URO PROTECTIVE EFFECT OF LUTEOLIN NANO-SUSPENSION ON CYCLOPHOSPHAMIDE-INDUCED HEMORRHAGIC CYSTITIS IN RATS

RAVINDRAN PILLAI HARIKUMAR

FPSK(p) 2016 5
URO PROTECTIVE EFFECT OF LUTEOLIN NANO-SUSPENSION ON CYCLOPHOSPHAMIDE-INDUCED HEMORRHAGIC CYSTITIS IN RATS

By
RAVINDRAN PILLAI HARIKUMAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the degree of Doctor of Philosophy

June 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
DEDICATIONS

This thesis is dedicated to

All my teachers (guru) for their benevolence, care, inspiration and devotion
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

URO PROTECTIVE EFFECT OF LUTEOLIN NANO-SUSPENSION ON CYCLOPHOSPHAMIDE-INDUCED HEMORRHAGIC CYSTITIS IN RATS

By

RAVINDRAN PILLAI HARIKUMAR

June 2016

Chairman : Rajesh Ramasamy, PhD
Faculty : Medicine and Health Sciences

Plant-derived extracts have been a great source of materials utilized in medical treatment since immemorial time. According to the World Health Organization (WHO), 70-95% of human population depends on traditional medicines for their healthcare in which herbal drugs are commonly employed. Luteolin is a bioflavonoid that known for its anti-inflammatory, anti-diabetic, anti-cancer and chemoprotective properties nevertheless it relatively possesses low water solubility and oral bioavailability. The present study was aimed to develop luteolin nanosuspension (LNS) with increased oral bioavailability and to evaluate its protective effect on cyclophosphamide (CP) induced hemorrhagic cystitis (HC) in SD rats.

High-pressure homogenization (HPH) technique was used to prepare LNS. LNS showed an enhanced aqueous solubility, which may be attributed to the reduction of particle size from 1649.3 ± 432.23 nm to 420.4 ± 11.26 nm. The oral bioavailability of LNS was determined using HPLC-UV technique, where LNS (30 mg/kg/body weight) and non-modified pure luteolin (30 mg/kg/body weight) were given to rats. LNS significantly improved the oral bioavailability (54.41±14.49%) which was 1.5 fold higher ($p<0.05$) than pure luteolin (21.72±3.89%).

The uroprotective function of LNS was assessed in CP-induced acute hemorrhagic cystitis rats. Male SD rats were divided into four groups. Group-1 (vehicle control) received normal saline (10 ml/kg/b.w/p.o); group-2 (negative control) received three doses of CP (100 mg/kg/b.w/p.o) on day 6, 8, 10; group-3 (positive control) received MESNA (20 mg/kg/b.w/p.o) and group-4 (test) received LNS (30 mg/kg/b.w/p.o). The relative concentration of glucose, bilirubin, ketone, specific gravity, blood, pH, protein, urobilinogen, nitrite and leukocyte in urine were detected using urine strip test to indicate
the incidence the severity of HC. Urinary bladder of CP treated animals reflected severe hemorrhage, inflammation, edema and deep red colouration whereas; LNS significantly improved the morphological deterioration perpetrated by CP.

CP treatment has significantly reduced the expression levels of SOD, CAT, GPx, GADD45A and increased the expression levels of TNF-α, p53, NFκB and VEGF. However, LNS administration along with CP have protected the urinary bladder from HC conditions by increasing the expression levels of antioxidant enzymes SOD, CAT and GPx and also by inhibiting the expressions of genes that responsible for bladder inflammation including TNF-α, NFκB and VEGF. Moreover, LNS treatment significantly elevated the serum levels of cytokines IL-2 and IL-4, which may reduce the CP-induced bladder hemorrhage, inflammation and associated symptoms. Besides, the hepatic enzyme level of AST, ALT, ALP, LDH, total protein and creatinine were normalized in LNS treatment group. The histological examination demonstrated that uroepithelial tissue damages were also prevented by the LNS in CP-induced hemorrhagic cystitis pathogenesis.

In conclusion, HPH technique could serve as an ideal, easy, safe and reproducible technique to formulate LNS. LNS protected the urinary bladder from CP-induced toxicity by modulating the release of various inflammatory mediators; enhancing the immune status of the host; restoring the oxidative/redox mechanisms and effectively clearing the toxic metabolite residues in the urinary bladder. LNS with its anti-oxidative, anti-inflammatory and chemoprotective activities had alleviated the HC conditions induced by CP. The current study supports the use of luteolin in nanosuspension form (LNS) as uroprotectant along with drugs that pathologically affect urinary bladder.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN UROPROTEKTIF OLEH NANOSUSPENSI LUTEOLIN KEATAS TIKUS SISTITIS BERDARAH DIARUH OLEH CYCLOPHOSPHAMIDE

Oleh

RAVINDRAN PILLAI HARIKUMAR

Jun 2016

Pengerusi : Rajesh Ramasamy, PhD
Fakulti : Perubatan dan Sains Kesihatan

Ekstrak tumbuh-tumbuhan adalah salah satu sumber yang digunakan dalam rawatan perubatan sejak zaman dahulu lagi. Menurut Pertubuhan Kesihatan Sedunia (WHO), seramai 70-95% penduduk dunia bergantung kepada ubat-ubatan tradisional yang diterbi dari herba untuk penjagaan kesihatan. Antara ekstrak tumbuh-tumbuhan, luteolin merupakan bioflavonoid yang terkenal dengan aktiviti-aktiviti anti-inflamasi, anti-diabetes, anti-kanser dan kimoprotektif. Namun, luteolin mempunyai keterlarutan air dan bioavalabiliti yang rendah. Oleh hal yang demikian, kajian ini bertujuan untuk membangunkan sebatian nanosuspensi luteolin (LNS) dengan tahap bioavailability yang tinggi serta menilai kesan perlindungannya terhadap sistitis berdarah (HC) yang diaruh oleh ‘cyclophosphamide’ (CP) pada tikus SD.

Teknik ‘high pressure homogenizer’ (HPH) telah digunakan untuk menyedia LNS. LNS yang terhasil menunjukkan kelarutan air yang tinggi serta saiz molekul yang kecil yang diperbandingkan daripada 1649.3 ± 432.23 nm sehingga 420.4 ± 11.26 nm. Bioavalabiliti oral LNS ditentukan melalui teknik HPLC-UV, dimana LNS (30 mg/kg/berat badan) dan luteolin tulen (30mg/kg/berat badan) diberi secara oral kepada tikus. Didapati bahawa, bioavalabiliti oral luteolin ditingkatkan apabila diberi dalam bentuk LNS (54.41± 14.49%) iaitu 2.5 kali ganda lebih tinggi (p<0.05) daripada luteolin tulen (21.72± 3.89%). Fungsi uroprotektif LNS dinilai dengan menggunakan model tikus HC yang diaruh oleh CP. Tikus SD jantan telah dibahagikan kepada empat kumpulan. Kumpulan-1 (kawalan ‘vehicle’) menerima air ‘saline’ (10ml/kg/bw/p.o); kumpulan-2 (kawalan negatif) diberi tiga dos CP (100 mg/kg/bw/p.o) pada hari ke-6, 8, 10; kumpulan 3 (kawalan positif) menerima MESNA (20mg/kg/bw /p.o), manakala kumpulan-4 (ujian) dirawat dengan LNS (30mg/kg/bw/p.o). Kandungan glukosa, bilirubin, ketone, pH, protein, urobilinogen, nitrit dan leukosit dalam air kencing ditentukan untuk menggaris darjah keterukan HC. Didapati bahawa, pundi kencing haiwan
Rawatan CP juga turut merendahkan ekspresi SOD, CAT, GPx, GADD45A dan meningkatkan tahap ekspresi TNF-α, p53, NFkB dan VEGF. Akan tetapi, rawatan CP bersama dengan LNS menunjukkan fungsi perlindungan pundi kencing dimana tahap ekspresi enzim-enzim antioksidan SOD, CAT dan GPx ditingkatkan dan ekspresi gen yang bertanggungjawab untuk inflamasi seperti TNF-α, NFkB dan VEGF telah dikurangkan. Rawatan LNS juga meningkatkan paras sitokin IL-2 dan IL-4 di serum yang mampu mengurangkan gejala-gejala negatif yang diaruhan oleh CP. Selain itu, LNS juga menonjolkan fungsi hepatoprotektif dengan menormalkan paras enzim-enzim hepatik, AST, ALT, ALP, LDH, jumlah protein dan kreatinin. Pemeriksaan histologi selanjutnya membuktikan bahawa kerosakan tisu urotelia turut dicegah oleh LNS apabila diberi bersama CP.

Kesimpulannya, teknik HPH adalah ideal, mudah, selamat dan 'reproducible' untuk membangunkan LNS. LNS melindungi pundi kencing dari pendarahan yang teruk disertai dengan inflamasi and edema. Manakala, kumpulan haiwan yang dirawat dengan LNS dicegah daripada mengalami perubahan morfologi ketara akibat daripada ketoksikan CP.

Kesimpulannya, teknik HPH adalah ideal, mudah, selamat dan ‘reproducible’ untuk membangunkan LNS. LNS melindungi pundi kencing daripada ketoksikan CP menerusi modulasi perembasan pelbagai pengantara inflamasi; meningkatkan status imun; membetulkan mekanisma oksidatif/redoks dan membersihkan metabolit toksik yang terkumpul di dalam pundi kencing. Sebatian LNS dengan fingsi anti-oksidan, anti-inflamasi dan kimoprotektif mengurangkan fenomena HC yang diaruhan oleh CP. Jesturu, kajian ini menyokong penggunaan luteolin dalam bentuk nanosuspensi (LNS) sebagai agen uroprotektif apabila diguna bersama dengan ubat-ubatan yang menjejaskan pundi kencing.
ACKNOWLEDGEMENTS

First and foremost, I wish to acknowledge my creator for governing and equipping me with the means and mechanism such that I may design and provide medicinal products which are vital and beneficial to all human kind. I acknowledge with appreciation the sort of support received from my supervisor Assoc. Prof. Dr. Rajesh Ramasamy to accept my studentship in his research team. I am so much grateful for his bolster, definite skill, noteworthy direction and budgetary support all through my entire system of study. His mentorship was central in giving a balanced steady journey to achieve profession objectives. I am not certain many graduate students are given the chance to build up their own distinction and independence by being permitted to work with such autonomy.

Much obliged to Prof. Dr. Khozirah Shaari as my co-supervisor for valuable suggestions and supports. I would like to gratefully and genuinely say thanks to Prof. Dr. Aishah Adam for her direction, comprehension, tolerance, and in particular critical comments amid my entire PhD programme at UPM. I would also like to acknowledge Dr. Dharmalingam Senthil Rajan as the co-supervisor of this study, and I am thankfully obligated to him for his exceptionally significant remarks, direction and consolation all through this programme.

Each outcome depicted in this thesis was refined with the help and backing of individual lab mates and collaborators. My earnest much gratitude goes to every one of my companions of UPM, IMU and UiTM particularly Dr. Cini, Dr. Peyman, Dr. Arunkumar, Tong, Pratheep, Shi Wei, Vahid, Satar, Maryam, Haslinda, Dr. Fazlin, Farhana, Dr. Kesav, Raghunath, Dr. Shoai, Dr. Nisha, Velan, Ammar, Kumareswaran and others for their assistance over the span of this work. I have had a very good time in IMU research lab and thanks for Dr. Srinivasan, Dr. Srikanth and Dr. Mayuran for their in valuable help in pharmacokinetic study.

My thanks likewise go to the whole lab mates of Immunology lab, UPM, Research lab IMU, Bukit Jalil and UiTM, Puncak Alam for their various assistances. I wish to extend my heartfelt appreciation to the numerous individuals who served to convey this research to fulfilment.

At last last, I must express my exceedingly momentous admiration to my parents, brothers, to my wife Mayalekshmi and our little blessed angel Thanmaya for providing me with unfailing backing and nonstop consolation during my time of study and through the way of inquiring about and writing this thesis. Her encouragement, consolation, calm tolerance and steady love were obviously the bedrock whereupon the previous years of my life have been created. This achievement would not have been conceivable without them. Much obliged to you. I wish to extent my gratitude to all my family members and friends, thank you all.
I certify that a Thesis Examination Committee has met on 9 June 2016 to conduct the final examination of Ravindran Pillai Harikumar on his thesis entitled "URO Protective Effect of Luteolin Nano Suspension on Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Johnson Stanslas, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Latifah binti Saiful Yazan, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Syam Mohan Murali Mohan, PhD
Associate Professor
Jazan University
Saudi Arabia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Rajesh Ramasamy, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Khozirah Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Aishah Adam, B Pharm, PhD
Professor
Faculty of Pharmacy
Universiti Teknologi MARA (UiTM)
(Member)

Dharmalingam Senthil Rajan, PhD
Senior Lecturer
Faculty of Pharmacy
International Medical University
(Member)

BUJANG BIN KIM HYAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________ Date: ________________

Name and Matric No: Ravindran pillai Harikumar, GS33802
Declaration by Members of Supervisory Committee

This is to confirm that:
- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Assoc.Prof. Dr. Rajesh Ramasamy,

Signature:
Name of Member of Supervisory Committee: Professor Dr. Khozirah Shaari

Signature:
Name of Member of Supervisory Committee: Professor Dr. Aishah Adam, B Pharm

Signature:
Name of Member of Supervisory Committee: Dr. Dharmalingam Senthil Rajan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Problem statement

1.2 Research hypothesis

1.3 General objective

1.4 Specific objective

2 LITERATURE REVIEW

2.1 Flavonoids

2.1.1 Pharmacological properties of flavonoids

2.1.2 Flavonoids and its bioavailability enhancement

2.2 Luteolin

2.2.1 Luteolin-distribution and pharmacological properties

2.2.2 Luteolin’s oral bioavailability and metabolism

2.3 Enhancement of bioavailability of orally administered drugs

2.3.1 Need for bioavailability enhancement

2.3.2 Drug delivery systems to improve bioavailability

2.3.3 Oral drug formulation methods based on nanotechnology

2.3.4 Nanosuspensions for oral administration

2.3.4.1 HPH technique

2.3.4.2 Dissocubes technology

2.3.5 Characterization of nanosuspensions

2.3.5.1 Analysis of particle size and size distribution

2.3.5.2 Morphology of nanosuspensions

2.3.5.3 Evaluation of sedimentation and redispersion

2.3.5.4 Particle surface charge

2.3.5.5 Analysis of crystal structure

2.3.5.6 Assessment of chemical properties

2.4 Reverse phase chromatography/ RP-HPLC

2.5 Pharmacokinetics of formulations (PK)

2.5.1 Definition
2.5.2 Clinical pharmacokinetics
2.5.3 Drug concentration in biological samples
2.5.4 Drug plasma concentration - time curve
2.5.5 Types of pharmacokinetics study models
2.5.6 Pharmacokinetic parameters
2.6 Cyclophosphamide - pharmacology and toxicology
2.6.1 Cyclophosphamide mediated Haemorrhagic cystitis
2.6.2 Mechanism of CP induced urotoxicity
2.6.3 Pathogenesis of HC
2.6.4 Function of transcriptional factors and others in HC
2.6.4.1 Nuclear Factor κ B
2.6.4.2 Tumor necrosis factor α
2.6.4.3 Tumor suppressor protein
2.6.4.4 Growth arrest and DNA damage inducible protein-α
2.7 Natural products and prevention of CP induced urotoxicity

3. FORMULATION AND CHARACTERIZATION OF LUTEOLIN NANOSUSPENSION (LNS)
3.1 Introduction
3.2 Materials and Methods
3.2.1 Drugs and chemicals
3.2.2 Formulation of LNS
3.2.3 Lyophilization
3.2.4 Re-dispersion and phase separation of LNS
3.2.5 Characterization of nanosuspension
3.2.6 Morphological evaluation of LNS by TEM
3.2.7 Fourier transform infrared spectroscopy
3.2.8 X-ray Diffractometry (XRD)
3.2.9 Nuclear magnetic resonance spectroscopy (NMR)
3.2.10 Acute toxicity study
3.2.11 Statistical analysis
3.3 Results
3.3.1 Particle size, morphology and Zeta potential of LNS
3.3.2 Morphological evaluation of LNS by TEM
3.3.3 Lyophilization and re-dispersability
3.3.4 Short term stability study
3.3.5 FTIR analysis of LNS
3.3.6 X-ray powder diffraction measurements
3.3.7 Nuclear magnetic resonance spectroscopy (NMR)
3.3.8 Acute toxicity
3.3.8.1 Survival and clinical sign
3.3.8.2 Change in bodyweight gain
3.3.8.3 Histology
3.4 Discussion
3.5 Conclusion
4. **IN VIVO PHARMACOKINETICS AND RELATIVE BIOAVAILABILITY STUDY OF LNS**

4.1 Introduction

4.2 Materials and Methods

4.2.1 Chemicals

4.2.2 Instrumentation

4.2.3 Animals

4.2.4 Chromatographic conditions

4.2.5 Method validation for pharmacokinetics study

4.2.6 Relative bioavailability and pharmacokinetics of LNS

4.2.7 Non-compartmental pharmacokinetic analysis

4.2.8 Data analysis and statistics

4.3 RESULTS

4.3.1 HPLC condition and internal standard selection

4.3.2 Pharmacokinetic profile of LNS

4.4 Discussion

4.5 Conclusion

5. **URO PROTECTIVE FUNCTION OF LUTEOLIN NANOSUSPENSION**

5.1 Introduction

5.2 Materials and Methods

5.2.1 Drugs and chemicals

5.2.2 Animals

5.2.3 Experimental design

5.2.4 Urine analysis

5.2.5 Measurement of body weight and relative organ weights

5.2.6 Morphological evaluation

5.2.7 Biochemical analysis

5.2.8 Serum cytokines and antioxidant enzymes analysis

5.2.9 Histopathological analysis

5.2.10 Statistical analysis

5.3 Results

5.3.1 Confirmation of CP induced HC by urine analysis

5.3.2 Effect of LNS on reduction of body weight in HC

5.3.3 Supplementation of LNS preserves relative organ weight

5.3.4 LNS improves morphology of urinary bladder in HC

5.3.5 LNS normalizes the urine composition in HC

5.3.6 LNS promotes reconstitution of cytokines and enzymes

5.3.7 Estimation of hepatic toxicity marker enzyme levels

5.3.8 LNS prevents CP induced bladder tissue damages

5.4 Discussion
6. ROLE OF INFLAMMATION REGULATING GENES IN MEDIATING PROTECTIVE EFFECT OF LNS IN HC

6.1 Introduction
6.2 Materials and Methods
 6.2.1 Experimental design
 6.2.2 Measurement of gene expression by at urinary bladder
 6.2.3 Statistical analysis
6.3 Results
 6.3.1 LNS upregulates SOD genes in urinary bladder
 6.3.2 LNS upregulates CAT genes in urinary bladder
 6.3.3 LNS upregulates GPx genes in urinary bladder
 6.3.4 LNS upregulates GADD45α genes in urinary bladder
 6.3.5 LNS down regulates p53 genes in urinary bladder
 6.3.6 LNS treatment inhibits TNF-α in urinary bladder
 6.3.7 LNS treatment inhibits NFκB in urinary bladder
 6.3.8 LNS treatment inhibits production of VEGF
6.4 Discussion
6.5 Conclusion

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Summary
7.2 Conclusion
7.3 Limitations and Further Recommendations

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Plasma concentration of LNS</td>
</tr>
<tr>
<td>4.2</td>
<td>Plasma concentration of luteolin</td>
</tr>
<tr>
<td>4.3</td>
<td>Relative bioavailability and pharmacokinetics values</td>
</tr>
<tr>
<td>5.1</td>
<td>Treatment given to different urinary group</td>
</tr>
<tr>
<td>5.2</td>
<td>Grading of bladder lesions</td>
</tr>
<tr>
<td>5.3</td>
<td>Urine analysis report</td>
</tr>
<tr>
<td>5.4</td>
<td>Morphology analysis of urinary bladder</td>
</tr>
<tr>
<td>6.1</td>
<td>Gene primer sequences</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flavonoids- structure and numbering pattern</td>
</tr>
<tr>
<td>2.2</td>
<td>Luteolin and apigenin with glycosides</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of luteolin</td>
</tr>
<tr>
<td>2.4</td>
<td>Luteolin cleaves ROS</td>
</tr>
<tr>
<td>2.5</td>
<td>Plasma-time curve</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure of cyclophosphamide and its metabolites</td>
</tr>
<tr>
<td>2.7</td>
<td>Metabolism of CP</td>
</tr>
<tr>
<td>2.8</td>
<td>Chemical structure of MESNA</td>
</tr>
<tr>
<td>3.1</td>
<td>HPH technique</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphology and microscopy of LNS and luteolin</td>
</tr>
<tr>
<td>3.3</td>
<td>Particle size, PDI and ZP of luteolin</td>
</tr>
<tr>
<td>3.4</td>
<td>PDI, ZP and particle size during freeze drying</td>
</tr>
<tr>
<td>3.5</td>
<td>Storage stability of LNS</td>
</tr>
<tr>
<td>3.6</td>
<td>FTIR analysis</td>
</tr>
<tr>
<td>3.7</td>
<td>X-ray diffractogram</td>
</tr>
<tr>
<td>3.8</td>
<td>NMR spectroscopy analysis</td>
</tr>
<tr>
<td>3.9</td>
<td>Change in body weight gain-acute toxicity</td>
</tr>
<tr>
<td>3.10</td>
<td>Histology of kidney, liver and pancreas</td>
</tr>
<tr>
<td>3.11</td>
<td>Histology of spleen, urinary bladder and thymus</td>
</tr>
<tr>
<td>4.1</td>
<td>Luteolin and kaempferol structure</td>
</tr>
<tr>
<td>4.2</td>
<td>Chromatogram of samples</td>
</tr>
<tr>
<td>4.3</td>
<td>Luteolin standard curve</td>
</tr>
<tr>
<td>4.4</td>
<td>Concentration-time curve of luteolin and LNS</td>
</tr>
<tr>
<td>5.1</td>
<td>Change in body weight gain</td>
</tr>
<tr>
<td>5.2A</td>
<td>Relative weight of kidney</td>
</tr>
<tr>
<td>5.2B</td>
<td>Relative weight of liver</td>
</tr>
<tr>
<td>5.2.C</td>
<td>Relative weight of urinary bladder</td>
</tr>
<tr>
<td>5.3</td>
<td>Morphology of urinary bladder</td>
</tr>
<tr>
<td>5.4</td>
<td>Estimation of albumin, creatinine, urea and total protein</td>
</tr>
<tr>
<td>5.5</td>
<td>Serum levels of Interleukins</td>
</tr>
<tr>
<td>5.6A</td>
<td>Serum SOD activity</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.6B</td>
<td>Serum CAT activity</td>
</tr>
<tr>
<td>5.6C</td>
<td>Serum GPx activity</td>
</tr>
<tr>
<td>5.7</td>
<td>Serum enzyme levels</td>
</tr>
<tr>
<td>5.8</td>
<td>Histology of urinary bladder</td>
</tr>
<tr>
<td>6.1</td>
<td>mRNA level of SOD gene</td>
</tr>
<tr>
<td>6.2</td>
<td>mRNA level of CAT gene</td>
</tr>
<tr>
<td>6.3</td>
<td>mRNA level of GPx gene</td>
</tr>
<tr>
<td>6.4</td>
<td>mRNA level of GADD45A gene</td>
</tr>
<tr>
<td>6.5</td>
<td>mRNA level of p53 gene</td>
</tr>
<tr>
<td>6.6</td>
<td>mRNA level of TNF-α gene</td>
</tr>
<tr>
<td>6.7</td>
<td>mRNA level of NFκB gene</td>
</tr>
<tr>
<td>6.8</td>
<td>mRNA level of VEGF gene</td>
</tr>
<tr>
<td>6.9</td>
<td>Schematic representation of uroprotective activity of LNS</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>AUMC</td>
<td>Area under moment curve</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>C_{max}</td>
<td>Concentration maximum</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase-2</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclophosphamide</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>GADD45A</td>
<td>Growth arrest and DNA damage inducible alpha</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>Oxidized glutathione</td>
</tr>
<tr>
<td>H HC</td>
<td>Hemorrhagic cystitis</td>
</tr>
<tr>
<td>H_A</td>
<td>Alternative hypothesis</td>
</tr>
<tr>
<td>H_0</td>
<td>Null hypothesis</td>
</tr>
<tr>
<td>HPH</td>
<td>High pressure homogenization</td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular adhesion molecule</td>
</tr>
<tr>
<td>K_{el}</td>
<td>Elimination constant</td>
</tr>
<tr>
<td>LD</td>
<td>Laser diffraction</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LNS</td>
<td>Luteolin nanosuspension</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>MESNA</td>
<td>Mercapto ethane sulfonate sodium</td>
</tr>
<tr>
<td>MRT</td>
<td>Mean residence time</td>
</tr>
<tr>
<td>NFkB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>$p53$</td>
<td>Tumor protein $p53$</td>
</tr>
<tr>
<td>PAM</td>
<td>Phosphoramide mustard</td>
</tr>
<tr>
<td>PCS</td>
<td>Photon correlation spectroscopy</td>
</tr>
<tr>
<td>PDI</td>
<td>Poly dispersity index</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>PSI</td>
<td>Pound per square inch</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td>Half life</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor alpha</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>ZP</td>
<td>Zeta potential</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Humans consume food and herbal medicines since they have started living on this planet. They lead by instinct, guided through experience, and latterly, by logical thinking (Havsteen, 2002). Plant-derived compounds have been a great source of materials used in beneficial medical treatment since the time of immemorial. As per WHO assessment, 70-95% of universal community employs traditional, herbal drugs for the healthcare (Robinson and Zhang, 2011). Epidemiological researches have established a link between higher fruit and vegetable intake and reduced incidence of human diseases (Wang et al., 2014), but failed to decipher the molecules responsible, or resulted due to the synergistic effects of the natural food.

Dietary materials consist of fruits and vegetables have an ability to protect an array of ailments, especially cardiovascular system (CVS) disorders and malignant syndrome (Ness and Powles, 1997). Anti-oxidants and natural fibers constitute the major supplements liable for these protective properties. Reactive oxygen species (ROS) developed due to metabolism and capable of damaging macromolecules like DNA, proteins, and lipids. The aggregation of these molecules eventually lead to the occurrence of chronic ailments including cancer, diabetes and inflammatory diseases (Halliwell, 1994). Among all other herbal components, flavonoids are common constituents of plants used in traditional medicine to treat a wide range of diseases. Many researches carried out analysis regarding the absorption, bioavailability and tissue distribution pattern of flavonoid compounds (Hollman and Katan, 1999). Dietary absorption pattern of flavonoids was considered to be low since it was linked with glycosides.

Luteolin is a bio-flavonoid present in natural foods and in traditional medicinal plants with profound pharmacological properties (Lopez, 2009). Luteolin can also combine with other anti-oxidants like vitamins. Luteolin at low concentrations exhibit anti-inflammatory properties, though explained partly by its anti-oxidant effects. Luteolin exhibits good radical scavenging and chemoprotective properties (Kumar and Pandey, 2013). Luteolin exhibit numerous pharmacological properties, including anti-oxidant, anti-inflammatory and anti-microbial functions (Lopez, 2009). Only limited data on the oral bioavailability of luteolin is available; thus more quantitative research is required to solicit the pharmacological competence of luteolin (Seelinger et al., 2008).

Many new compounds have low aqueous solubility, and hence with low oral bioavailability (Bansal et al., 2011). The efficacies of any pharmaceutical or dietary products in modulating diseases rely on conserving the bioavailability of the active principles. The delivery of phytochemicals hence needed
adequate formulations to maintain their bioactive potential, absorption, tissue distribution and stability parameters. Nanoparticle formulation technology has all the above characteristics and well appreciated by scientific community.

Nanotechnology based formulation aspects has been employed in pharmaceutical industry for solubilisation and to improve dissolution of poorly soluble molecules. Comprehensive research interest has been established in nanoparticle drug delivery technologies. Unlike to other nano-carriers, the nanosuspension contains no carriers, but a nanosized dispersion of poorly soluble molecules in crystalline state (Müller et al., 2001) or amorphous state (Chingunpituk, 2011), preserved by surface active agents. If the molecules remain in the crystalline state, such nanosuspension may be known as nanocrystals (Junghanns and Müller, 2008). Numerous preparation technologies have been established for nanosuspension on the basis of two approaches, wet milling (Liversidge and Cundy, 1995) and high pressure homogenization (HPH) (Keck and Müller, 2006; Müller and Peters, 1998).

Muller and his group in early 90’s have added to an option innovation in light of piston gap high pressure homogenization to deliver nanoparticulate suspensions, called Disso-Cubes™. Indicated by the cubic state of the medication nanocrystals delivered with this procedure (Muller et al., 2002). This innovation is a regular top-down procedure which depends on jet stream homogenization. The medication is pumped under high pressure of up to 1700 bar through a micro scale fluidizer framework (Junghanns and Müller, 2008). HPH system utilizes collision chamber of either Z-type or Y-type, during particle collision, shear forces and cavitations forces leading to the required particle size reduction. The subsequent molecule sizes are saved by the utilization of different phospholipids or different surfactants and stabilizers.

High pressure homogenization (HPH) is the technique used to create luteolin nanosuspension (LNS) in which, particle diminution to the submicron extent used to build the dissolution rate, the saturation solubility and thus to improve the oral bioavailability of inadequately dissolvable drugs (Merisko and Liversidge, 2011).

The nanosuspensions which contain luteolin were prepared by HPH using Avestin high pressure homogenizer. Generally nanoparticle-drug formulations enhance drug potency, specificity, tolerability and therapeutic index of respective molecules. Moreover, nanosuspensions can also be produced cost effectively and with high drug loading capacity that ultimately reduces doses of application (Patel and Agrawal, 2011).

Pharmacokinetics (PK) is a branch of science deals with drug absorbed from different routes, distribution to tissues and organs, metabolism, and
excretion. PK determines the fate of the compounds from intake until they are completely excreted from the body. PK and tissue distribution analysis helps researchers to design and develop formulations of a particular drug. By the optimal use of drug formulation, the drug release to the proper tissues/organisms can be regulated and minimize the drug circulation to the non-target tissues. Thus, results in improved pharmacological properties with low untoward actions (Li and Huang, 2008).

1.1 Problem statement

- Cyclophosphamide (CP) one of the commonly used oxazaphosphorine has been chosen as a model compound in many scientific experiments (Dobrek and Thor, 2012). Major side effects of CP include the urological disturbances, like voiding symptoms, suprapubic discomfort and to dangerous haemorrhagic cystitis (HC).
- The simultaneous administration of sodium-2-mercaptoethane (Mesna) is the most widely employed methods for prevention of CP-induced HC in clinical practice. However, anaphylactic shocks, allergic symptoms including urticaria, skin rashes, hematuria and elevated levels hepatic enzymes are the major side effects of Mesna treatment (Manikandan et al., 2010). It was estimated that HC also occurs in 10-40% of Mesna-treated patients (Brock and Pohl, 1983). Therefore, there is a need for new effective agents for prevention of this side effect.
- Natural compounds or herbal extracts containing flavonoids have been investigated as modulators of CP induced urotoxicity. Thus the current study was aimed to explore the role of luteolin in exerting uroprotective activity in experimental model and deciphering the underlying the mechanism/s. Since luteolin has a low oral bioavailability (Chen et al., 2012) it has been converted to luteolin nanosuspension form.
- Although limited data for oral absorption and metabolism are available, a quantitative study is essential to ascertain the pharmacological activities of luteolin (Seelinger et al., 2008). As oral administration is the most accepted method of administration of drugs, luteolin may be formulated as an oral nanosuspension form and it is essential to identify the bioavailability pattern, distribution and elimination of luteolin after oral administration (Chen et al., 2012). To successfully use the various pharmacological properties of the bioflavonoid luteolin and to bypass its low oral absorption, there is a need to design a novel formulation that can enhance oral absorption.
1.2 Research hypothesis

- H_0: Luteolin nanosuspension will not improve the oral bioavailability of luteolin to elicit uroprotective effect compared to pure luteolin in male SD rats.
- H_A: Luteolin nanosuspension will improve the oral bioavailability of luteolin to elicit uroprotective effect compared with pure luteolin in male SD rats.

1.3 General objective

- To determine the uroprotective function of luteolin nanosuspension on cyclophosphamide-induced hemorrhagic cystitis in rats.

1.4 Specific objectives

- To prepare and evaluate the morphological, physico-chemical, stability properties of luteolin nanosuspension (LNS).
- To evaluate acute oral toxicity of LNS.
- To determine the relative bioavailability and pharmacokinetics of luteolin in SD rats.
- To evaluate the protective effect of LNS on hemorrhagic cystitis in murine models.
- To elucidate the potential molecular mechanisms of the uroprotective effect of LNS in murine urinary bladder.
REFERENCES

urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. *Food and Chemical Toxicology*, 44(10), 1744-1750.

Chen, T., Sun, S., Kong, S., Wang, Y., Ye, J.... (2012). The exposure of luteolin is much lower than that of apigenin in oral administration of Flos Chrysanthemi extract to rats. *Drug Metabolism and Pharmacokinetics*, 27(1), 162-168.

Exley, A., Cohen, J., Buurman, W., Owen, R., Lumley, J., Hanson, G. ... (1990). Monoclonal antibody to TNF in severe septic shock. The Lancet, 335(8700), 1275-1277.

Lewis, S.A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. *American Journal of Physiology-Renal Physiology*, 278(6), F867-F874.

Merwid Trocha, M., Chlebda, E., Sozański, T., Magdalan, J., Ksiądzyna, D.... (2011). The effects of morin, a naturally occurring flavonoid, on cyclophosphamide-induced toxicity in rats. *Advances in Clinical and Experimental Medicine*, 20(6), 683-690.

APPENDICES

Appendix-1

CLINICAL OBSERVATION RECORD-

Acute Toxicity Study

Name of Investigator: Harikumar Test Item: Luteolin Dose: 2ml/100g Strain: Female SD rats

Date: **10-01-2014 to 24-01-2014** Animal ID: 1 Time of Dosing: **9am**

<table>
<thead>
<tr>
<th>Clinical observations (Caged)</th>
<th>0 Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>✗</td>
</tr>
<tr>
<td>Moribund</td>
<td>✗</td>
</tr>
<tr>
<td>Convulsions</td>
<td>✗</td>
</tr>
<tr>
<td>Tremor</td>
<td>✗</td>
</tr>
<tr>
<td>Straubs Tail</td>
<td>✗</td>
</tr>
<tr>
<td>Locomotor Activity</td>
<td>✔</td>
</tr>
<tr>
<td>Abnormal Gait</td>
<td>✗</td>
</tr>
<tr>
<td>Streotypic Reaction</td>
<td>✗</td>
</tr>
<tr>
<td>Piloerection</td>
<td>✗</td>
</tr>
<tr>
<td>Writhing</td>
<td>✗</td>
</tr>
<tr>
<td>Tachypnea</td>
<td>✗</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>✗</td>
</tr>
<tr>
<td>Urination</td>
<td>✔</td>
</tr>
<tr>
<td>Feces</td>
<td>✗</td>
</tr>
<tr>
<td>Alopecia</td>
<td>✗</td>
</tr>
<tr>
<td>Bleeding</td>
<td>✗</td>
</tr>
</tbody>
</table>
Appendix-2

CLINICAL OBSERVATION RECORD

Name of Investigator: Harikumar
Test Item: Luteolin
Dose: 2ml/100g
Strain: SD rats

Date: 10-01-2014 to 24-01-2014
Animal ID: 1
Time of Dosing: 9.30am

<table>
<thead>
<tr>
<th>Clinical observations</th>
<th>0 Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 min</td>
</tr>
<tr>
<td>Vocalization</td>
<td>✗</td>
</tr>
<tr>
<td>Nasal Discharge</td>
<td>✗</td>
</tr>
<tr>
<td>Salivation</td>
<td>✗</td>
</tr>
<tr>
<td>Lacrimation</td>
<td>✗</td>
</tr>
<tr>
<td>Exopthalmos</td>
<td>✗</td>
</tr>
<tr>
<td>Ptosis</td>
<td>✗</td>
</tr>
<tr>
<td>Loss of Corneal Reflex</td>
<td>✗</td>
</tr>
<tr>
<td>Loss of Righting Reflex</td>
<td>✗</td>
</tr>
<tr>
<td>Loss of Grasping reflex</td>
<td>✗</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>✗</td>
</tr>
<tr>
<td>Analgesia</td>
<td>✗</td>
</tr>
<tr>
<td>Others</td>
<td>✗</td>
</tr>
</tbody>
</table>

Note - ✓ / ✗: Present/Absent
Name & Signature of Investigator:

136
Appendix-3

<table>
<thead>
<tr>
<th>H.P.H Cycles (C)</th>
<th>Particle size (Z-average in nm)</th>
<th>PDI</th>
<th>ZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before HPH</td>
<td>1649.33 ± 432.23</td>
<td>0.94 ± 0.08</td>
<td>-41.1 ± 3.97</td>
</tr>
<tr>
<td>5</td>
<td>940.37 ± 59.54</td>
<td>0.65 ± 0.05</td>
<td>-35.47 ± 3.19</td>
</tr>
<tr>
<td>10</td>
<td>765.77 ± 30.33</td>
<td>0.63 ± 0.06</td>
<td>-33.43 ± 4.99</td>
</tr>
<tr>
<td>15</td>
<td>655.7 ± 67.24</td>
<td>0.54 ± 0.05</td>
<td>-33.77 ± 3.72</td>
</tr>
<tr>
<td>20</td>
<td>620.83 ± 24.82</td>
<td>0.45 ± 0.04</td>
<td>-32.43 ± 4.6</td>
</tr>
<tr>
<td>40</td>
<td>420.4 ± 11.26</td>
<td>0.33 ± 0.02</td>
<td>-30.73 ± 3.49</td>
</tr>
</tbody>
</table>

Particle size (Z-average), Polydispersity index (PDI), and Zeta potential (ZP) of aqueous luteolin nanosuspension (LNS) at various HPH cycles. Data expressed as mean ±S.D.
Appendix-4

(A) Raw correlation data, (B) size distribution intensity and (C) ZP distribution of LNS before HPH and after HPH cycles.
Appendix-5

APPROVAL

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE

Date: 16 July 2013
Ref: UPM/MACUC/AMP- R020/2013

Project Title: URO PROTECTIVE FUNCTIONS OF LUTEOLIN ON CYCLOPHOSPHAMIDE INDUCED HEMORRHAGIC CYSTITIS IN RATS

Principal Investigator: Assoc. Prof. Dr Rajesh Ramanan

Associates: Prof. Dr Khooziah Shazali, Dr Senthil Rajan Dhanamalingam

Student: Ravindran Harikumar

Committee decision: The committee has reviewed and approved the proposed animal utilization protocol

AUP No: R020/2013

Project Classification: Chronic

Category of invasiveness: B

Source of animals: Laboratory Animal Management Facility, Faculty of Pharmacy, UTM, Puncak Alam, Malaysia

Number of Animals Approved: Fifteen (15) mice and seventy two (72) rats

Housing: Standard rat and mouse cages

(Prof. Dr. Mohd Hair Bejo)
Chairman, Institutional Animal Care and Use Committee
Universiti Putra Malaysia
Appendix-6

MELTING CURVES FOR qPCR

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Cycle Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold @ 42°C, 30 min 0 sec.</td>
<td></td>
</tr>
<tr>
<td>Hold 2 @ 95°C, 10 min 0 sec.</td>
<td></td>
</tr>
<tr>
<td>Cycling (36 repeats)</td>
<td>Step 1 @ 90°C, hold 15 sec.</td>
</tr>
<tr>
<td></td>
<td>Step 2 @ 55°C, hold 30 sec.</td>
</tr>
</tbody>
</table>

Experiment Information

- **Run Name**: Two Step with Mel 2014-07-20 (1), SOD,CAT,GPX,VEGF,TNF,GAD,NFK-p53,Brt
- **Run Start**: 07/29/2014 08:15:41 AM
- **Run Finish**: 07/29/2014 02:10:18 PM
- **Operator**: FC
- **Notes**: Harry’s genes
- **Run On Software Version**: Rotor Gene 1.7.87
- **Run Signature**: The Run Signature is valid.
- **Gain Green**: 8

Melt Information

- **Digital Filter**: Light
- **Sample Page**: Page 1
- **Temp. Threshold**: 55°C
- **Cycle Threshold**: 28
BIODATA OF STUDENT

Ravindran Harikumar was born in Krishnapuram, Kerala state, India, on May 10th 1974, to Mr. Ravindran Pillai and Mrs. Vijayakumari. He has a younger brother Mr. Jayakumar. He attended primary and high school in his hometown Krishnapuram. He passed pre-degree course from Mahatma Gandhi University, Kottayam, Kerala for two years (1989-1991). Following this he passed Diploma in Pharmacy (D. Pharm) conducted by Directorate of Medical Education, Government of Kerala in first class (1991-93). He successfully graduated in 1998 with degree of Bachelor of Pharmacy (B. Pharm) from Vivekananda Institute of Medical Science and Research, Salem, affiliated to Dr. M.G.R. Medical University, Tamil Nadu, India. He obtained post graduate diploma in Pharmacy practice from Annamalai University in Tamil Nadu, India and a Master degree in Pharmacognosy and Phytochemistry (M. Pharm) from College of Pharmaceutical sciences, Government Medical College Kerala with a first class. He served Blue Cross India Ltd, Kerala Health Services and currently working as a Senior Hospital Pharmacist in Government Medical College Hospital Alappuzha, Kerala (On study leave). Since 1996, his name has enrolled as registered pharmacist under Kerala Pharmacy Council. He had participated in several conferences, scientific meetings conducted by Putra Sarjana at Universiti Putra Malaysia, Kerala pharmacy council and Medical education department, Kerala.

His area of interest and passion is in the Natural Product Pharmacology. His current research includes formulation and development of phytochemicals to combat chemotherapy induced toxicities and untoward effects.

He is married to Mrs. Mayalekshmi and blessed with a girl Thanmaya (1 year).
LIST OF PUBLICATIONS

Awards and Achievements

Research publications

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ________________

TITLE OF THESIS / PROJECT REPORT :

URO PROTECTIVE EFFECT OF LUTEOLIN NANO-SUSPENSION ON CYCLOPHOSPHAMIDE-INDUCED HEMORRHAGIC CYSTITIS IN RATS

NAME OF STUDENT: RAVINDRAN PILLAI HARIKUMAR

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from __________ until __________

(date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)
Name:

Date :

Date :

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]