically or numerically. As a matter of fact, FD method which is cat-

egories as mesh based methods has been used widely to obtain the numerical

solution. This method can be used for solving the proposed problems. Next, these

approximation equations will be used to generate the corresponding system linear

of equation (SLE). Due to the large scale of SLE, the theory or numerical meth-

ods in solving such systems has become one of the most popular research areas in

modern science.

The over-relaxation theory, which is established in early 1950, is based on solving

SLE, which emerges in application of FD schemes to differential equations. This

theory comprises different variants of SOR (Young, 1950) and MSOR (De Voge-

laere, 1958) methods. On the other hand, the performance is improved through

complexity reduction approaches and other approaches to speed up the conver-

gence rate.

1.2 Problem Statement

Many problems in engineering and science involve Helmholtz equation, occur in

real time application. On the other hand, the applications of Helmholtz equa-



© C
OPYRIG

HT U
PM

tion are encountered in many fields such as time harmonic acoustic and elec-

tromagnetic fields, optical waveguide, acoustic wave scattering, noise reduction

in silencer, water wave propagation, radar scattering and lightwave propagation

problems (Nabavi et al., 2007; Kassim et al., 2006; Yokota and Sugio, 2002). For

example, there is a high important in improving the performance of the methods

for solving Helmholtz equation. Hence, the development of fast methods is essen-

tial in this research area.

Recent research discovered the formulations and implementations of the FD scheme

in the based on the point EG, EDG and MEG iterative methods combined with

full-, half- or quarter-sweep iteration concept implemented with SOR methods

(Othman and Abdullah, 2004, 2000b,a, 1998; Abdullah, 1991)and to some extent,

with Accelerated Over-Relaxation (AOR) method (Rakhimov, 2011; Rakhimov

and Othman, 2009; Ali and Lee, 2007; Martins et al., 2002; Hadjidimos and Sari-

dakis, 1992; Hajidimos and Yeyios, 1991). Among these iterative methods, the

four-point MEGAOR and quarter-sweep AOR (QSAOR) iterative methods are

shown to be the fastest and require fewer arithmetic operations. While all the

above methods were implemented with SOR and AOR, the quarter-sweep point

and block have never been implemented with MSOR before.

In addition, the most important characteristic of the MSOR methods is the per-

formance can be improved significantly with a wider choice of the relaxation pa-

rameter. Moreover, the relaxation parameter can be calculated practically by con-

secutively choosing a value with some precision until the optimal value is obtained

(Kincaid and Young, 1972; Young, 1971).
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1.3 Objectives of Thesis

The primary objective in this thesis is to develop a new fast and efficient pointwise

and block algorithms for solving two-dimensional Helmholtz equation by utiliz-

ing the quarter-sweep concept with MSOR approach. The objective is obtained

through research on different problems for solving large sparse SLE. Characteris-

tics associated with the new methods such as number of iterations, computational

times and accuracy will be discussed. Besides developing the new algorithms, the

opportunity to show on computational complexity for the proposed methods will

be elaborated to clarify the effectiveness of the proposed algorithms.

1.4 Scopes and Limitations

This thesis is concentrates on the development of new algorithms for solving

Helmholtz equation. More specifically, the research focused primarily on imple-

mentation of MSOR method in quarter-sweep point and MEG methods. Mean-

while, in the literature review, it is discovered that there has been a general theory

on MEG iterative method for solving PDEs. However, there has been no work

on computational complexity analysis on MEGMSOR methods for solving PDEs,

mainly on two-dimensional Helmholtz equation. The detail of the proposed meth-

ods will be given of the relevant chapters namely Chapter 3 and 4.

1.5 Methodology

In order to develop the new algorithms for solving Helmholtz equation, there are

several steps to follow, which are

1. Literature review on:

• Basic mathematical concepts.

• The Helmholtz equation and general theory of PDEs.

3
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• Iterative methods and Over-Relaxation theory.

2. Development and implementation of the new algorithms for solutions of the

Helmholtz equation, such as

• Point iterative FSMSOR, HSMSOR and QSMSOR methods.

• Block iterative EGMSOR, EDGMSOR and MEGMSOR methods.

3. Experiments to benchmark the new algorithms with point and block iterative

algorithms studied in step two with different grid sizes.

4. Development of computational complexity analysis of the new proposed

methods.

1.6 Outline of Thesis

In Chapter 1, provide an overview and introduction on the application of numeri-

cal methods used in the later chapters.

Chapter 2, will give a brief introduction of the numerical solution of PDEs. Ba-

sic theory on mathematical concepts like matrix algebra concepts and SLE are

discussed. This chapter also focused on the fundamental concepts in direct and

iterative methods in solving SLE. A brief explanation of the numerical solution

of Helmholtz equation is given. The chapter end with a review of all related re-

searchers on point and block methods.

Chapter 3, provided the detail for derivation of the FSMSOR, HSMSOR and

QSMSOR methods by using FD approximate equations. The computational com-

plexities were also discussed. Additionally, the numerical results based on the

QSMSOR method and comparisons of their performance to the existing FSMSOR

4
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and HSMSOR methods.

Chapter 4, will covered the explanation on deriving MEGMSOR method using the

FD approximation equations, for solving two-dimensional Helmholtz equation are

in Chapter 4. The details of the computational complexity were discussed. Nu-

merical results are presented and comparisons of their performance to the existing

method are made in the final section of the paper.

Chapter 5, summarizes the most important aspects of research. A discussion and

suggestion for future work pertaining to this research will be given in highlight the

opportunities.

5
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