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ABSTRACT

Clustering is basically one of the major sources of primary data mining tools. It makes 
researchers understand the natural grouping of attributes in datasets. Clustering is an 
unsupervised classification method with the major aim of partitioning, where objects in the 
same cluster are similar, and objects which belong to different clusters vary significantly, 
with respect to their attributes. However, the classical Standardized Euclidean distance, 
which uses standard deviation to down weight maximum points of the ith features on the 
distance clusters, has been criticized by many scholars that the method produces outliers, 
lack robustness, and has 0% breakdown points. It also has low efficiency in normal 
distribution. Therefore, to remedy the problem, we suggest two statistical estimators 
which have 50% breakdown points namely the Sn and Qn estimators, with 58% and 82% 
efficiency, respectively. The proposed methods evidently outperformed the existing methods 
in down weighting the maximum points of the ith features in distance-based clustering 
analysis.
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INTRODUCTION	

Clustering analysis is an unsupervised 
learning. It is widely known as unsupervised 
learning algorithm because it does not 
involve any statistical assumption to 
data (Cao et al., 2009). Velmurugan and 
Santhanam (2011) stated that data modeling 
places clustering in a historic viewpoint 
embedded in mathematics, statistics, and 



Paul Inuwa Dalatu and Habshah Midi

1824 Pertanika J. Sci. & Technol. 26 (4): 1823 - 1836 (2018)

numerical analysis. The major aim of clustering is to disintegrate a dataset into dissimilar 
subsets called clusters or groups, whereby, data in a particular subset have the same  
membership or characteristics while different subset presenting dissimilar membership 
from data in distinct subset. 

Generally, the current clustering algorithms obtainable in the literature is aimed to offer 
hard clusters based on K-Means algorithm. The K-Means particularly practices Euclidean 
distance to measure the alteration between a data object and its cluster centroid. These 
distances are commonly calculated from raw data and not from normalized data. Whereas, 
using Euclidean distances, the distance between any two objects is not affected by the 
addition of new objects to the analysis. The clustering outcomes can be significantly affected 
by differences in scale among the dimension in which the distances are calculated through. 
Data normalization is the linear transformation of data to a specific range (Visalakshi 
&Thangavel, 2009).

Usually, in computing the Euclidean distance function, all features add the same to 
the function value. Subsequently, different features are usually calculated with different 
metrics or different magnitudes, and these must be normalized (or standardized) before 
using the distance function (Munz et al., 2007; Xu & Tian, 2015).   

Therefore, one of the issues of K-Means weakness is that it may not always yield global 
optimum outcomes (Reddy et al., 2012), which necessitates normalizing different metrics 
when using Euclidean distance function in cluster analysis. However, Xu and Tian (2015) 
addressed the reported issue and proposed a Standardized Weighted Euclidean Distance:
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where is  ( is standard deviation of dataset ) is an empirical normalization and weighing 

factor of the ith feature. It is observe that the bigger is , the smaller is the effect of the 
ith feature on the distance function.

In recent times, some researchers have identified the limitations and drawbacks of the 
standardized normalization (see Mohamad & Usman, 2013, Jayalakshmi & Santhakumaran, 
2011, Jain et al., 2005). Gnanadesikan et al. (1995) studied and conducted experiments 
on the performance of nine methods on eight most important simulated and real data. 
Their outcomes revealed and demonstrated weakness of weighting based on the standard 
deviation. Furthermore, Milligan and Cooper (1988) presented simulation studies on 
standardization issue. They experimented eight standardization approaches, and the 
classical Z-Score (i.e. standard deviation) normalization was found to be less effective 
in various circumstances. However, Sarstedt and Mooi (2014) recommended that in 
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most cases, normalization by range performed better compared to standard deviation. 
Furthermore, Matthews (1979) argued that, by down weighting the whole sample using 
method like Standardized Weighted Euclidean based on variability may probably eliminate 
the significant between-cluster consistency. Hence, this motivated us to propose Qn and 
Sn estimators to replace standard deviation in Standardized Euclidean distance called Qn 
and Sn Weighted Euclidean distance, respectively.     

This paper is structured as follows: Section 2 provides the materials and methods. 
Section 3 presents the results and discussion. Section 4 proffers the conclusions of the study. 

MATERIALS AND METHODS

Conventional Distance Functions 

According to Giancarlo et al. (2010), distance functions are vital components of 
classification and clustering techniques. Therefore, in comparing performance of the 
proposed distance function, the K-Means clustering algorithm is also executed using various 
traditional distance functions, such as the Euclidean and the weighted Euclidean distance.  

Euclidean Distance  

The most popular distance measure for numerical data is possibly the Euclidean distance, 
also well-known as 2L norm, as defined in (Shirkorshidi et al., 2015):
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This distance measure has the appealing property in which  the ( )ji xxd ,  can be 

interpreted as the physical distance between p-dimensional points ipiii xxxx ,...,, 21
` =  

and jpjjj xxxx ,...,, 21
` = in Euclidean space.   

Standardized Euclidean

The Standardized Euclidean (or sometimes called Weighted Euclidean) was first proposed 
by Orloci (1967) based on the fact that Euclidean distance had some demerit of absoluteness 
on the method. This standardization eliminates the limiting effect of all attribute variables in 
samples on the maximum likely distance. Therefore, this function will assist in giving equal 
weight to different values in the set and the distance will become scale invariant. Recently, 
it was criticized by Gerstenberger and Vogel (2015) that as far as standard deviation was 
applied to down weight some maximum points, it was prone to outliers and lack robustness. 
The Standardized Euclidean is computed as in Xu and Tian (2015), Equation [1] revisited.                                            
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Proposed Weighted Euclidean Distance Functions

 In this section we discuss the two proposed Weighted Euclidean distance functions. The two 
proposed functions are based on the Weighted Euclidean or sometimes called Standardized 
Euclidean of Xu and Tian (2015).  Xu and Tian (2015) claimed that the larger is  (denotes 
the standard deviation of the dataset), the smaller was the influence of the ith feature on the 
distance is. They believed that the rationale behind the method is the assumption that both 
normal and anomalous may appear from different clusters in the features space. Perhaps, 
the data may contain outliers which do not belong to a bigger cluster, yet this does not 
disturb the K-Means clustering as long the number of outliers is small.  

Recently, Gerstenberger and Vogel (l2015) criticized the Standardized Weighted 
Distance in Equation [1] in which it was based on standard deviation to down weight the 
data. They noted that this method lacked robustness, because the calculation of standard 
deviation was based on the sample mean which was very sensitive to outliers.  

A Standard deviation has 0% breakdown point as stated in Rousseeuw and Hubert 
(2011). It is susceptible to outliers and has low efficiency in heavy-tailed distributions 
(Gerstenberger & Vogel, 2015). In order to remedy this problem, we suggest to employing 
high break down point estimators of Sn and Qn where both have 50% breakdown points 
with efficiency of 58% and  82%, respectively (Rousseeuw & Croux, 1993).     

The proposed methods are summarized as follows:

Qn Weighted Euclidean Distance Function.

 					   
[3]

where:

					     [4]

Rousseeuw and Croux (1993) suggested assigning c = 2.2219 for consistency in the 
Gaussian distribution.

Sn Weighted Euclidean Distance Function.

,					    [5]

where Sn is the median of the n medians of the absolute difference between xi and xj:
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				    [6]  

Rousseeuw and Croux (1993) suggested assigning c = 1.1926 for consistency in the 
Gaussian distribution.

RESULTS AND DISCUSSION

Simulation Study 

In this section, Monte Carlo simulation study is presented to compare the performance of 
existing methods, such as Euclidean distance  (Loohach & Garg, 2012), and  Standardized 
Weighted Euclidean distance (Xu & Tian, 2015) with our proposed methods Qn Weighted 
Euclidean distance, and Sn Weighted Euclidean distance. 

Following Loohach and Garg (2012), and Xu and Tian (2015), two (x1,  x2 ) and four (x1, 
x2, x3, x4 ) variables are generated such that each of the exploratory variables (x1, x2 )  and 
(x1, x2, x3, x4) are simulated from uniform distribution with range [-10, 10].  The variables 
are clustered into three classes (clusters, groups) as; cluster 1, cluster 2, and cluster 3. We 
consider a sample of size 50, 100 and 160. The basis for using different sample sizes is to 
ascertain the consistency, effectiveness and accuracy of the proposed methods compared 
to the existing methods. The conventional distance functions, Euclidean and Standardized 
Weighted Euclidean, and the Qn and Sn Weighted Euclidean Distance Functions were then 
applied to the data.  Some external validity measures such as; purity (Hernandez-Torruco 
et al. 2014), fowlkes-mallow index (Velardi et al., 2012), rand index (Noorbehbahani et 
al., 2015: Rand, 1971; ), f-measure (score) (Velardi et al., 2012), jaccard index (Velardi 
et al., 2012), recall (Velardi et al., 2012), f-measure (beta varied) (Velardi et al., 2012), 
geometric-mean (Tomar & Agarwal, 2015), precision (Kou et al., 2014: Rokach & Maimon, 
2008)), specificity (Velardi et al., 2012), accuracy (Tomar & Agarwal, 2015) and  sensitivity 
(Velardi et al., 2012), computing time, and maximum number of clusters clustered are 
recorded. In each of the experimental runs, there are 1000 replications. The performance 
of the four methods are evaluated based on average external validity measures for each 
distance functions, computational timing (minutes), and having three levels of cluster as; 
cluster 1, cluster 2, and cluster 3. The values in the parenthesis are unnormalized data and 
not in parenthesis for normalized data. A good method is one that has maximum external 
validity measure nearly equal to 1 (at maximum 1), less computing time and maximum 
numbers clustered in each cluster. 
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Table 1
Average external validity measures, computing time and maximum clusters for n = 50 (x1, x2)

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.866(0.822) 0.869(0.825) 0.893(0.863) 0.893(0.863)
Fow. M. I. 0.867(0.825) 0.876(0.832) 0.892(0.852) 0.892(0.862)
Rand Index 0.895(0.852) 0.894(0.860) 0.930(0.900) 0.931(0.901)
F-M. (Score) 0.854(0.810) 0.857(0.813) 0.882(0.851) 0.881(0.851)
Jaccard Index 0.789(0.745) 0.792(0.768) 0.813(0.790) 0.800(0.793)
Recall 0.866(0.822) 0.867(0.823) 0.897(0.864) 0.891(0.862)
F-M. (varied) 0.852(0.814) 0.866(0.822) 0.887(0.854) 0.885(0.852)
G. Means 0.872(0.837) 0.879(0.846) 0.892(0.865) 0.892(0.867)
Precision 0.878(0.834) 0.879(0.835) 0.897(0.874) 0.896(0.863)
Specificity 0.899(0.855) 0.900(0.890) 0.980(0.953) 0.947(0.914)
Accuracy 0.874(0.831) 0.894(0.850) 0.961(0.930) 0.965(0.932)
Sensitivity 0.866(0.822) 0.867(0.823) 0.898(0.865) 0.899(0.866)
Average 0.865(0.822) 0.870(0.832) 0.902(0.891) 0.907(0.886)
Compt. Time 35(38) 35(37) 28(30) 28(30)
Clust.1(max. 15) 12(11) 11(11) 14(12) 13(12)
Clust.2 (max.15) 10(10) 11(9) 12(11) 12(12)
Clust.3 (max.20) 15(14) (15) 17(16) 17(16)

Table 2
Average external validity measures, computing time and maximum clusters for n = 50 (x1, x2, x3, x4)

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.877(0.844) 0.878(0.845) 0.930(0.901) 0.921(0.916)
Fow. M. I. 0.871(0.846) 0.892(0.863) 0.920(0.911) 0.920(0.911)
Rand Index 0.894(0.861) 0.893(0.860) 0.939(0.922) 0.931(0.924)
F-M. (Score) 0.861(0.832) 0.863(0.830) 0.937(0.914) 0.936(0.903)
Jaccard Index 0.834(0.801) 0.837(0.804) 0.913(0.900) 0.913(0.901)
Recall 0.871(0.843) 0.872(0.845) 0.907(0.890) 0.901(0.890)
F-M. (varied) 0.897(0.864) 0.891(0.865) 0.960(0.930) 0.944(0.911)
G. Means 0.929(0.910) 0.929(0.910) 0.951(0.944) 0.969(0.937)
Precision 0.893(0.864) 0.896(0.864) 0.947(0.914) 0.956(0.923)
Specificity 0.895(0.862) 0.896(0.863) 0.946(0.913) 0.947(0.914)
Accuracy 0.894(0.871) 0.898(0.865) 0.952(0.936) 0.965(0.942)
Sensitivity 0.894(0.871) 0.892(0.870) 0.978(0.945) 0.969(0.936)
Average 0.893(0.855) 0.886(0.857) 0.940(0.920) 0.939(0.917)
Compt. Time 42(45) 42(45) 37(40) 37(40)
Clust.1(max. 15) 11(9) 10(10) 13(13) 13(13)
Clust.2 (max.15) 9(9) 9(9) 13(12) 12(11)
Clust.3 (max.20) 14(13) 15(12) 17(15) 18(16)
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Table 3
Average external validity measures, computing time and maximum clusters for n = 100 (x1, x2)

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.894(0.861) 0.894(0.861) 0.960(0.930) 0.963(0.932)
Fow. M. I. 0.895(0.862) 0.895(0.862) 0.950(0.920) 0.950(0.920)
Rand Index 0.897(0.864) 0.898(0.865) 0.970(0.940) 0.964(0.931)
F-M. (Score) 0.896(0.863) 0.897(0.864) 0.967(0.934) 0.969(0.936)
Jaccard Index 0.834(0.801) 0.837(0.804) 0.913(0.900) 0.913(0.900)
Recall 0.894(0.861) 0.895(0.862) 0.937(0.904) 0.937(0.904)
F-M. (varied) 0.897(0.864) 0.895(0.862) 0.933(0.900) 0.937(0.904)
G. Means 0.896(0.863) 0.899(0.866) 0.954(0.921) 0.963(0.930)
Precision 0.895(0.863) 0.959(0.926) 0.970(0.940) 0.970(0.940)
Specificity 0.898(0.865) 0.899(0.866) 0.970(0.940) 0.980(0.950)
Accuracy 0.897(0.864) 0.897(0.864) 0.945(0.912) 0.948(0.915)
Sensitivity 0.894(0.861) 0.894(0.861) 0.960(0.932) 0.960(0.931)
Average 0.891(0.858) 0.897(0.864) 0.952(0.923) 0.955(0.924)
Compt. Time 47(52) 46(52) 41(43) 41(43)
Clust.1(max. 30) 25(24) 26(23) 26(26) 27(25)
Clust.2 (max.30) 20(20) 22(21) 26(23) 26(24)
Clust.3 (max.40) 33(30) 31(30) 35(34) 34(34)

Table 4
Average external validity measures, computing time and maximum clusters for n = 100 (x1, x2, x3, x4 )

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.896(0.863) 0.899(0.866) 0.950(0.920) 0.954(0.931)
Fow. M. I. 0.896(0.863) 0.898(0.865) 0.953(0.920) 0.953(0.920)
Rand Index 0.899(0.866) 0.898(0.865) 0.970(0.940) 0.964(0.931)
F-M. (Score) 0.894(0.861) 0.893(0.860) 0.970(0.940) 0.969(0.936)
Jaccard Index 0.867(0.834) 0.870(0.840) 0.947(0.914) 0.946(0.913)
Recall 0.896(0.863) 0.894(0.861) 0.941(0.911) 0.935(0.901)
F-M. (varied) 0.893(0.860) 0.893(0.860) 0.933(0.900) 0.937(0.904)
G. Means 0.895(0.862) 0.895(0.863) 0.954(0.0.921) 0.960(0.930)
Precision 0.897(0.864) 0.895(0.862) 0.970(0.940) 0.970(0.941)
Specificity 0.898(0.865) 0.900(0.890) 0.973(0.941) 0.980(0.950)
Accuracy 0.897(0.864) 0.897(0.864) 0.945(0.912) 0.949(0.916)
Sensitivity 0.894(0.861) 0.895(0.863) 0.960(0.930) 0.960(0.930)
Average 0.894(0.861) 0.894(0.861) 0.947(0.924) 0.956(0.925)
Compt. Time 53(55) 53(55) 46(49) 46(49)
Clust.1(max. 30) 23(22) 24(23) 25(24) 26(25)
Clust.2 (max.30) 23(21) 23(20) 25(24) 25(23)
Clust.3 (max.40) 31(28) 30(28) 35(33) 34(33)
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Table 5
Average external validity measures, computing time and maximum clusters for n = 160 (x1, x2)

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.911(0.894) 0.914(0.897) 0.963(0.930) 0.963(0.931)
Fow. M. I. 0.912(0.896) 0.912(0.895) 0.963(0.930) 0.953(0.932)
Rand Index 0.940(0.910) 0.948(0.915) 0.970(0.940) 0.965(0.932)
F-M. (Score) 0.910(0.891) 0.913(0.894) 0.970(0.940) 0.970(0.940)
Jaccard Index 0.0.834(0.797) 0.837(0.785) 0.947(0.914) 0.947(0.914)
Recall 0.911(0.894) 0.912(0.892) 0.941(0.911) 0.935(0.902)
F-M. (varied) 0.907(0.900) 0.911(0.891) 0.945(0.914) 0.937(0.910)
G. Means 0.929(0.910) 0.929(0.911) 0.954(0.923) 0.962(0.932)
Precision 0.923(0.890) 0.926(0.913) 0.970(0.941) 0.969(0.936)
Specificity 0.955(0.932) 0.961(0.931) 0.970(0.952) 0.980(0.943)
Accuracy 0.940(0.913) 0.948(0.935) 0.952(0.934) 0.965(0.943)
Sensitivity 0.911(0.893) 0.912(0.890) 0.972(0.941) 0.960(0.934)
Average 0.915(0.893) 0.919(0.896) 0.960(0.931) 0.959(0.932)
Compt. Time 63(64) 63(64) 56(60) 56(60)
Clust.1(max. 50) 46(46) 45(44) 46(46) 46(45)
Clust.2 (max.50) 47(45) 46(44) 47(45) 47(46)
Clust.3 (max.60) 53(53) 54(54) 58(57) 58(58)

Table 6
Average external validity measures, computing time and maximum clusters for n = 160 (x1, x2, x3, x4)

Distance Functions Euclidean Weighted Euclidean Qn W. Euclidean Sn W. Euclidean
Purity 0.916(0.912) 0.919(0.915) 0.953(0.943) 0.953(0.943)
Fow. M. I. 0.917(0.915) 0.926(0.922) 0.948(0.932) 0.942(0.932)
Rand Index 0.935(0.922) 0.944(0.930) 0.960(0.948) 0.951(0.940)
F-M. (Score) 0.924(0.911) 0.927(0.913) 0.952(0.945) 0.958(0.945)
Jaccard Index 0.893(0.884) 0.902(0.890) 0.943(0.932) 0.950(0.939)
Recall 0.916(0.902) 0.920(0.913) 0.947(0.934) 0.942(0.936)
F-M. (varied) 0.905(0.891) 0.911(0.892) 0.937(0.924) 0.935(0.922)
G. Means 0.912(0.907) 0.919(0.906) 0.952(0.945) 0.957(0.947)
Precision 0.908(0.894) 0.919(0.895) 0.947(0.934) 0.946(0.936)
Specificity 0.929(0.915) 0.929(0.914) 0.950(0.941) 0.957(0.944)
Accuracy 0.914(0.901) 0.924(0.910) 0.951(0.940) 0.955(0.942)
Sensitivity 0.916(0.902) 0.920(0.913) 0.947(0.934) 0.942(0.936)
Average 0.915(0.905) 0.921(0.909) 0.949(0.938) 0.949(0.939)
Compt. Time 70(72) 70(72) 65(68) 65(68)
Clust.1(max. 50) 45(44) 45(44) 46(45) 47(46)
Clust.2 (max.50) 44(44) 45(43) 47(46) 47(46)
Clust.3 (max.60) 54(53) 55(52) 56(55) 56(55)
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Tables 1, 2, 3, 4, 5, and 6 present the average values of 1000 replications of average 
external validity measures, maximum number of samples in each cluster, and the computing 
time (minutes).

It is evidently clear that all the two proposed methods have shown impressive 
performance by achieving the highest average maximum external validity measures and 
recording lowest computational timing. The proposed methods have also been clustered 
to nearly the maximum numbers required to be clustered in each cluster (group). This 
indicates that the performance of the proposed methods is more accurate and efficient 
compared to the existing methods.

Table 7 presents the average external validity measures and computing time based 
on 1000 simulation runs, for 5% and 10% contaminated data generated from uniform 

Table 7
Average external validity measures and computing time (minutes) for n = 50, 100, and 160 

n Contaminated Method
x1,  x2 x1,  x2, x3,  x4

Av. Ext. Val. Comp. Time Av. Ext. Val. Comp. Time

50

5%

Euclidean 0.6752 53 0.6634 56
W.ted Eu. 0.6947 52 0.6815 54
Qn W. Eu. 0.7427 47 0.7141 50
Sn W. Eu. 0.7503 46 0.7223 49

10%

Euclidean 0.6178 60 0.5912 61
W.ted Eu. 0.6331 59 0.6152 62
Qn W. Eu. 0.6792 54 0.6573 56
Sn W. Eu. 0.6801 53 0.6633 55

100

5%

Euclidean 0.6973 62 0.6864 64
W.ted Eu. 0.6978 62 0.6982 65
Qn W. Eu. 0.7433 59 0.7117 61
Sn W. Eu. 0.7392 59 0.7114 63

10%

Euclidean 0.6191 68 0.6043 70
W.ted Eu. 0.6186 68 0.6128 71
Qn W. Eu. 0.6707 64 0.6672 66
Sn W. Eu. 0.6718 64 0.6595 66

160

5%

Euclidean 0.5984 68 0.5873 70
W.ted Eu. 0.6112 67 0.6004 69
Qn W. Eu. 0.6673 64 0.6433 67
Sn W. Eu. 0.6621 63 0.6403 67

10%

Euclidean 0.5546 69 0.5334 73
W.ted Eu. 0.5722 70 0.5471 74
Qn W. Eu. 0.6371 66 0.6013 68
Sn W. Eu. 0.6494 65 0.6105 67
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distribution with range [15, 16]. From the table it is exciting to note that despite the 
contamination of the data, the two proposed methods; Qn weighted Euclidean and Sn 
weighted Euclidean outperformed the two existing methods. Hence, these findings show that 
the two proposed methods can perform fairly well even in the presence of contamination. 

Real Data Applications 

In this section, the Iris and Hayes-Roth datasets are considered to verify the performance 
of our proposed methods:

Iris Dataset. The iris dataset has been used by many researchers, such as Galili (2015), 
Jayalakshmi and Santhakumaran (2011), Benson-Putnins et al. (2011), and Han et al. 
(2011). The dataset contains 3 classes of 150 instances each, where each class refers to 
a type of iris plant. It comprises the following attributes information: (1) Sepal length in 
cm, (2) Sepal width in cm, (3) Petal length in cm, and (4) Petal width in cm. The classes 
are listed as follows: (1) iris Setosa, (2) iris Verisiclor, and (3) iris Virginica (Bache and 
Lichman, 2013).

Hayes-Roth Dataset. The Hayes-Roth dataset has also been used by many researchers, 
such as Uddin et al. (2017), Han et al. (2011), Jayalakshmi and Santhakumaran, (2011), 
and Ryu and Eick (2005). The dataset contains 3 classes of 160 instances each, with 4 
attributes namely: (1) hobby, (2) age, (3) educational, and (4) marital status (Bache and 
Lichman, 2013).

The average external validity measures and computing time under each distance 
function for Iris and Hayes-Roth datasets are presented in Tables 8 and 9, respectively.

The performances of our methods are compared to other methods, and evaluated based 
on the average external validity measures and computational timing. 

It is clear that all the proposed methods have achieved better performance in the two 
datasets used. It is important to note that Iris data set in Table 8 has recorded the following 
results; average external validity measures for Euclidean (0.89387), Standardized Weighted 
Euclidean (0.88002), Qn Weighted Euclidean (0.90379) and Sn Weighted Euclidean 
(90262). While, the computing time (minutes) for Euclidean (44), Standardized Weighted 
Euclidean (44), Qn Weighted Euclidean (42) and Sn Weighted Euclidean (42). The 
Hayes-Roth data set in Table 9 has the following results as; external validity measures for 
Euclidean (0.66190), Standardized Weighted Euclidean (0.66100). Qn Weighted Euclidean 
(0.67031) and Sn Weighted Euclidean (0.67166). While, also its computing time (minutes) 
for Euclidean (45), Standardized Weighted Euclidean (45), Qn Weighted Euclidean (43) 
and Sn Weighted Euclidean (43). Generally, on the average, the two datasets indicated that 
the two proposed methods had shown impressive performance. Therefore, the results based 
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Table 8
Average external validity measures and computing time under each Distance Functions for Iris Dataset

Distance Functions Euclidean Weighted Euclidean Qn Weighted Euc. Sn Weighted Euc.
Purity 0.88667 0.85333 0.89230 0.89107
Fow. M.  I. 0.88876 0.85412 0.89117 0.89217
Rand  Index 0.92444 0.90222 0.93657 0.93556
F-M. (Score) 0.88609 0.86327 0.89333 0.89111
Jaccard Index 0.80454 0.79793 0.82271 0.82172
Recall 0.88667 0.88533 0.89667 0.89333
F-M. (varied) 0.88528 0.88358 0.89219 0.89229
G. Means 0.91161 0.89848 0.93440 0.93392
Precision 0.89786 0.88599 0.91631 0.91476
Specificity 0.94333 0.93667 0.94743 0.94667
Accuracy 0.92444 0.91222 0.92577 0.92556
Sensitivity 0.88667 0.88533 0.89667 0.89333
Average 0.89387 0.88002 0.90379 0.90262
Compt. Time 44 44 42 42

Table 9
Average external validity measures and computing time under each Distance Functions for Hayes-Roth 
Dataset

Distance Functions Euclidean Weighted Euclidean Qn Weighted Euc. Sn Weighted Euc.
Purity 0.61250 0.50375 0.62125 0.62625
Fow. M. I. 0.60666 NaN 0.62372 0.62873
Rand  Index 0.77500 0.75002 0.78417 0.77939
F-M. (Score) 0.61236 NaN 0.63216 0.63792
Jaccard Index 0.43881 0.42504 0.44223 0.44135
Recall 0.65132 0.65221 0.65399 0.65333
F-M. (varied) 0.65055 NaN 0.65993 0.66148
G. Means 0.71888 0.70453 0.72183 0.72519
Precision 0.60256 NaN 0.61529 0.61447
Specificity 0.84783 0.83767 0.84861 0.85251
Accuracy 0.77500 0.76250 0.78654 0.78607
Sensitivity 0.65132 0.65221 0.65399 0.65333
Average 0.66190 0.66100 0.67031 0.67166
Compt. Time 45 45 43 43

Note: NaN = Not a Number

on the two datasets applied confirmed that the real numbers used in iris dataset provided 
higher quality performance in the external validity measures compared to integer numbers 
used in the Hayes-Roth dataset. 
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CONCLUSION

In this paper, we proposed two methods to overcome the weakness of Standard Weighted 
Euclidean Distance method, whereby it has 0% breakdown point characteristics (Rousseeuw 
& Hubert, 2011), a lack of robustness, is susceptible to outliers, and its low efficiency at 
heavy-tailed distributions (Gerstenberger and Vogel, 2015). The proposed methods are 
called Qn Weighted Euclidean and Sn Weighted Euclidean distance functions. These 
methods are based on the increase of accuracy and efficiency in performance using of 
high breakdown estimators as Qn and Sn both have 50% breakdown points, and their 
efficiency Sn is 58% and Qn is 82% (Rousseeuw and Croux, 1993). Therefore, to improve 
the accuracy and efficiency of Standardized Weighted Euclidean (Xu & Tian, 2015), we 
employed and adopted the ideas of Rousseeuw and Hubert (2011) to make the distribution 
more symmetric.

Furthermore, we also presented average external validity measures and computing time 
(minutes) based on 1000 simulation runs for contaminated data. From the outcome, it is 
exciting to observe that despite the contamination of the data, the two suggested methods 
had performed better compared to the existing methods. To investigate the performance 
of our proposed methods, a simulation study and real data were considered. The results 
indicate that the Euclidean distance function has the least performance. This is due to 
the fact that the Euclidean distance has not applied any of the existing estimators to 
down weight the datasets. However, the two proposed methods have good performance; 
evidently, by achieving nearly maximum points in the average external validity measures, 
lower computational timing and clustering the object points to almost all their maximum 
number of cluster centers.

From the results, it can be concluded that the two proposed methods are much better 
in performance compared to the existing methods.
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