

CHARACTERIZATION OF ANTIEPILEPTIC AND ANXIOLYTIC ACTIVITIES OF ETHYL ACETATE FRACTION FROM Swietenia macrophylla KING SEEDS

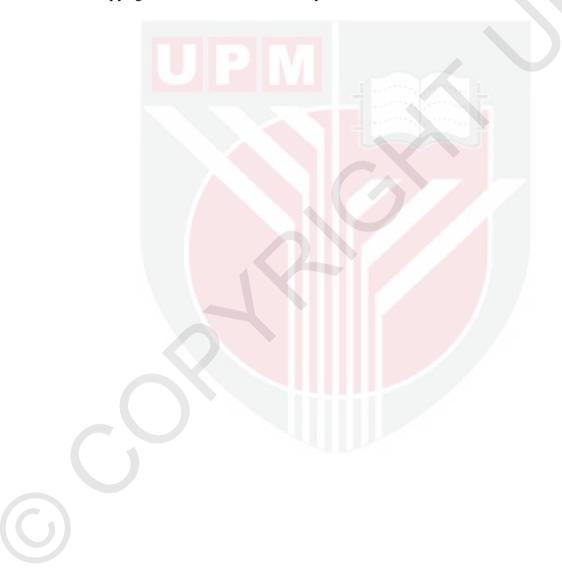
SAYYAD MUSTAK

FPSK(p) 2016 17

CHARACTERIZATION OF ANTIEPILEPTIC AND ANXIOLYTIC ACTIVITIES OF ETHYL ACETATE FRACTION FROM Swietenia macrophylla KING SEEDS

By

SAYYAD MUSTAK

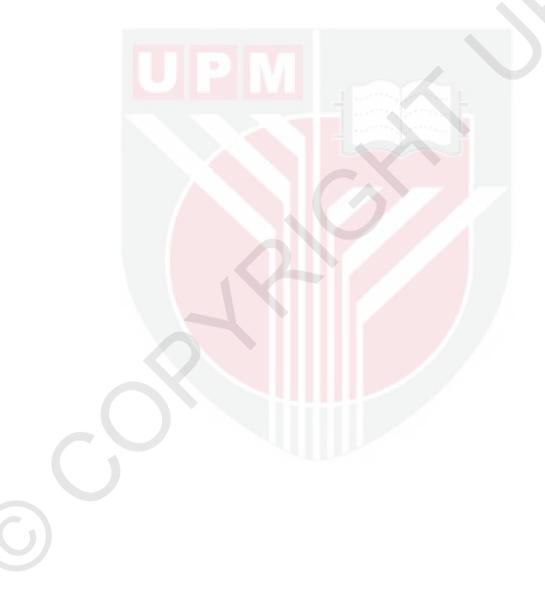

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2016

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



DEDICATION

To my beloved parents, who have supported me in all of my life events, particularly in raising the decision to pursue higher studies

And

To my beloved wife Samiya Anees and our son Izaan, for giving soul to our life

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfillment of the requirements for the degree of Doctor of Philosophy

CHARACTERIZATION OF ANTIEPILEPTIC AND ANXIOLYTIC ACTIVITIES OF ETHYL ACETATE FRACTION FROM Swietenia macrophylla KING SEEDS

By

SAYYAD MUSTAK

May 2016

Chairman: Professor Rozita Binti Rosli, PhDFaculty: Medicine and Health Sciences

Epilepsy is a serious brain disorder with approximately 2.4 million new cases each year globally, from which 80% of them are in the developing world. In addition, anxiety and depression are frequent co-morbid conditions associated with epilepsy patients, usually unrecognized and untreated in the majority of epilepsy sufferers. Thus, developing a new agent from a plant source which may be useful in the treatment of epilepsy, along with anxiety and depression is a worthwhile approach. A number of plants used in traditional medicine systems have been found to possess antiepileptic activity. Swietenia macrophylla is an important medicinal plant, has been reported for various activities, including antioxidant and antinociceptive activities. The main objective of this study was to characterize the potential neuropharmacological activity of ethyl acetate fraction of Swietenia macrophylla seeds (SMEAF) in experimental animal models. The in vitro assay was carried out to determine the neuroprotective properties using primary neuronal cells and cell viability was assessed using MTT assay. The results of assay suggested the ability of SMEAF in protecting primary neuronal cells against tert-Butyl hydroperoxide (TBHP) induced oxidative stress. An acute oral toxicity study was conducted in which the SMEAF was found to be safe up to the dose of 2000 mg/kg. Antiepileptic activity of SMEAF was evaluated in Pentylenetetrazole (PTZ) and Picrotoxin (PCT)induced convulsion models in which important brain neurotransmitter, gammaaminobutyric acid (GABA) levels was then estimated. SMEAF was found to have significant (p≤0.05, one-way ANOVA) anticonvulsant activity and exerted its property through multiple mechanisms, indicating its anticonvulsant property through GABA receptor and also by modulating the brain monoamine levels. Furthermore, the expression of selected epilepsy associated genes in the mouse brain was investigated, where it suppressed the mRNA expression levels of selected genes after PTZ treatment. Lastly, the effect of SMEAF on electroencephalogram (EEG) activity was determined, in which it corrected PTZ induced EEG disturbances. The antiepileptic activity may be due to limonoids and flavonoids which have also been reported to have various pharmacological activities in the central nervous system. The anxiolytic activity of SMEAF was evaluated in open field test and elevated plus

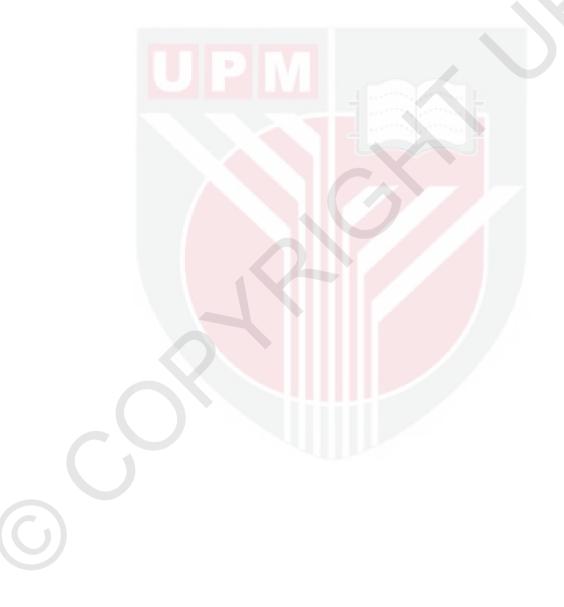
maze. SMEAF showed significant ($p \le 0.05$, one-way ANOVA) anxiolytic activity in both tests. As SMEAF was shown to modulate the levels of GABA, this action might be contributing to the anxiolytic potential of SMEAF. The antidepressant activity was evaluated using tail suspension test, but showed no significant effect in animals treated with SMEAF as compared with the control group. Taken together, it is concluded that SMEAF may be developed as a potential therapeutic agent for the treatment of epilepsy along with anxiety.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENCIRIAN AKTIVITI ANTIEPILEPTIC DAN ANXIOLYTIC ETHYL ACETATE PECAHAN DARI BENIH SETAR Swietenia macrophylla KING BIJI

Oleh

SAYYAD MUSTAK


Mei 2016

Pengerusi : Profesor Rozita Binti Rosli, PhD Fakulti : Perubatan dan Sains Kesihatan

Epilepsi adalah satu gangguan otak yang serius dengan kira-kira 2.4 juta kes baru setiap tahun di peringkat global, daripada 80% daripada mereka adalah di dunia membangun. Di samping itu, kebimbangan dan kemurungan adalah keadaan cofobia yang kerap dikaitkan dengan pesakit epilepsi, biasanya tidak dikenali dan tidak dirawat dalam sebahagian besar penghidap epilepsi. Oleh itu, membangunkan ejen baru dari sumber tumbuhan yang berguna dalam rawatan epilepsi, bersama-sama dengan kebimbangan dan kemurungan adalah pendekatan yang berbaloi. Sejumlah tumbuh-tumbuhan yang digunakan dalam sistem perubatan tradisional telah didapati mempunyai aktiviti antiepileptic. Swietenia Setar adalah tumbuhan ubatan yang penting, telah dilaporkan untuk pelbagai aktiviti, termasuk aktiviti antinociceptive dan antioksidan. Objektif utama kajian ini adalah untuk mencirikan potensi aktiviti neuropharmacological ethyl acetate pecahan Swietenia Setar benih (SMEAF) dalam model haiwan eksperimen. Cerakin di dalam vitro telah dijalankan untuk menentukan sifat-sifat neuroprotective yang menggunakan sel memodulatkan utama dan daya maju sel telah dinilai menggunakan cerakin MTT. Keputusan cerakin dicadangkan keupayaan SMEAF dalam melindungi sel-sel memodulatkan utama terhadap tekanan oksidatif tert-Butyl hydroperoxide (TBHP) induced. Suatu kajian ketoksikan akut lisan dijalankan di mana SMEAF itu telah ditemui selamat sehingga yang 2000 mg/Kg. Antiepileptic **SMEAF** dos aktiviti dinilai dalam Pentylenetetrazole (PTZ) dan model konvulsi berpunca dari perbuatan Picrotoxin PCT di mana neurotransmitter otak penting, tahap gamma - aminobutyric asid (GABA) kemudian dianggarkan. SMEAF didapati mempunyai signifikan (p≤0.05, ANOVA satu hala) aktiviti anticonvulsant dan diberikan harta melalui pelbagai mekanisma, menunjukkan sifatnya anticonvulsant melalui penerima GABA dan juga modulating tahap monoamine otak. Selain itu, penyataan epilepsi terpilih berkaitan gen dalam otak tetikus disiasat, di mana ia ditindas peringkat ungkapan mRNA gen yang terpilih selepas rawatan PTZ. Akhir sekali, kesan SMEAF aktiviti electroencephalogram (EEG) telah ditentukan, iaitu ianya diperbetulkan PTZ induced gangguan EEG. Aktiviti antiepileptic mungkin disebabkan oleh limonoids dan flavonoid yang juga telah dilaporkan mempunyai aktiviti farmakologi dalam

sistem saraf pusat. Aktiviti anxiolytic SMEAF dinilai melalui ujian medan terbuka dan bertingkat plus maze. SMEAF menunjukkan penting (p≤0.05, ANOVA satu hala) anxiolytic aktiviti dalam kedua-dua ujian. Seperti yang SMEAF telah ditunjukkan kepada memodulatkan tahap GABA, tindakan ini mungkin menyumbang kepada potensi anxiolytic SMEAF. Aktiviti antidepressant dinilai menggunakan ujian penggantungan ekor, tetapi menunjukkan tiada kesan ketara pada haiwan yang dirawat dengan SMEAF berbanding dengan Kumpulan kawalan. Bersama, dapat disimpulkan bahawa SMEAF boleh dibangunkan sebagai potensi agen terapeutik untuk rawatan epilepsi bersama-sama dengan kebimbangan.

ACKNOWLEDGEMENTS

All praise be to Allah the All-Mighty for his blessings and benevolence

I wish to express my sincere gratitude and appreciation to the numerous individuals who have contributed towards the completion of this thesis:

Firstly, I wish to express my sincere appreciation and gratitude to Prof. Dr. Rozita Rosli, the chairperson of my supervisory committee. Her paramount interest, effort, support as well as concern on my research project are much valued and also, I would like to acknowledge her unconditional support to carry out research at Monash University Malaysia. Secondly, I would also like to thank the other members of my supervisory committee: Dr. Syahril Abdullah and Dr. Michael KH Ling for their insightful advice and interest throughout my research. My special regards to Dr. Shaikh Mohammed Farooq, Dr. Yatinesh Kumari, and Dr. Goh Beh Hing for their tremendous support during my research at Monash University Malaysia. In addition, my cordial appreciation is extended to Dr. Ezharul Hoque Chowdhurry and Dr. Nafees Ahemad for their valuable suggestions and moral support.

I am also very grateful to the technical staff of the Medical Genetics lab, Faculty of Medicine and Health Sciences, UPM and technical staff of the Monash University Malaysia. Also, my deepest gratitude and special thanks go to my friends and postgraduate students at UPM and Monash University.

My special love and gratitude goes to my family members in India and parent-in-law in Kingdom of Saudi Arabia, including my dad Mr. Sayyad Khasim Ali, mother Ms. Haseena Begum, brother Yunus, sister Uzma and also, father-in-law Mr. Anees Ahmed, and brother-in-law Aleem and Yaseen for their love and continuous support. My love and appreciation also goes to my wonderful wife Samiya, who has always been my strength and support through difficult times and in decision making. Lastly, my love goes to my son Izaan, whom I missed very much during my thesis writing process. Thesis was submitted to the senate of Universisti Putra Malaysia and has been accepted as fulfilment of the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rozita Binti Rosli, PhD

Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Chairman)

Syahrilnizam Abdullah, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

Michael King Hwa Ling, PhD

Senior Lecturer Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of Chairman of Supervisory Committee:	Prof. Dr. Rozita Binti Rosli
Signature: Name of Member of Supervisory Committee:	Dr. Syahrilnizam Abdullah
Signature: Name of Member of Supervisory Committee:	Dr. Michael King Hwa Ling

TABLE OF CONTENTS

			Page
ABST ACKN APPR DECL LIST LIST	IOWL OVAL ARAT OF TA OF FI OF AB	EDGEMENTS	i iii v vii viii xiii xiii xiv xvii
1		ODUCTION	1
	1.1	Problem statement	2
	1.2	Research objectives	3
		1.2.1 Main objective	3
	1.0	1.2.2 Specific objectives	3
	1.3	Research hypothesis	3
2	LITE	RATURE REVIEW	
2	2.1	Role of plant based medicine in drug discovery	4
	2.2	Swietenia macrophylla	5
	2.2	2.2.1 Habitat	6
		2.2.2 Plant description	6
		2.2.3 Phytochemical compounds	6
		2.2.4 Major uses of Swietenia macrophylla	6
	2.3	Epilepsy	7
		2.3.1 Types of epileptic seizures	7
		2.3.2 Basic mechanisms underlying epilepsy	9
		2.3.3 Antiepilptic Drugs and associated effects	12
		2.3.4 Role of GABA and GABAA receptors	13
		2.3.5 GABAA receptor	14
		2.3.6 Mechanism of action of antiepileptic drugs	15
		2.3.7 Effect of seizures on electroencephalogram	17
		2.3.8 Genes associated with epilepsy	20
		2.3.9 Animal models of epilepsy	21
	2.4	Anxiety	22
		2.4.1 Mechanism of action of anxiolytic drugs	24
		2.4.2 Problems associated with the treatment	24
		2.4.3 Open field test and elevated plus maze	25
	2.5	Depression	25
		2.5.1 Mechanism of action of antidepressant drugs	26
		2.5.2 Treatment and associated effects	26
		2.5.3 Tail suspension test (TST) as animal model	26

3	PHY	PHYSIOCHEMICAL AND PHYTOCHEMICAL ANALYSIS				
	3.1	Plant Material	28			
	3.2	Animals	28			
	3.3	Data analysis	28			
	3.4	Methodology	28			
		3.4.1 Preparation of SMEAF	28			
		3.4.2 Preliminary qualitative phytochemical investigation	29			
		3.4.2.1 Test for carbohydrates	29			
		3.4.2.2 Tests for non-reducing polysaccharides	29			
		3.4.2.3 Test for gums and mucilage	30			
		3.4.2.4 Test for resins	30			
		3.4.2.5 Test for proteins	30			
		3.4.2.6 Tests for amino acids	30			
		3.4.2.7 Test for glycosides	30			
		3.4.2.8 Test for saponin glycosides	31			
		3.4.2.9 Test for flavonoids	31			
		3.4.2.10 Test for alkaloids	31			
		3.4.2.11 Test for phenolic compounds and tannins	32			
	3.5	Results	32			
		3.5.1 Physiochemical properties SMEAF	32			
		3.5.2 Phytochemical Investigation	33			
		3.5.3 Bioactive compounds from SMEAF	34			
4	NEU	ROPROTECTIVE AND ACUTE TOXICITY STUDY				
•	4.1	Methodology for neuroprotective activity	35			
		4.1.1 Preparation of primary neuronal culture	35			
		4.1.2 MTT assay	36			
	4.2	Results	36			
	4.3	Discussion	37			
	4.4	Methodology for acute oral toxicity study	38			
		4.4.1 Clinical observations, body weight, water & food	39			
		4.4.2 Hematology and blood biochemistry	40			
		4.4.3 Necropsy and histopathology	40			
		4.4.4 Sectioning and slide preparation	40			
		4.4.5 Hematoxylin and eosin staining	40			
	4.5	Results	41			
		4.5.1 Clinical observations, body weight, water & food	41			
		4.5.2 Macroscopic observations and weight of the organs	42			
		4.5.3 Hematology and blood biochemistry	44			
		4.5.4 Necropsy and histopathological analysis	46			
		4.5.5 Dose selection	51			
	5.4	Discussion	51			
4	ANT	IEPILEPTIC ACTIVITY				
2	5.1	Methodology	54			
		5.1.1 Locomotor activity	54			
		5.1.2 Pentylenetetrazole (PTZ) induced convulsion model	55			
		5.1.3 Picrotoxin (PCT) induced convulsion model	56			
		5.1.4 Effect of SMEAF on brain GABA levels	57			
		5.1.4.1 Preperation of samples	57			
		1 L				

xi

			5.1.4.2 Preparation of standard & mobile phase	58
		5.1.5	Gene expression study using qPCR	58
			5.1.5.1 RNA extraction	58
			5.1.5.2 cDNA synthesis	59
			5.1.5.3 Primers	59
			5.1.5.4 Method for qPCR	60
		5.1.6	Effect of SMEAF on EEG recording:	60
	5.2	Result		62
		5.2.1	Locomotor activity	62
			Pentelynetetrazole induced Convulsions Model	63
			Picrotoxin induced Convulsions model	65
		5.2.4	Effect of SMEAF in the hippocampus GABA level	67
			Gene expression study	68
			Effect of SMEAF on EEG recording	71
	5.3	Discus		72
	0.0	210000		. –
6	ANX	IOLYTI	IC ACTIVITY	
Ũ	6.1		dology	75
	0.11		Open Field Test (OFT)	75
			Elevated Plus Maze (EPM) Test	77
	6.2	Result		79
			Open Field Test	79
			Elevated Plus Maze	80
	6.3	Discus		85
7	ANT	IDEPRE	ESSANT ACTIVITY	
	7.1		dology	86
	7.2	Result		87
	7.3	Discus	sion	88
8	CON	CLUSIC	DN	
	Sumn	nary of th	he study	89
		e work		90
REFI	ERENC	CES		91
APPH	ENDIC	ES		106
BIOD	DATA (OF STU	DENT	113
LIST	OF PU	JBLICA	TIONS	114

LIST OF TABLES

Table		Page
2.1	Effective plasma levels of antiepileptic drugs	12
2.2	Over expressed (mRNA levels) epilepsy-related genes	21
2.3	Drugs used in the treatment of anxiety disorders	24
3.1	Physicochemical properties of SMEAF	33
3.2	Phytoconstituents present in SMEAF	33
3.3	Bioactive compounds from SMEAF	34
4.1	Clinical biochemistry of mice treated with control and SMEAF	45
4.2	Clinical biochemistry of mice treated with control and SMEAF	46
4.3	Necropsy findings after oral treatment of SMEAF 2000mg/kg	47
5.1	Sequence of the primers for the respective genes	60
4.2	Summary of results for PTZ induced convulsion model	65
4.3	Summary of results for PCT induced convulsion model	67

LIST OF FIGURES

Figur	·e	Page
2.1	Swietenia macrophylla plant and seeds	5
2.2	Parts of the brain	10
2.3	Intrinsic medial temporal lobe connections during epilepsy	10
2.4	The proximal depolarizing shift	11
2.5	Neuronal sites of action of antiepileptics	13
2.6	Sites of action of antiepileptics in GABAergic synapse	14
2.7	Pentameric structure of GABA _A receptor	14
2.8	GABA _A receptor representing the sites of action	15
2.9	Extracellular dipole generated by excitatory post-synaptic	18
2.10	Normal alpha rhythm of EEG	19
2.11	EEG showing left temporal lobe sharp wave	20
2.12	Brain activity with generalized anxiety disorders	23
2.13	Etiology of depression at synapatic nerve terminals	26
2.14	Mechanism of action of Antidepressant drugs	27
4.1	Effect of SMEAF on TBHP treated cell viability	37
4.2	Oral administration using steel gavage	38
4.3	Flow chart of the steps involved in the acute oral toxicity study	39
4.4	Body weight of mice during 14 days of study	41
4.5	Food intake of mice during 14 days of study	42
4.6	Water intake of mice during 14 days of study	42
4.7	Organ weight of mice after 14 days of study	43
4.8	Gross observation of systemic organs	43
4.9	Gross observation of systemic organs	44

4.10	Histopathological examination of heart, liver and lungs	48
4.11	Histopathological examination of spleen, kidney and testes	49
4.12	Histopathological examination of brain regions	50
5.1	Actophotometer	55
5.2	Flow chart of the steps involved in the PTZ model	56
5.3	Flow chart of steps involved in the PCT model	57
5.4	A typical stereotaxic surgery setup	61
5.5	Head surgery in rats to place the recording electrodes	61
5.6	Illustration of the main components for data acquisition system	62
5.7	Effect of SMEAF on Locomotor activity	63
5.8	Effect of SMEAF on PTZ-induced myoclonic seizures	64
5.9	Effect of SMEAF on PTZ-induced clonic seizures in mice.	64
5.10	Effect of SMEAF on PCT-induced myoclonic seizures in mice	66
5.11	Effect of SMEAF on PCT-induced clonic seizures in mice.	66
5.12	Effect of SMEAF on GABA concentration in the hippocampus	68
5.13	Effect of SMEAF on mRNA expression in the hippocampus	69
5.14	Effect of SMEAF on mRNA expression in the cortex	69
5.15	EEG recording in untreated rat	70
5.16	EEG recording in SMEAF treated rat	71
6.1	The Open Field Test (OFT) Apparatus	71
6.2	Flow chart of the steps involved in the anxiolytic model	76
6.3	The Elevated plus maze (EPM) Apparatus	77
6.4	Smart 3.0 zone editor	78
6.5	Anxiolytic effect of SMEAF in mice in Open field test	79
6.6	Anxiolytic effect of SMEAF using time spent in open arms	80

 \bigcirc

6.7	Anxiolytic effect of SMEAF using time spent in closed arms	81
6.8	Anxiolytic effect of SMEAF using entries in to open arms	82
6.9	Anxiolytic effect of SMEAF using entries into closed arms	82
6.10	Anxiolytic effect of SMEAF using latency to first open arm	83
6.11	Anxiolytic effect of SMEAF using total distance of animals	83
6.12	Anxiolytic effect of SMEAF using time spent in the centre	84
6.13	The track followed by animals in Maze	84
7.1	The Tail Suspension Test (TST) Apparatus	87
7.2	Flow chart of the steps involved in the Tail suspension test	87
7.3	Effect of SMEAF on depression in Tail suspension test in mice	88

C

LIST OF ABBREVIATIONS

Arc	Activity-regulated cytoskeleton-associated protein
AEDs	Antiepileptic Drugs
Bdnf	Brain derived neurotrophic factor
Ca ²⁺	Calcium ion
EDTA	Ethylene diamine tetra acetic acid
EGR1	Early growth response 1
EEG	Electroencephalogram
EPA	Environmental Protection Agency
EPM	Elevated plus maze
DMSO	Dimethyl sulfoxide
DPX	Di-n-butylPhthalate in Xylene
FOS	FBJ osteosarcoma oncogene
GABA	Gamma amino butyric acid
H&E	Hematoxylene & eosin
5-HT	5-hydroxytryptamine
5-HT2A	5-hydroxytryptamine2A
LC-MS	Liquid chromatography-mass spectroscopy
МАО	Monoamine Oxidase
mRNA	Messenger RNA
MTT	3-(4, 5-Dimethylthiazol-2Y-1)-2, 5-Diphenyltetrazol Bromide
OECD	Organization for economic cooperation and development
OFT	Open field test
PCT	Picrotoxin

PTZ	Pentylenetetrazole
qPCR	Quantitative polymerase chain reaction
RNA	Ribonucleic acid
SMEAF	Swietenia macrophylla ethyl acetate fraction
SNRI	Serotonin and norepinephrine reuptake inhibitor
SSRI	Selective serotonin reuptake inhibitor
TST	Tail suspension test
ТВНР	<i>tert</i> -Butyl hydroperoxide
T&CM	Traditional & Complementary Medicine

C

CHAPTER 1

INTRODUCTION

Neurological disorders represent a major global concern, affecting the daily life of many sufferers (Chin, *et al.*, 2014; Donald, *et al.*, 2010). According to global estimates, neurological disorders, including epilepsy constitute 6.3% of the global burden of disease and it has also been speculated that, there will be a 12 % increase in the global burden of neurological disorders by the year 2030 (WHO, 2005). Epilepsy is a serious brain disorder with approximately 2.4 million new cases are reported every year globally, as much as 80% of the individuals with epilepsy reside in developing world (Angalakuditi & Angalakuditi, 2011; Benerjee, *et al.*, 2010; Epilepsy.org, 2015; Malkki, 2014; Murray, 1996; WHO, 2005).

Epilepsy is a chronic neurological disorder that has complex interactions with social, vocational, and psychological functioning (Gilliam, *et al.*, 2004). In addition, psychiatric comorbidity associated with epilepsy sufferers adds extra burden of living with the disease (Johnson, *et al.*, 2004). Many epidemiological studies revealed that depression and anxiety are frequent co-morbid conditions among the persons with epilepsy (Manchanda, 2002; Rafnusson, *et al.*, 2001), and these psychiatric disorders are usually unrecognized and untreated in the majority of patients with epilepsy (Kimiskidis, *et al.*, 2007; Johnson, *et al.*, 2004). A number of controlled studies conducted at community setting, secondary care and specialist centers indicate that anxiety has prevalence rates ranging from 25%-50%, whereas depression ranging from 3-55% among epileptic subjects (Ettinger, *el al.*, 1999; Jacoby, *et al.*, 1996; Jones, *et al.*, 2006; Lambert & Robertson, 1999). Thus, anxiety and depression exert a significantly negative effect on the health-related quality of life among epilepsy sufferers (Choi-kwan, *et al.*, 2003).

Many available therapies for epilepsy are developed to target origin and spreading of seizure, but not the actual processes causing epilepsy (Smith & Bleck, 2001). Hence, many available antiepileptic medications are incapable of affecting the natural history of the epileptic activity (Haernandez, 2007; Shinnar & Berg, 2006). Development of antiepileptic agents with multiple mechanisms of action, and also with low events of unwanted actions as compared to the currently available antiepileptic therapies are recommended (Morrell, 2011; Meinardi, 2005). In addition, the cost of new Antiepileptic drugs (AEDs) is a major concern and important factor which supports the need for developing new therapy, which can be affordable, especially in developing nations (Beghi, *et al.*, 2008; Britton & So, 2006; Cameron, *et al.*, 2012; Kochen, 2006; Krucik, 2014). Natural products used in traditional herbal medicine are important source of novel antiepileptic compounds (Chadwick, 1995). A number of plants used in traditional medicine systems have found to possess antiepileptic activity (Shinner & Berd, 2006 & 2004).

Medicines from natural origin have been used as a source of remedy for the prevention, cure and treatment of different ailments (Rates, 2001). Humans are extensively, taking advantage of plants as a basis for sophisticated traditional medicine among natural sources. There is enough documented evidence available to support their use in ancient time, and also continuous use in the modern era (Borris, 1996; Gurib-Fakim, 2006). Herbal medicines still play an important role in the current practice of medicine for some specific reasons such as economical, easily accessible and expected to have no to minimal unwanted effects (Katiyar, *et al.*, 2012). According to the World Health Organization report, about 80% of the global population primarily belonging to the developing countries relies on plant-based medicine to fulfill their health care needs (WHO, 2013).

The huge diversity of plant species undoubtedly contains a rich source of potentially therapeutic compounds with novel structures. Out of the estimated 250,000 to 300,000 species of plants, approximately only 5000 species have been thoroughly investigated for possible medicinal applications (Abelson, 1990). Thus, a natural wealth awaits to be explored scientifically for the benefit of mankind (Akerele, 1993; Balick, 1990; Plotkin, 1998).

Swietenia macrophylla mainly contains limonoids, polyphenols, and essential oils as major constituents (Chen, et al., 2010). Traditionally, the seeds have been used to treat mild to moderate pain, and in the treatment of diabetes and hypertension (Moghadamtousi, et al., 2013). Commercially, the fruits are used as a major ingredient in health care products for various skin conditions and improvement of blood circulation (Goh, et al., 2012). The ethanolic fraction of Swietenia macrophylla seeds were shown to have antioxidant activity with efficient results in increased Vitamin C & E levels in the plasma and also, elevates the reduced glutathione level in major organs including kidney, liver and plasma (Kalpana, et al., 2011). In a recent study, the ethanolic extract of Swietenia macrophylla fruits was revealed to possess antinociceptive activity (Das, et al., 2009).

1.1 Problem Statement

Current literature shows that epilepsy is one the serious and commonly reported neurological disorder affecting many lives globally and needs attention, especially in developing countries (Cameron, *et al.*, 2012). Epilepsy is associated with psychiatric co-morbidity including anxiety and depression and these are usually unrecognized and untreated (Kimiskidis, *et al.*, 2007; Johnson, *et al.*, 2004). Also, the high cost of new antiepileptic drugs (AEDs) is demanding the need for agents from alternative sources (Beghi, *et al.*, 2008; Cameron, *et al.*, 2012; Krucik, 2014). Thus, developing a new agent from a plant source which possesses multiple mechanisms of action and can be useful for the treatment of epilepsy along with anxiety and depression is a worthwhile approach. In addition, this will also attend the problem associated with the cost of new AEDs.

 \bigcirc

REFERENCES

Abdel-Rahman, A., Anyangwe, N., Carlacci, L., Casper, S., Danam, R.P., Enongene, E., and Hilmas, C.J., 2012. The safety and regulation of naturala products used as foods and food ingredients. *Toxicological Sciences*. 123(2): 333-348.

Abelson, P.H., 1990. Medicine from plants. Science, 247:513.

- Adeneye, A., Ajagbonna, O., Adeleke, T., and Bello, S. 2006, Preliminary toxicity and phytochemcial studies of the stem bark aqueous extract of *Musunga cecropioides* in rats. *Journal of ethnopharmacology*. 105(3): 374-379.
- Ajagbonna, O., Onifade, K., and Suleiman, U. 1999, Haematological and biochemical changes in rats given water extract of *Calotropis procera*. *Sokoto Journal of Veterinary Sciences*. 1(1): 36-42.
- Akanmu, M., Iwalewa, E., Elujoba, A., & Adelusola, K. 2004, Toxicity potentials of *Cassia fistula* fruits as laxative with reference to Senna. *African Journal of Biomedical Research*; 7(1).
- Akerele, O. 1988, Medicinal plants and primary health care: an agenda for action. *Fitoterapia*, 59: 355-363.
- Akerele, O. 1992, WHO guideliens for assessment of herbal medicines. *Fitoterapia*, 58: 99-110.
- Akerele, O. 1993, Nature's medicinal bounty: don't throw it away. World Health Forum, 14: 390-395.
- Amabeokua G.J., Green I., Kabatende J. 2007, Anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) leaf extract in mice. Journal of Ethnopharmacology 112, 101–107.
- Amada, N., Yamasaki, Y., Williams, C.M., Whalley, B.J., 2013. Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsyrelated gene expression. *PeerJ*. 221;1:e214.
- Arulmozhia D.K., Sridhar N., BodhankarS.L., Veeranjaneyulua A., Arora S.K. 2004, In vitro pharmacological investigations of *Sapindus trifoliatus* in various migraine targets *Journal of Ethnopharmacology*, 95, 239–245.
- Asolkar, L.V., Kakkar K. K., Chakre.O.J. 1992, Glossary of Indian Medicinal Plants with active Principles, Part I (A-K), Natural Institute of Science Communication (CSIR). New Delhi. Pg. 287.
- Auletta, C. S. 1995, Acute, Subchronic, and Chronic toxicology; CRC Press: London.

- Bali, M., Jansen, M., Akabas, M.H. 2009. GABA-induced intersubunit conformational movement in the GABAA receptor alpha 1M1-beta 2M3 transmembrane subunit interface: experimental basis for homology modeling of an intravenous anesthetic binding site. *J Neurosci*; 29: 3083-92.
- Balick. M.J., 1994. Ethnobotany, Drug development and biodiversity conservation exploring the linkages. In, Ethnobotany and the search for new drugs, (Ciba Foundation Symposium). John Wiley & Sons; Chichester. 4-24.
- Beekman M., Ungard, J.T., Gasior M., Carter, R.B., Dijkstra D., Goldberg, S.R., Witkin, J.M. 1998, Reversal of Behavioral Effects of Pentylenetetrazole by the Neuroactive Steroid Ganaxolone. *J Pharmacol Exp Ther.* 284:868-877.
- Beghi, E., Atzeni, L., Garattini, L., 2008. Economic analysis of newer antiepileptic drugs. CNS Drugs; 22(10): 861-75.
- Borris, R.P., 1996. Natural products research: perspectives from a major pharmaceutical company. *Journal of Ethnopharmacology*; 51(1): 29-38.
- Brejc K., van Dijk, W.J., Klaassen, R.V., Schuurmans M, van Der Oost J., Smit, A.B., et al. 2001, Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. *Nature*; 411: 269-76.
- Brinker, F., 1983. An introduction to the toxicology of common botanical medicines: NCNM (National College of Naturopathic Medicine), Oregon.
- Balijepalli, M.K., Suppaiah, V., Chin, A.M., Buru, A.S., Sagineedu, S.R., and Pichika, M.R., 2015. Acute oral toxixicty studies of *Swietenia macrophylla* seeds in Sprague Dawley rats. *Pharmacognosy Research*; 7(1): 29-38.
- Britton, J. W., and So, E. L. 1996, Selection of antiepileptic drugs: A practical approach. Mayo Clinic Proceedings, 71: 778-786.
- Bruhn, J. G., and Holmstedt, B. 1981. Ethnopharmacology: Objectives, principles and perspectives. Natural products as medicinal agents. (Eds.) Beal, J. L. and Reinhard, E. Hippokrates-Verlag; Stuttgart. Pp. 405-430.
- Brum, L.F.S., and Elisabetsky E. 2000, Antiepileptogenic properties of phenobarbital: behavior and neurochemical analysis. *Pharmacol Biochem Behav* 67:411–416.
- Burkill, I. 1966, A Dictionary of the Economic Products of the Malay Peninsula., 2nd ed. Ministry of Agriculture and Co-Operatives, Kuala Lumpur, Malaysia.
- Butcher, E.C., Berg E.L., Kunkel E.J. 2004. Systems biology in drug discovery. *Nat Biotechnol*; 22:1253-1259.
- Can, A., Dao, D.T., Terrillion, C.E., Piantadosi, S.C., Bhat, S., and Gould, T.D., 2012. The Tail Suspension Test. *J Vis Exp*; (59): 3769.

- Cameron, A., Bansal A., Dua, T., Hill, S.R., Moshe, S.L., Mantel-Teeuwisse, A.K., and Saxena, S., 2012. Mapping the availability, price, and affordability of antiepileptic drugs in 46 countries. *Epilepsia*: 1–8.
- Castel-Branco, M.M., Alves G.L., Figueiredo I.V., Falcão A.C. and Caramona M.M. 2009, The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. *Methods Find Exp. Clin. Pharmacol.*, 31(2): 101-106.
- Chadwick, D. 1995. Do anticonvulsants alter the natural course of epilepsy? Case for early treatment is not established. *British Medical Journal*, 310: 177-178.
- Chatterjee A., 1997. The Treatise on Indian Medicinal Plants. Vol. 5, Natural Institute of Science Communication, New Delhi. P 157-158.
- Cheng, J., and Ju, X.L., 2010. Homology modeling and atomic level binding study of GABA-A receptor with novel enaminone amides. *Eur J Med Chem*; 45: 3595-600.
- Chin, J.H., and Vora, N., 2014. The global burden of neurologic diseases. Neurology; 22; 83(4): 349–351.
- Chindo, B., Tijani, A., Obidike, I., Salawu, T., & Akingbasote, A.J. 2009, Acute and sub-acute toxicological evaluation of the methanolic stem bark extract of Crossopteryx febrifuga in rats. *Africal Journal of Pharmacy and Pharmacology*; 3(12): 621-626.
- Chupakhin, V.I., Palyulin, V.A., Zefirov, N.S. 2006, Modeling the open and closed forms of GABAA receptor: analysis of ligand-receptor interactions for the GABA-binding site. *Dokl Biochem Biophys*; 408: 169-74.
- Co-operation, O.F.E., and Develeopment., 1995. Guideline for the testing of chemicals: Repeated dose 28-day oral toxicity study in rodents; 407: OECD Paris.
- Coleta, M., Campos, M.G., Cotrim, M.D., Lima, T.C., Cunha, A.P. 2008, Assessment of luteolin (3',4',5,7-tetrahydroxyflavone) neuropharmacological activity. *Behav Brain Res*;189: 75-82.
- Corda M.G., Orlandi M., Lecca D., Carboni G., Frau V. and Giorgi O. 1991, Pentylenetetrazol-Induced Kindling in Rats: Effect of GAB A Function Inhibitors. *Pharmacology Biochemistry & Behavior*, 40, 329-333.
- Cromer, B.A., Morton, C.J., Parker, M.W., 2002. Anxiety over GABA (A) receptor structure relieved by AChBP. *Trends Biochem Sci*; 27: 280-7.
- Das A, J.S.J., Gopinath, R., Radhamani, S., Nilugal K. 2009, Anti-nociceptive activity of the fruits of Swietenia mcrophylla King. *Journal of Pharmacy Research*; 2(9).

- Da Silva Lucimar, F., Pereira, P., Elaine, E. 1998, A Neuropharmacological Analysis of PTZ-Induced Kindling in Mice. *Gen. Pharmac.* 31(1), 47–50.
- Dahanukar, S.A., Kulkarni, R. A., and Rege, N. N. 2000, Pharmacology of medicinal plants and natural products. *Indian J. Pharmacol.*, 32, S81–S118.
- David, M. 2001, Gabaergic mechanism in epilepsy. *Epilepsia* 42(3):8–12.
- De Oliveira, P.A., Lino, F.L., Cappelari, S.E., Da Silva Brum, L.F., Picada, J.N., Pereira, P. 2008, Effects of gamma-decanolactone on seizures induced by PTZ-kindling in mice. *Exp Brain Res.* 187:161-166.
- De Sarro, A., Cecchetti, V., Fravolini, V., Naccari, F., Tabarrini, O., De Sarro, G. 1999. Effects of novel 6-desfluoroquinolones and classic quinolones on pentylenetetrazole-induced seizures in mice. Antimicrobial Agents and Chemotherapy 43, 1729–1736.
- De Smet, P.A. 1991, Is there any danger in using traditional remedies? *Journal of Ethnopharmacology*, 32: 43-50.
- Devinsky, O. 1995, Cognitive and behavioral effects of antiepileptic drugs. *Epilepsia*, 36(Suppl. 2), S46-S65.
- Diana, C.D., Jessica, L.B., and Elahe, T.C. 2003, Gender dimorphismin differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. *BMC Clin Pathol*; 3(3).
- Dybling, E., Doe, J., Groten, J., Kleiner, J., O'Brien, J., Renwick, A., & Walker, R. 2002, Hazard characterization of chemicals in foord and diet: Dose response, mechanisms and explonation issues. *Food and Chemical Toxicology*; 40(2): 237-282.
- Dringenberg H.C., and Diavolitsis P. 2002, Electroencephalographic activation by fluoxetine in rats: role of 5-HT1A receptors and enhancement of concurrent acetylcholinesterase inhibitor treatment. *Neuropharmacology*, 42, 154-161.
- Duke, J.A., and Ayensu, E.S. 1985, Medicinal plants of China. Houghton Mifflin China pp. 90 91.
- Duke, J.A., and Atchley, A.A. 1986, Handbook of proximate analysis tables of higher plants. CRC Press. Boca Raton, USA. pp 67.
- During M.J., and Spancer, D.D. 1993, Extracellular hippocampal glutamate and spontaneous seizures in the conscious human brain. *Lancet*; 341:1607–10.
- Eaton, D.L., and klaassen, C.D. 1996, Principles of toxicology. Casarett and Doull's Toxicology: *The basic science of poisons* 5: 13.
- Eddy, C.M., Rickards, H.L., and Cavana, A.E., 2011. The cognitive impact of antiepileptic drugs. *Ther Adv Neurol Disord*; 4(6): 385–407.

- Eid, A.M.M., and El-Enshasy, H.A. 2013, A review on the phytopharmacological effect of Swietenia macrophylla. *International Journal of Pharmacy and Pharmaceutical Sciences*; 5.
- Eisenberg, D.M., Kessler, R.C., Norlock, F.E., Calkins, D.R. and Delbanco, T.L., 1993. Unconventional mediciene in United States: Prevalence, costs and pattern of use. *The New England Journal of Medicine*; 328: 246-252.
- Engel, J.J., 2006. Report of the ILAE classification core group. *Epilepsia*; 47, 1558-1568. 3.
- Engel, J., Schwartzkroin, P.A. 2006. What should be modeled? In: Models of Seizures and Epilepsy. Pitkanen, A., Schwartzkroin, P.A., Moshe, S.L. (Eds.). Elsevier Academic Press: USA, Chapter 1, 1-14.
- Fakeye, T. O., pal, A., Bawankule, D., Yadav, N., & khanuja, S. 2009, Toxic effects of oraladministration of extracts of dried calyx of *Hibiscus sabdariffa Linn*. (Malvaceae). *Phytotherapy research*; 23(3): 412-416.
- Farooq, S.M., Alla T. R., Rao, N.V., Prasad, K., Shalam, K., Nandakumar, T. S., Gouda, S. S.,2007. A study on CNS effects of milk extract of nuts of Semecarpus anacardium. Linn, (Anacardiaceae). *Pharmacologyonline*; 1: 49-63.
- Farooq, S.M., Sathaye, S.R, Rao, N.V., 2009. Anticonvulsant activity of milk extract of nuts of *Semecarpus anacardium*, Linn. *Adv. Pharmacol. Toxicol*, 10(1), 67-69.

Fischer, J., 1998. Pharmacotherapeutics-II (Book); Springer.

- Franke, H., and Kittner, H. 2001, Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol- kindled rats. *Pharmacol Biochem Behav*; 70:291-303.
- Fransworth, N.R., Akerele, O., Bingel, A.S., Soejarto, D.D., Guo, Z. 1985. Medicinal plants in therapy. Bulletin of the World Health Organization, 63: 965-981.
- Frawley D, and Lad V., 1994. The Yoga of herbs: an Ayurvedic guide to herbal medicine. Lotus Press.
- Gale., K., 1992. GABA and epilepsy: basic concepts from preclinical research. *Epilepsia*; 33, S3–S12.
- Gates, M., and Tschudi, G. 1956. The synthesis of morphine. J. Am. Chem. Soc. 78:1380-1393.
- Gay, G.M., Inaba, D.S., Sheppard, C.W., Newmeyer, J.A., and Rappolt, R.T. 1975. Cocaine: History, epidemiology, human pharmacology, and treatment. A perspective on a new debut for an old girl. *Clin. Toxicol.* 8:149-178.

- Giardina W, Gasior M, 2009. Acute seizure tests in epilepsy research: electroshockand chemical-induced convulsions in the mouse. *Current protocols in pharmacology* 5.22.1-5.22.37.
- Gislei F., and Aragao, A., 2009. Evidence for Excitatory and Inhibitory Amino Acids Participation in the Neuropharmacological Activity of Alpha- and Beta-Amyrin Acetate. *The Open Pharmacology Journal*, 3, 9-16.
- Goddard, G.V. 1967. Development of epileptic seizures through brain stimulation at low intensity. *Nature*; 214:1020-1021.
- Goh B.H., and Kadir, A.H. 2011. In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines. *Journal of Medicinal Plant Research*; 5(8): 1395-1404.
- Goh, B.H., Kadir, A. H., Malek, A. S., & Ng. S. W. 2010. Swietenolide diacetate from the seeds of Swietenia macrophylla. Acta Crystallographia Section E: *Structure Reports Online*; 66(6): o1396-o1396.
- Goldschen-Ohm, M.P., Wagner, D.A., Petrou, S., Jones, M.V. 2010. An epilepsyrelated region in the GABAA receptor mediates long-distance effects on GABA and benzodiazepine binding sites. *Molecular Pharmacology*; 77 (1): 35-45.
- Gong, D., Ling, Z., Jin-Feng, Li., Ying, J.Y., Cheng-Ye, Y. 2004. A New and Efficient Synthesis of Wedelolactone Derivatives. *Chinese Journal of Chemistry*, 22, 925 931
- Gorter, J.A., Van Vliet, E.A., Aronica, E., Breit, T., Rauwerda, H., Lopes da Silva, F.H., Wadman, W.J. 2006. Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. *J Neurosci*; 26:11083-11110.
- Grabley, S., and Thiericke, R., 1999. Bioactive agents from natural sources: trends in discovery and application. *Adv. Biochem. Eng. Biotechnol.*, 64, 101–154.
- Gulland, J.M., and Robinson, R. 1923. The morphine group. Part I. A discussion of the constitutional problem. *J. Chem. Soc.* 980-998.
- Gupta, V., Bansal, P., kumar, P., and Shri, R., 2010. Anxiolytic and antidepressant activities of different extracts from Citrus paradisi var. *Duncan Asian journal of pharmaceutical &clinical research*; 3 (2).
- Gupta, L.M., Raina, R. 1998. Side effects of some medicinal plants. *Currt Sci.*, 75: 897-900.
- Gurib-Fakim, A. 2006 Medicinal plants: traditiona of yesterday and drugs of tomorrow. *Molecular aspects of Medicine*; 27(1): 1-93.

- Hanson, S.M., Czajkowski, C. 2008. Structural mechanisms underlying benzodiazepine modulation of the GABA (A) receptor. *J Neurosci*; 28: 3490-9.
- Harborne, J.B., 1998. Phytochemical Methods, Published by Chapman and Hall, London, 3rd edition, pg no 5-6.
- Hasani-Ranjbar, S., Nayebi, N., Larijani, B., and Abdollahi, M. 2009. A systemic review of the efficacy and safety of herbal medicines used in the treatment of obesity. *World Journal of Gastroenterology*; 15(25): 3073.
- Hemadri, K., and Rao, S.S. 1984. Jaundice: Tribal medicine. Anc. Sci. Life 4: 209-212.
- Hernandez, T.D., 1997. Preventing post-traumatic epilepsy after brain injury: weighing the costs and benefits of anticonvulsant prophylaxis. *Trends Pharmacol. Sci.*, (1997), 18, pp. 59–62.
- Holmes, G.L., 1995. Critical issues in the treatment of epilepsy. *American Journal of Hospital Pharmacy*, 50 (Suppl. 5): 85-116.
- Holmes, G.L., 2007, Animal model studies application to human patients. *Neurology* 69(24, Suppl. 3): S28-32.
- Holmes, G.L., 1995. Role of glutamate and GABA in the pathophysiology of epilepsy. *Developmental disabilities and research review*; 1(3): 208-219.
- Holmstedt, B., 1991. Historical perspective and future of ethnopharmacology, *Journal of Ethnopharmacology*, 32: 7-24.
- Holmstedt, B., and Bruhn J.G., 1983, Ethnopharmacology- a challenge. *Journal of Ethnopharmacology*, 8:251-256.
- Jain, S.P., Singh, S.C., and Puri, H.S., 1994. Medicinal Plants of Neterhat, Bihar, India, *Pharmaceutical Biology*, Vol. 32, No. 1 : Pages 44-50.
- Jothy, S. K., Zakaria, Z., Chen, Y., Lau, Y. L., Latha, L.Y., and Sasidharan, S., 2011. Acute oral toxicity of methanolic seeds extract of *Cassia fistula* in mice. *Molecules*; 16(6): 5268-5282.
- Joyce, A.R., Palsson, B.O., 2006. The model organism as a system: integrating 'omics' data sets. *Nat Rev Mol Cell Biol* 7:198-210.
- Kalpana, K., and Pugalendi, K. V., 2011. Antioxidative and hypolipidemic efficacy of alcoholic seeds extract of *Swietenia macrophylla* in streptozotocin diabetic rats. *Journal of basic and clinical physiology and pharmacology*; 22(1-2): 11-21.

Kamboj, V.P., 2000. Herbal Medicine, Curr. Sci, 78(1): 35-38.

- Kapetanovic, I.M., Yonekawa, W.D., Kupferberg, H.J., 1995. The effects of anticonvulsant compounds on 4-aminopyridine-induced de novo synthesis of neurotransmitter amino acids in rat hippocampus in vitro. <u>Epilepsy Research</u>, <u>20(2)</u>, 113-120.
- Katiyar, C., Gupta, A., Kanjilal, S., and Katiyar, S., 2012. Dug discovery from the plant sources: An integrated approach. *Ayu*; 33(1): 10.
- Khandelwal, K.R., 2002. Practical Pharmacognosy, Nirali Prakashan, 9th edition, Pune, 149-156.
- King, S.M., Moghadamtousi, S.Z., Goh, B.H., Chan, C. K., Shabab, T., and Kadir, H., 2013. Review on biological activities and phytochemical of *Swietenia mcrophylla* King. *Molecules*; 18(9: 10465-10483.
- Kitchen, D.B., Decornez, H., Furr, J.R., and Bajorath, J., 2004. "Docking and scoring in virtual screening for drug discovery: methods and applications". *Nature reviews. Drug discovery* 3 (11): 935–49)84.
- Klassen, C.D., 2013. Casarett and Doull's toxicology: the basic science of poisons. (Vol. 1236): McGraw-Hill New York (NY).
- Kochen, S., 1996. Costing of antiepileptic drugs. The Lancet; 347: 266.
- Kokate C.K., 2001. In "Analytical Pharmacognosy" 17th Ed, Nirali Prakashan, Pune, 106-109.
- Krucik, G.T., 2014. The cost of epilepsy medications. www.healthline.com.
- Librowski. T., Kubacka, M., Meusel, M., Scolari, S., Müller, C.E., Gutschow, M., 2007. Evaluation of anticonvulsant and analgesic effects of benzyl- and benzhydryl ureides. *Eur J Pharmacol*; 59 (2-3):138-49.
- Lockemann, G., 1951. Friedrich Wilhelm Serturner, the discoverer of morphine. J. Chem. Ed. 28:277-279.
- Loscher W., 2009. Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. *Eur J Pharmacol*. 21;610(1-3):1-11.
- Loscher, W., Fassbender, C.P., and Nolting, B. 1991. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal-electroshock seizure models. *Epilepsy Res.* 8 (2): 79-94.
- Loscher, W., and Schmidt, D., 1994. Strategies in antiepileptic drug development: Is rational drug design superior to random screening and structural variation? *Epilepsy Res.* 17(2): 95-134.

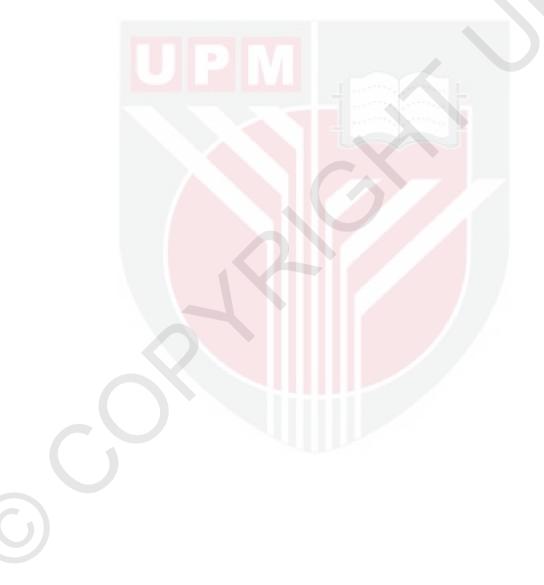
- Loscher, W., and Wauquier, A. 1996. Use of animal models in developing guiding principles for polypharmacy in epilepsy. *Epilepsy Res Suppl* 11: 61-5.
- Lullmann, H., 2005. Color atlas of pharmacology (Book), Thieme Publications.
- Macdonald, R.L., and Kelly, K.M., 1995. Antiepileptic drug mechanisms of action. *Epilepsia* 36, S2–S12.
- MacLennan, A.H., Wilson, D. H. and Taylor, A.W., 1996. Prevalence and cost of alternative medicine in Australia. *The Lancet*, 347: 569-573.
- Manandhar, N.P., 1993. Herbal remedies of Surkhet district, Nepal. *Fitoterapia* 64 (3), 265-272.
- Mares, P., and Kubova, H., 2006. Electrical stimulation-induced models of seizures. In: Models of Seizures and Epilepsy. Pitkänen, A., Schwartzkroin, P.A., Moshé, S.L. (Eds.). Elsevier Academic Press: USA, Chapter 12, 153-9.
- McNeal, E.T., Lewandowski, G.A., Daly, J.W., and Creveling, C.R., 1985. [³H]Batrachotoxinin A 20α-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs. *J Med Chem.* 28:381–388.
- Meinardi, H., 2001. The treatment gap in epilepsy. *Epilepsia*, 42:136 149.
- Meinardi, H., 1995. Use of combined antiepileptic drug therapy. In, Antiepileptic Drugs. Levy, R. H. Mattson, R. H. and Meldrum, B. S. (Eds.). Raven Press Ltd., New York. pp.91-97.
- Meldrum, B., 1996. Action of established and novel anticonvulsant drugs on the basic mechanisms of epilepsy. *Epilepsy Res Suppl* 11: 67-77.
- Meldrum, B., 2002. Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. *Epilepsy Res.* 50(1-2): 33-40.
- Meldrum, B.S., 1981. GABA agonists as antiepileptic agents. Advances in Biochemistry and Psychopharmacolology 26, 207–217.
- Mootoo, B. S., Ali, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., McLean, S., 1999. Limonoids from Swietenia macrophylla and S. aubrevilleana. *Journal of natural products*; 62(11): 1514-1517.
- Muazu, J., and Kaita, A.H., 2008. A Review of Traditional Plants Used in the Treatment of Epilepsy Amongst the Hausa/Fulani Tribes of Northern Nigeria. *Afr J Tradit Complement Altern Med*; 5(4): 387–390.
- Mullins, J.G., Chung, S.K., and Rees, M.I., 2010. Fine architecture and mutation mapping of human brain inhibitory system ligand gated ion channels by high-throughput homology modeling. *Adv Protein Chem Struct Biol*; 80: 117-52.

- Nicoll, R.A., 2001. Introduction to the pharmacology of CNSdrugs. In: Katzung, B.G. (Ed.), Basic and Clinical Pharmacology, eighth ed. Lange Medical Books/McGraw-Hill, New York, pp. 351–363.
- Nones-Davis, D.M., and Macdonald, R.L. 2003, GABA_A receptor function and pharmacology in epilepsy and status epilepticus. *Current Opinion in Pharmacology* 3:12-18.
- OECD., 1994. OECD Guidelines for the Testing of Chemicals: Organization for Economic Cooperation and Development.
- OECD., 2001. Guideline on acute oral toxicity (AOT) Environmental health and safety monograph series on testing and adjustment No.425.
- O'Mara, M., Cromer, B., Parker, M., and Chung, S.H., 2005. Homology model of the GABAA receptor examined using Brownian dynamics. *Biophys J*; 88: 3286-99.
- Orafidiya LO., Agbani, E.O., Iwalewa, K.A., and Oyedapo, O.O., 2004. "Studies on the acute and subchronic toxicity of the essential oil of *Ocimum gratissimum* L. leaf". *Phytomedicine*; 11:71-76.
- Organization, W. H., 2013. WHO traditional medicine stratergy: 2014-2023: World Health Organization.
- Otilia, J.F., David, B., Annamalai, A.R. and Manavalan, R., 2008. Evaluation of Antiagressive activity of *Eclipta alba* in experimental animals. *Pak. J. Pharm. Sci.*, 21(2), 195-199.
- Outhoff, K., 2010. The pharmacology of anxiolytics. *South African Family Practice*; 52(2): 99-105.
- Pacifici, M., & Peruzzi, F., 2012; Isolation and culture of rat embryonic neural cells: a quick protocol. *Journal of visualized experiments*; JOVE(63).
- Pagan, J.A and Pauly, M.V., 2010. Access to conventional medical care and the use complementary and alternative medicine. *Health Affairs*; 24(1): 255-62.
- Palombo. E. A., 2011. Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. *Evidence-based Complimentary and Alternative Medicines*.
- Patwardhan, B., Ashok, D.B., and Chorghade, M., 2004. Ayurveda and natural products drug discovery. *Current Science*; 86 (6) 789-799.
- Patwardhan, B., and Hooper, M., 1992, Ayurveda and future drug development. *Int. J. Alternative Complement. Med.*, 10, 9–11.
- Patwardhan, B., 2000. Ayurveda: The designer medicine. Indian Drugs, 37, 213–227.

- Pavlova, T., Stepanichev, M., Gulyaeva, N., 2006. Pentylenetetrazole kindling induces neuronal cyclin B1 expression in rat hippocampus. *Neurosci Lett* 392:154–158.
- Perucca, P., and Gilliam, F.G., 2012. Adverse effects of antiepileptic drugs. *The lancet neurology*; 11(9): 792–802,
- Piredda, S.G., Woodhead, J.H., and Swinyard, E.A., 1985. Effect of stimulus intensity on the profile of anticonvulsant activity of phenytoin, ethosuximide and valproate. *J Pharmacol Exp Ther*. 232(3): 741-5.
- Plotkin, M.J., 1988. Conservation, ethnobotany and the search for new jungle medicines: Pharmacognosy comes of age again. *Pharmacotherapy*, 8: 257-262.
- Pocas, E.S.C. 2006. Structure–activity relationship of wedelolactone analogues: Structural requirements for inhibition of Na+,K+-ATPase and binding to the central benzodiazepine receptor Bioorganic & Medicinal Chemistry; 14,7962-7966.
- Pole, S., 2006. Ayurvedic Medicine: The Principles of Traditional Practice Publisher: Churchill Livingstone.
- Porter, R.J., and Meldrum, B.S., 2001. Antiseizure drugs. In: Katzung, B.G. (Ed.), Basic and Clinical Pharmacology, eighth ed. Lange Medical Books/McGraw-Hill, New York, pp. 403–417.
- Rabe, P., 1908. Information on the china alkaloide. VIII. Announcement: The constitution of *cinchonines*. *Ber. Deutsch. Chem. Ges.* 41:62-70.
- Rahman, A.U. 2000, Studies in natural products chemistry: Bioactive natural products. Vol. 22. Elsevier Publications.
- Ramanjaneyulu, R., and Ticku, M.K., 1984. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex. *Eur. J. Pharmacol.* 98:337-345.
- Rang, H.P., and Dale, M.M., 2007. Rang and Dale's pharmacology, 6th Ed. Churchill Livingstone.
- Rang, H.P., Dale, M.M., Ritter, J.M., Moore, P.K., 2003a. Pharmacology, fifth ed. Churchill Livingstone, Edinburgh, pp. 585–587.
- Rang, H.P., Dale, M.M., Ritter, J.M., Moore, P.K., 2003b. Pharmacology, fifth ed. Churchill Livingstone, Edinburgh, pp. 557–560.
- Rao, V.S., Rao, A., Sudhakar, K.K., 2005. Anticonvulsant and neurotoxicity profile of *Nardostachys jatamansi* in rats. *Journal of Ethnopharmacology* 102, 351– 356.

Rates, S.M.K. 2001. Plants as source of drugs. Toxicon; 39(5): 603-613.

- Raza. M., Al-Shabanah, O., El-Hadiyah, T., and Al-Majeed, A., 2002. Effect of prolonged vigabatrin treatment on hematological and biochemical parameters in plasma, liver, and kidney of Swiss albino mice. *Scientia Pharmaceutica*; 70(2): 135-145.
- Reynolds, E.H., and Shorvon, S.D., 1981. Monotherapy or polytherapy for epilepsy? *Epilepsia*, 22: 1-10.
- Richardson, M.P., Chadwick, D.W., and Wehner, T., 2013. Classification and terminology to organise seizures and epilepsies.
- Roopashree, T., Raman, D., Rani, R. S., and Narendra, C., 2009. Acute oral toxicity studies of antipsoriatic herbal mixture comprising of aqueous extract of calendula officinalis, Momordica charantia, cassia tora and *Azadirachta indica* seeds oil. *Thai.J.Pharm.Sci*; 33: 74-83.
- Rogawski, M.A., 2006. Diverse Mechanisms of Antiepileptic Drugs in the Development Pipeline. *Epilepsy Res.* 69(3): 273–294.
- Rogawski, M.A., 1992. Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice *Epilepsy Res.*, 11, 9-16.
- Rogawski, M.A., 2006. Molecular targets versus models for new antiepileptic drug discovery. *Epilepsy Res.* 68(1): 22-8.
- Roux, S., Sable, E., and Porsolt, R. D., 2004. Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. *Current Protocols in Pharmacology*; 10.10. 11.10.23.
- Samr Jn, E. B., 1997. Maternal use of antiepileptic drugs and the risk of major congenital malformations: A joint European prospective study of human teratogenesis associcated with maternal epilepsy, *Epilepsia*, 38:981-990.
- Sander, T., Frolund, B., Bruun, A.T., Ivanov, I., McCammon, J.A., Balle T., 2011. New insights into the GABAA receptor structure and orthosteric ligand binding: Receptor modeling guided by experimental data. Proteins: Structure, Function, and Bioinformatics.
- Sangetha, S., Zuraini, Z., Sasidharan, S., and Suryani, S., 2008. Fungicidal effect and oral acute toxicity of Cassia spectabilis leaf extract. *Nihon Ishinkin Gakkai Zashi*; 49(4): 299-304.
- Sarma, D.N., Barrett, M.L., Chavez, M.I., Gardiner, P., Mahady, G. B., and Dog T. L., 2008. Safety of green tea extracts. *Drug Safety*; 31(6): 469-484.


- Schafer Jr., E.W., Brunton, R.B., and Cunningham, D.J., 1973. A summary of the acute toxicity of 4-aminopyridine to birds and mammals, *Toxicol. Appl. Pharmacol.*, 26, 532-538.
- Schmidt, D., and Rogawski, M.A., 2002. New strategies for the identification of drugs to prevent the development or progression of epilepsy. *Epilepsy Res*, 50(1-2): 71-8.
- Schmucker, W., 1969. The vegetable and mineral materia medica in Firdaus al-Hikma of 'Ali ibn Sahl Rabban al-Tabari. Cambridge University Press: Bonn, Germany, 282-3.
- Scott R.A., Lhatoo S.D., and Sander J.S., 2001. The treatment of epilepsy in developing countries: where we go from here? Bull. World Health Org., 79, 344.
- Sharkey LM, and Czajkowski C., 2008. Individually monitoring ligand-induced changes in the structure of the GABAA receptor at benzodiazepine binding site and non-binding-site interfaces. *Mol Pharmacol*;74: 203-12.
- Sherman, W., Beard, H.S., Farid, R., 2006a. Use of an induced fit receptor structure in virtual screening. *Chem Biol Drug Des*; 67: 83-4.
- Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., and Farid R., 2006. Novel procedure for modeling ligand/receptor induced fit effects. *J Med Chem*; 49: 534-53.
- Shin, Y.J., Kim, J.H., Seo, J.M., Lee, S.M., Hyon, J.Y., and Wee, W.R., 2009. Protective effects of clusterin on oxidative stress-induced cell death of human corneal endothelial cells. *Molecular vision*; 15: 2789.
- Shinner, S., and Berg, A.T., 1996. Does antiepileptic drug therapy prevent the development of chronic epilepsy? *Epilepsia*, 37:701-708.
- Shinner, S., and Berg, A.T., 1994. Does antiepileptic drug therapy alter the prognosis of child hood seizures and prevent the development of chronic epilepsy? Seminars in Pediatric Neurology, 1: 111-117.
- Shivers, B.D., Killisch, I., Sprengel, R., Sontheimer, H., Kohler, M., Schofield, P.R., 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. *Neuron*;3: 327-37.
- Smith, M., Wilcox, K.S., White, H.S., 2007. Discovery of antiepileptic drugs. *Neurotherapeutics*. 4(1):12-7.
- Smith, M.C., and Bleck, T.P., 1991. Convulsive disorders: Toxicity of anticonvulsants. *Clinical Neuropharmacology*, 14: 97-115.
- Steru, L., Chema,t. R., 1985. The tail suspension test: A novel method for screening antidepressants in mice. *Psychopharmacology*; 85: 367-70

- Stevens, K., and Mylecraine, L. 1994. Issues in chronic toxicology. *Principles and methods of toxicology*; 673-695.
- Stilwell, G.E., Saraswati, S., Littleton, J.T., Chouinard, S.W., 2006. Development of a Drosophila seizure model for in vivo high-throughput drug screening. *Eur J Neurosci.* 24:2211-2222.
- Supriady, H., Kamarudin, M.N.A., Chan, C.K., Goh, B.H., and Kadir, H.A. 2015. SMEAF attenuates the production of pro-inflammatory mediators through the inactivation of Akt-dependent NF-κB, p38 and ERK1/2 pathways in LPSstimulated BV-2 microglial cells. *Journal of Functional Foods*; 17: 434-448.

Swati, M., Monalisa, J., and Abhisek, P., 2103. Evaluation of antidepressant activity of *eclipta alba* using animal models. *Asian J Pharm Clin Res*; 6(3): 118-120.

- Swinyard, E.A., and Kupferberg, H.J., 1985, Antiepileptic drugs: Detection, quantification, and evaluation. *Fed Proc.*, 44(10): 2629-33.
- Takeuchi T., Fukumoto, Y., and Harada, E., 2002. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. *Behavioral Brain Research*, 131, 193-203.
- Tateishi, A. 1989, Electroencephalographic effects of Laudanosine in an animal model of epilepsy. *British Journal of Anaesthesia*, 62 (5): 548-552.
- Taylor, C., Fricker, A.D., and Devi, L.A., 2005. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. *Cellular Signalling*. 17(5): 549–557.
- Toman, J.E.P., Swinyard, E.A., Goodman, L.S., 1946. Properties of maximal seizures, and their alteration by anticonvulsant drugs and other agents. J Neurophysiol, 9(3): 231-239.
- Treiman, D.M., 2001, GABAergic Mechanisms in Epilepsy. *Epilepsia*, 42(Suppl.3):8–12.
- Vezzani A, French J, Bartfai T and Baram T Z., 2011. The role of inflammation in epilepsy. *Nature Reviews Neurology* 7, 31-40.
- Walum, E., Nilsson, M., Clemedson, C., and Ekwall, B., 1995. The MEIC program and its implications for the predicition of acute human systemic toxicity. *Alternative Metods in Toxicology*; 11: 275-282.
- Westmoreland, B.F., Benarroch, E.E., Dube, J.R., Regan, T.J., Sandok, B.A., 1994. Medical Neurosciences. Mayo Foundation, Rochester, pp. 307–312.
- White, H.S., 1997. Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. *Epilepsia*; 38(Suppl. 1): S9-17
- White, H.S., 2003, Preclinical development of antiepileptic drugs: Past, present, and future directions. *Epilepsia*, 44(Suppl. 7): 2-8.

- White, H.S., Smith-Yockman, M., Srivastava, A., Wilcox, K.S., 2006. In: Models of Seizures and Epilepsy. Pitkänen, A., Schwartzkroin, P.A., Moshé, S.L. (Eds.). Elsevier Academic Press: USA, Chapter 44, 539-49.
- Willstatter, R,. and Muller, W., 1898. Ketones of the tropine group. XII. Constitution of ecgonine. Ber. *Deutsch. Chem. Ges.* 31:2655-2669.
- Wingrove, P.B., Wafford, K.A., Bain, C., Whiting P.J., 1994. The modulatory action of loreclezole at the gamma-aminobutyric acid type A receptor is determined by a single amino acid in the beta 2 and beta 3 subunit. *Proc Natl Acad Sci* USA; 91: 4569-73.

APPENDICES

Appendix A

APPROVAL LETTER FROM MONASH ANIMAL ETHICS COMMITTEE

TEACHING			IC PURPOSES IN RESEARCH AN
MARP-1		ANIMAL ETHIC	
AEC NUMBER	MARP/2015/040		
Project Type	⊠ Research Techniques	Undergraduate Te	aching 🔲 Training in Procedura
Project Title	Evaluation of phar from plant Swieteni		of ethyl acetate fraction of seeds
Animal Use Categories (Refer to List of Categories attached)	1.1, 1.2, 1.4, 2.1, 4		
Standard Operating Procedures SOPs indicated will beto be re		n the application. De	tail any variations from the SOP.
Proposed Start Date July 20 actual start determined at time		Proposed Finish Actual finish deter	Date Feb 2016 mined at time of AEC approval
the Animal Ethics Committee	personnel/ location in for the period taly signed by Rick Lang on=Rick Lang, o=MARP, MARP, illeanimal ethics@monashkedu, U	.19/08/15 to3	
I certify that the procedures/ the Animal Ethics Committee RLy	Dersonnel/ location in for the period taly signed by Rick Lang on=Rick Lang, o=MARP, MARP, illeanimal.ethics@monashedu, 02 10 5.08.19 1334008+1000'	.19/08/15 to3 .MARP-1 AEC	n considered and approved by 1/12/17. 19/08/2015 Date

~

Appendix B

HAEMATOXYLIN AND EOSIN STAINING

Xylene I (5 minutes) ↓ Xylene II (5 minutes) ↓ Alcohol 100% Alcohol 95% Alcohol 80% Alcohol 70%

Wash with running water until clean

Haematoxylin (5-18 minutes)

Wash and soak in running water

Immerse in alakaline alcohol (3 wash)

Wash and soak in running water for 6 minutes

Eosin (5 minutes)

Alcohol 70% Alcohol 80% Alcohol 95% Alcohol 100% Alcohol 100%

Xylene I

Xylene II

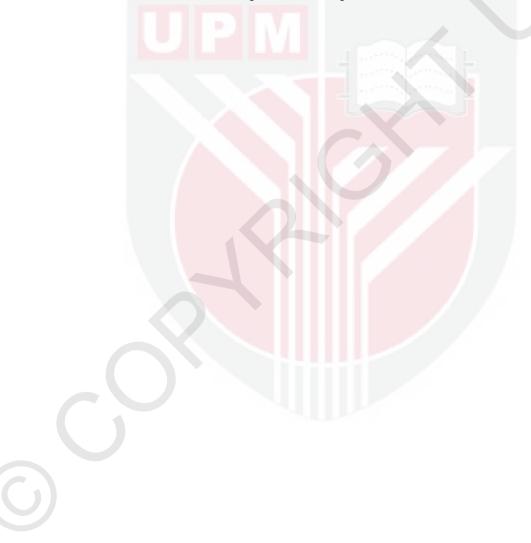
▼ Xylene III

+

Mount with DPX and cover with glass cover slips

Appendix C

SET UP FOR RECORDING THE EXPERIMENTS


a. The camcorder was fixed onto the camcorder stand.

b. The open cage box was placed below the camcorder.

c. The camcorder stand was extended so that the cage is within view through the camera including the ends of the cage (to ensure the subject is clearly visible to record its behavior throughout the experiment).

d. The cage was disinfected with 70% ethanol and debris was removed from the cage.

e. Finally, the subjects to be tested were acclimatized by transferring them into the test room at least one hour prior to the experiment.

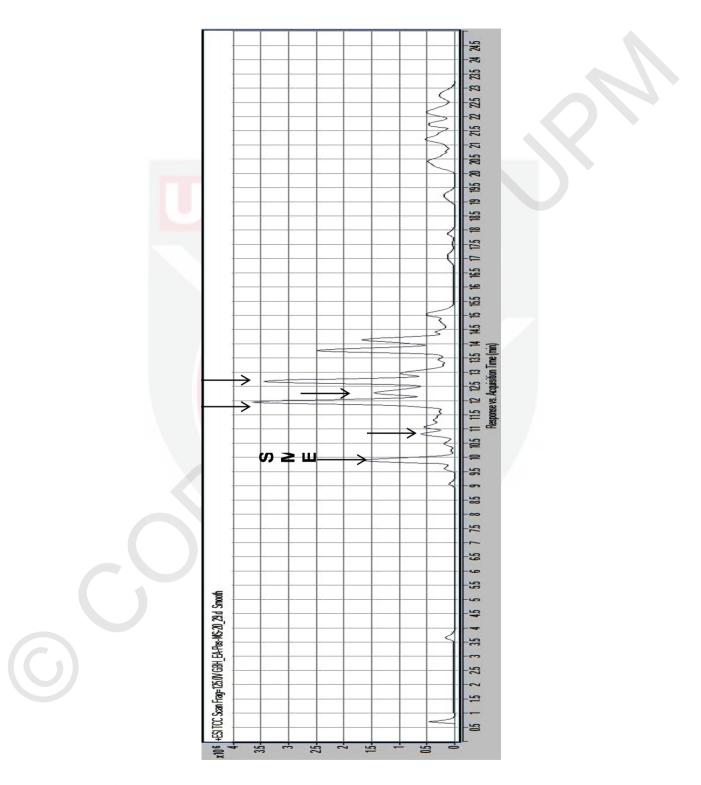
Appendix D

ESTIMETION OF GABA USING LC-MS ANALYTICAL TECHNIQUE

Optimized Standard Protocol for LCMS system

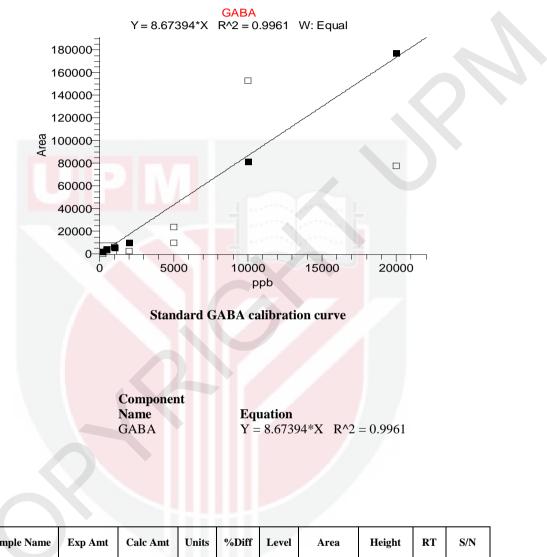
Method creator: Thermo TSQ

Instrument: Accela Pump Injection volume (uL) 10.000 Flush volume (uL): 400 **Common settings:**


Tray temp control is on. Temp(C): 4.000 Column oven control is on. Temp(C): 30.000

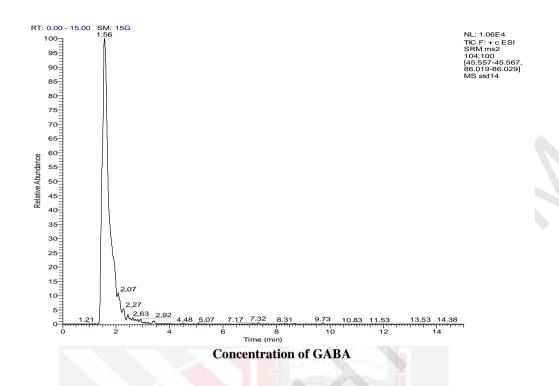
Mobile phase:

Solvent A: 0.1%FA + H2O Solvent B: 0.1%FA + ACN Start settings: Surveyor AS injection logic Method finalizing: First line conditions Operating mode: Low pressure (0.~7000 PSI) Min pressure: 0.00 Max pressure: 400.00


Appendix E

GC-MS ANALYSIS PERFORMED USING AGILENT TECHNOLOGIES 6980N EQUIPPED WITH 5979 MASS SELECTIVE DETECTOR

Figure 4.1 - Compounds from SMEAF. Swietenolide (1), 3-O-acetylswietenolide (2), Swietenine (3), Methyl angolensate (4), and Diacetyl swietenolide (5).


Appendix F

ESTIMETION OF GABA USING LC-MS ANALYTICAL TECHNIQUE

Sample Name	Exp Amt	Calc Amt	Units	%Diff	Level	Area	Height	RT	S/N
std 0.25ppm-2	250.000	249.130	ppb	0%	cal1	2160.94	412.53	1.46	434.32
std 0.5ppm-1	500.000	493.092	ppb	-1%	cal2	4277.05	342.99	1.57	406.99
std 1ppm-1	1000.000	656.487	ppb	-34%	cal3	5694.33	356.20	1.52	106.47
std 2ppm-1	2000.000	1171.573	ppb	-41%	cal4	10162.16	1104.56	1.47	50.02
std 10ppm-1	10000.000	9410.829	ppb	-6%	cal6	81628.99	7087.33	1.55	185.38
std 20ppm-2	20000.000	20394.788	ppb	2%	cal7	176903.22	10954.88	1.56	360.29

Standard GABA 20ppm

Component Name GABA

 \bigcirc

Equation Y = 8.67394*X R^2 = 0.9961

Filename	Sample Name	Calc Amt	Units	Area	Height	RT
sample1	control1-1	26.768	ppb	238.12	113.24	1.61
sample2	control1-2	23.768	ppb	<u>21</u> 1.43	96.74	1.58
sample3	control2-1	23.547	ppb	209.46	106.07	1.58
sample4	control2-2	20.891	ppb	185.84	63.66	1.58
sample5	NEG control1-1	15.483	ppb	137.73	42.45	1.62
sample6	NEG control1-2	15.648	ppb	139.20	57.32	1.47
sample7	NEG control2-1	15.857	ppb	141.06	40.22	1.48
sample8	NEG control2-2	13.286	ppb	118.19	16.39	1.45
sample9	POS control1-1	19.055	ppb	165.28	36.42	1.54
sample10	POS control1-2	20.064	ppb	174.04	42.90	1.52
sample11	POS control2-1	20.003	ppb	173.50	69.89	1.61
sample12	POS control2-2	20.415	ppb	177.08	38.36	1.62
sample13	treatment GRP1-1	25.913	ppb	224.77	29.67	1.58
sample14	treatment GRP1-2	27.888	ppb	241.90	120.96	1.59
sample15	treatment GRP2-1	20.483	ppb	177.67	32.94	1.66
sample16	treatment GRP2-2	20.706	ppb	179.60	30.24	1.61

LIST OF PUBLICATIONS

- Sayyad, M., Ning, T., Kumari, Y., Hing, G.B., Jaiswal, Y., Rosli, R., Williams, L., Farooq Shaikh, Mohd., 2016. Acute toxicity profiling of the ethyl acetate fraction of Swietenia macrophylla seeds and in-vitro neuroprotection studies, *SaudiPharmaceutical Journal*. <u>http://dx.doi.org/10.1016/j.jsps.2016.05.002</u>
- Bakhtiar, A.,# Sayyad, M.,# Rosli, Maruyama, A., Chowdhury, E.H., 2014. Intracellular Delivery of Potential Therapeutic Genes: Prospects in Cancer Gene Therapy. *Current Gene Therapy*, 14:247-257. # Equal contribution.
- Stanislaus, A., Kunnath, A.P., Tiash, S., Fatemian, T., Kamaruzman, N.I., Bakhtiar, A., Sayyad, M., Hossain, S., Akaike, T., Chowdhury, E.H., 2013. Intracellular delivery of NF-κB small interfering RNA for modulating therapeutic activities of classical anti-cancer drugs in human cervical cancer cells. *Drugs and Therapy Studies*, volume 3:e7.
- Sayyad, M., 2012. Comparative study of Tephrosia purpurea (Linn) leaves and Lovastatin on cholesterol level of hyperlipidemic wistar rats. *IOSR Journal of Pharmacy and Biological Sciences (IOSRJPBS)*, 1(2):25-30.

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION :

TITLE OF THESIS / PROJECT REPORT :

CHARACTERIZATION OF ANTIEPILEPTIC AND ANXIOLYTIC ACTIVITIES OF ETHYL ACETATE FRACTION FROM *Swietenia macrophylla* KING SEEDS

NAME OF STUDENT: SAYYAD MUSTAK

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

- 1. This thesis/project report is the property of Universiti Putra Malaysia.
- 2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
- 3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (√)

(Contain confidential information under Official Secret Act 1972).

(Contains restricted information as specified by the organization/institution where research was done).

I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

PATENT

Embargo from		until	
	(date)		(date)

Approved by:

(Signature of Student) New IC No/ Passport No.: (Signature of Chairman of Supervisory Committee) Name:

Date :

Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]