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Down syndrome (DS) is a chromosomal disorder resulted from trisomy of human 

chromosome 21 (HSA21). Cognitive impairment is the general feature for all DS 

individual. To date, there are no answers for the neuropathogenesis in DS individuals 

which can aid in determining targets for therapeutic interventions. Syntenically 

conserved HSA21 in mouse chromosome (MMU) 16, MMU17 and MMU10 enabled 

the generation of DS mouse models with different genetic content for scientific studies. 

However, insufficient understanding of the neuropathology mechanism in these mouse 

models impede the effort to unravel the trisomy secret in DS individuals. This study 

uses Ts1Cje, mouse model of DS with a triplicated region of MMU16 to identify 

neuropathological mechanisms of defective neurogenesis and neuronal development. 

We hypothesised that the trisomic genes in MMU16 are over-expressed and disrupts 

the functional molecular networks, leading to neuropathologies in Ts1Cje mouse brain. 

In order to prove the hypothesis, transcriptomic analysis comparing Ts1Cje and wild 

type control on three brain regions (cerebral cortex, cerebellum and hippocampus) 

across four postnatal (P) time-points (P1, P15, P30 and P84) by using microarray 

technology to identify the differentially-expressed genes (DEGs) and determination of 

the potential disrupted molecular network were performed. A total number of 317 

DEGs were selected based on a stringent criteria and all the selected trisomic DEGs 

were up-regulated in their gene expression profiles. Functional clustering analysis of 

these 317 DEGs showed seven significant pathway clusters including interferon (IFN)-

related signalling pathways. Validation of selected DEGs on their gene and protein 

expression profiles were performed by using quantitative real time polymerase chain 

reaction (RT-qPCR) and western blotting technique. Results demonstrated over-

expression of the trisomic IFN receptor genes [IFN alpha or beta receptor subunit 1 

(Ifnar1), IFN alpha or beta receptor subunit 2 (Ifnar2), and IFN gamma subunit 2 

(Ifngr2)] and associated DEGs in IFN-induced Janus kinase (JAK)-signal transducer 

and activator of transcription (STAT) signalling pathway [Leptin receptor (Lepr), and 

Stat1] on cerebral cortex and cerebellum at P84. Supported by previous study, IFN-

induced JAK-STAT signalling pathway is selected to functionally characterise its role 

in gliogenic shift of DS brains. Preliminary study was conducted with Ifnar1 antagonist 

treatment on differentiating neural stem cell which was obtained via adult neurosphere 
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culture of Ts1Cje mouse brain. Restoration of defective neurogenesis and neuronal 

development were determined by RT-qPCR on gene expression profiles of neural stem 

markers, neuronal markers and glial markers. The result showed that the Ifnar1 

antagonist treatment on differentiating neurospheres derived from Ts1Cje was able to 

revert the aberrant expression of Stat1 to a level that was similar to those derived from 

wild type control. Collectively, the findings showed the over-expression of IFN 

receptors particularly Ifnar1 which was due to trisomic segment of MMU16, disrupted 

IFN-induced JAK-STAT signalling pathway and may also dysregulate the 

neurogenesis and neuronal development in Ts1Cje mouse brain. Furthermore, the 

preliminary antagonisation study demonstrated a feasible direction to attenuate 

neurological abnormalities in DS individuals.  This study suggests the potential of IFN-

induced JAK-STAT signalling pathway as targets for therapeutic intervention in DS 

individuals.
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Sindrom Down (DS) merupakan kecacatan kromosom yang disebabkan trisomi  

kromosom 21 manusia (HSA21). Ketakmampuan kognitif merupakan ciri umum 

semua individu dengan DS. Mekanisme neuropatologi yang boleh menentukan sasaran 

untuk rawatan terapeutik dalam individu dengan DS masih belum dikenalpasti 

sehingga kini. HSA21 yang terpelihara dari segi sinteni di dalam kromosom mencit 

(MMU) 16, MMU17 dan MMU10 menghasilkan beberapa model mencit DS dengan 

kandungan genetik yang berbeza bagi kajian sains. Namun begitu, kekurangan 

pemahaman mengenai mekanisme neuropatologi dalam beberapa model mencit DS ini 

menghalang usaha penyelidik untuk memahami kesan trisomi dalam individu dengan 

DS. Kajian ini menggunakan Ts1Cje, sejenis model mencit DS yang mempunyai tiga 

salinan bahagian MMU16 untuk mengenal pasti mekanisme neuropatologi yang 

menyebabkan kecacatan neurogenesis dan perkembangan neuron. Hipotesis kajian ini 

adalah ekspresi gen dengan trisomi MMU16 lebih tinggi dalam otak mencit Ts1Cje 

berbanding dengan mencit biasa, serta mengganggu jaringan molekul yang berfungsi, 

yang menyebabkan neuropatologi dalam otak mencit Ts1Cje. Untuk membuktikan 

hipotesis ini, analisis transkriptom dijalankan pada tiga bahagian otak (korteks 

serebrum, serebelum dan hipokampus) yang membandingkan antara mencit Ts1Cje dan 

mencit biasa pada peringkat umur P1, P15, P30 dan P84 hari selepas lahir. Teknik 

jujukan mikro digunakan untuk menentukan gen yang mempunyai ekspresi berbeza 

(DEG) dan jaringan molekul yang berpotensi terganggu dalam otak mencit Ts1Cje. 

Sebanyak 317 DEG ditentukan berdasarkan kriteria yang ketat dan semua DEG dalam 

trisomi MMU16 menunjukkan profil peningkatan ekspresi. Analisis pengelompokan 

berfungsi mengenal pasti tujuh kelompok lintasan yang signifikan, termasuk lintasan 

pengisyaratan yang berkaitan dengan interferon (IFN). Pengesahan DEG yang terpilih 

dijalankan atas ekspresi gen dan protein dengan mengunakan tindak balas berantai 

polimerase yang kuantitatif pada masa nyata (RT-qPCR) dan pemendapan Western. 

Keputusan menunjukkan peningkatan ekspresi gen reseptor IFN yang trisomi pada 

MMU16 [reseptor subunit 1 alfa atau beta IFN (Ifnar1), reseptor subunit 2 alfa atau 

beta IFN (Ifnar2), dan subunit 2 gamma IFN (Ifngr2)] dan DEG yang berkaitan dengan 

lintasan pengisyaratan Janus kinase (JAK)-transduser dan pengaktif isyarat transkripsi 

(STAT) yang dirangsang oleh IFN [reseptor leptin (Lepr) dan Stat1] dalam korteks 
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serebrum dan serebelum pada P84. Kajian penyelidikan sebelum ini menyokong 

pemilihan lintasan pengisyaratan JAK-STAT yang dirangsang oleh IFN dalam kajian ini 

untuk mencirikan peranannya dalam peralihan kepada penghasilan glia (gliogenesis) di 

dalam otak DS. Kajian awal dijalankan dengan ujian antagonis melibatkan Ifnar1 

terhadap sel punca saraf yang membeza, yang diperoleh daripada kultur neurosfera 

otak mencit Ts1Cje dewasa. Teknik RT-qPCR yang mengenal pasti profil ekspresi gen 

penanda sel punca saraf, neuron dan glia digunakan untuk menentukan pemulihan 

kecacatan neurogenesis dan perkembangan neuron. Keputusan kajian awal ini 

mendedahkan bahawa ujian antagonis Ifnar1 mampu menurunkan ekspresi Stat1 yang 

tinggi terhadap sel punca saraf Ts1Cje yang membeza sehingga tahap yang sama dalam 

sel punca saraf mencit biasa. Sebagai ringkasan, dapatan ini menunjukkan peningkatan 

ekspresi reseptor IFN terutamanya Ifnar1 yang disebabkan trisomi gen pada MMU16, 

mengganggu lintasan pengisyaratan JAK-STAT dirangsang oleh IFN dan mungkin juga 

mengganggu pengawalaturan neurogenesis dan perkembangan neuron dalam otak 

mencit Ts1Cje. Tambahan lagi, keputusan daripada kajian awal yang menggunakan 

antagonis Ifnar1 menunjukkan bahawa cara ini boleh dilaksanakan untuk 

mengurangkan keadaan otak yang tidak normal dalam otak DS. Kajian ini menawarkan 

potensi lintasan pengisyaratan JAK-STAT sebagai sasaran untuk rawatan terapeutik 

kepada individu dengan DS.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Down syndrome (DS) is a genetic disorder which results from trisomy or partial trisomy 

of human chromosome 21 [also known as Homo sapiens autosome 21 (HSA21)]. It is a 

form of non-heritable genetic disease that causes intellectual disabilities (Babiloni et al., 

2010) and more than 80 clinical manifestations including craniofacial features, cognitive 

impairment, cardiac diseases, hypotonia and early onset Alzheimer’s disease (Van Cleve 

et al., 2006; Van Cleve & Cohen, 2006). The prevalence rate of DS is approximately one 

in 750 live births (Antonarakis et al., 2004). Intellectual disability is the general feature 

for all DS individual as they have an average value of 50 in Intelligence Quotient (IQ) 

(Vicari et al., 2005) and also learning impairment that involves both long-term and short-

term memory (Brown et al., 2003). DS individuals demonstrate various central nervous 

system abnormalities such as reduction in brain size, brain weight, brain volume, 

neuronal density, neuronal distribution and also neuronal and synaptic abnormalities 

(Marin-Padilla, 1976; Becker et al., 1986; Ferrer & Gullotta, 1990; Wisniewski, 1990; 

Aylward et al., 1997; Kaufmann & Moser, 2000; Kates et al., 2002). 

Exploration of mouse genome showed significant genetic homology between HSA21 

and mouse chromosome (MMU) 16, MMU17 and MMU10 (Pletcher et al., 2001) which 

enable the generation of mouse model for DS. Ts1Cje was developed in the year 1998 

by Sago and colleagues based on C57BL/6J mouse genetic background (Sago et al., 

1998). This mouse model is also known as T(12;16)1Cje as it carries an extra segment 

of MMU16 which is synteny to HSA21. The extra segment of MMU16 is translocated 

onto MMU12 and spans from superoxide dismutase I (Sod1) gene to zinc finger protein 

295 (Znf295) gene (Laffaire et al., 2009). Furthermore, Ts1Cje mouse exhibits 

craniofacial defects (Sago et al., 1998; Richtsmeier et al., 2002) and also learning and 

memory impairment (Siarey et al., 2005; Belichenko et al., 2007; Fernandez & Garner, 

2007) resembling DS individuals. 

To date, there are limited reports on the neuropathology mechanism in DS individuals 

which can aid to determine targets for therapeutics intervention. There is limited access 

to human brain samples as they can only be collected from aborted foetus and post 

mortem DS individuals, therefore, scientists opt for DS models to study the effect of 

trisomy in brain. 

Two major hypotheses have been proposed to explain the trisomy effect of HSA21 which 

leads to DS. These hypotheses are also applicable on Ts1Cje mouse model. The first 

hypothesis is called “dosage imbalance hypothesis” which implies that the increased 

dosage of HSA21 genes results in DS-related abnormalities, while the second hypothesis 

is “amplified developmental instability hypothesis” that states that the trisomy of a small 

number of genes results in disruption of weakly buffered or feedback developmental 
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mechanisms and subsequently affects global gene expression and signalling pathways 

(Shapiro, 1975; Contestabile et al., 2010). However, these genetic hypotheses still 

controversial and demand more systematic work on both genomic and proteomic 

expression to facilitate better understanding of the neuropathology mechanism in the DS 

mouse models including Ts1Cje. 

This study is mainly supported by the findings of Hewitt and colleagues (2010) on adult 

Ts1Cje mouse brain. They reported that defective neurogenesis and neuronal 

development are the potential culprit of causing cognitive impairment in Ts1Cje mouse 

(Hewitt et al., 2010). Thus, by exploring the effects of trisomic MMU16 genes on global 

gene expression in Ts1Cje mouse brain, this mouse model serves as an ideal model to 

study the neuropathological networks which then enables us to further extend the 

findings to DS individuals.  

1.2 Hypothesis 

The identified DEGs and IFN-induced JAK-STAT pathway are involved in defective 

neurogenesis and neuronal development. 

1.3 Objectives 

The present study was designed to meet the following objectives. 

General objective: 

 To identify disrupted molecular pathways that underlie defective neurogenesis

and neuronal development in Ts1Cje mouse.

Specific objectives: 

 To identify the DEGs by comparing transcriptomes from different brain regions

at different developmental time-points between the Ts1Cje mice and their

disomic littermates.

 To determine the disrupted molecular networks via gene ontology and

functional clustering with pathway enrichment analysis for DEGs.

 To quantitatively validate the messenger ribosomal nucleic acid (mRNA) and

protein expression of DEGs by using RT-qPCR and western blotting method

respectively.

 To determine the role of Ifnar1 on neurogenesis and neuronal development in

adult neural stem cells by using Ifnar1 antagonists.
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1.4 Significance of study 

The current study improves understanding of the mechanisms, particularly JAK-STAT 

signalling pathway which is associated with defective neurogenesis and neuronal 

development. 

Restoring functional neurogenesis and neuronal development in DS NPCs through JAK-

STAT antagonist can be improved and adapted as JAK-STAT signalling blocker 

treatment in DS individuals. 
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