
Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 30 May 2017
Accepted: 17 January 2018

E-mail addresses:
arahman.ned@gmail.com (Abdur Rahman Muhammad Abdul Majid)
asila@upm.edu.my (Nor Asilah Wati Abdul Hamid
amir_r@upm.edu.my (Amir Rizaan Rahiman)
bjzafar@uqu.edu.sa (Basim Zafar)
*Corresponding Author

GPU-based Optimization of Pilgrim Simulation for Hajj and
Umrah Rituals

Abdur Rahman Muhammad Abdul Majid1, Nor Asilah Wati Abdul Hamid1*,
Amir Rizaan Rahiman1 and Basim Zafar2

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM,
Serdang, Selangor, Malaysia
2Custodian of the Two Holy Mosques Institute for Hajj Research, Umm Al-Qura University, Makkah,
Saudi Arabia

ABSTRACT

Tawaf ritual performed during Hajj and Umrah is one of the most unique, large-scale multi-cultural
events in this modern day and age. Pilgrims from all over the world circumambulate around a stone
cube structure called Ka’aba. Disasters at these types of events are inevitable due to erratic behaviours
of pilgrims. This has prompted researchers to present several solutions to avoid such incidents. Agent-
based simulations of a large number of pilgrims performing different the ritual can provide the solution
to obviate such disasters that are either caused by mismanagement or because of irregular event plans.
However, the problem arises due to limited parallelisation capabilities in existing models for concurrent
execution of the agent-based simulation. This limitation decreases the efficiency by producing insufficient
frames for simulating a large number of autonomous agents during Tawaf ritual. Therefore, it has become
very necessary to provide a parallel simulation model that will improve the performance of pilgrims
performing the crucial ritual of Tawaf in large numbers. To fill in this gap between large-scale agent-
based simulation and navigational behaviours for pilgrim movement, an optimised parallel simulation
software of agent-based crowd movement during the ritual of Tawaf is proposed here. The software
comprises parallel behaviours for autonomous agents that utilise the inherent parallelism of Graphics
Processing Units (GPU). In order to implement the simulation software, an optimized parallel model is

proposed. This model is based on the agent-based
architecture which comprises agents having a
reactive design that responds to a fixed set of
stimuli. An advantage of using agents is to provide
artificial anomaly to generate heterogeneous
movement of the crowd as opposed to a singular
movement which is unrealistic. The purpose is to
decrease the execution time of complex behaviour
computation for each agent while simulating a
large crowd of pilgrims at increased frames per
second (fps). The implementation utilises CUDA

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1020 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

(Compute Unified Device Architecture) platform for general purpose computing over GPU. It exploits
the underlying data parallel capability of an existing library for steering behaviours, called OpenSteer.
It has simpler behaviours that when combined together, produces more complex realistic behaviours.
The data-independent nature of these agent-based behaviours makes it a very suitable candidate to be
parallelised. After an in-depth review of previous studies on the simulation of Tawaf ritual, two key
behaviours associated with pilgrim movement are considered for the new model. The parallel simulation
is executed on three different high-performance configurations to determine the variation in different
performance metrics. The parallel implementation achieved a considerable speedup in comparison to its
sequential counterpart running on a single-threaded CPU. With the use of parallel behaviours, 100,000
pilgrims at 10 fps were simulated.

Keywords: Agent-based system, crowd simulation, GPU, Hajj and Umrah, parallelisation

INTRODUCTION

Many scientific applications require high-performance computing systems to perform their
computational tasks expeditiously. This can be done using Graphics Processing Unit (GPU), as
it can solve compute-intensive tasks on thousands of highly parallel, multi-threaded processing
cores. The GPU utilises different levels of memory and high data throughput to accelerate the
computational process. The GPUs has given rise to a programmable ecosystem that started
leveraging on its highly parallel architecture. NVIDIA® standardised the customisation with
the release of a toolkit called Compute Unified Device Architecture (CUDA). This API is an
extension of C programming language. This has provided researchers with the opportunity to
port several general-purpose applications onto the GPU. This notion is referred to as General-
purpose Computing on Graphics Processing Unit (GPGPU).

Among the range of applications being ported to GPU, agent-based crowd simulation
remains the most computer-intensive application. This is due to the additional computational
power required with the increase in the number of agents present in a virtual environment.
Researchers have proposed several models to simulate crowd movement including social
force models (Helbing & Farkas, 2002), cellular automata models (Klüpfel, 2007), gas kinetic
models (Hoogendoorn & Bovy, 2001) and agent-based models (Cherif & Chighoub, 2010).
Among these, agent-based modelling (ABM) (Jennings, 2000), is the more frequently used
methodology to implement autonomous agents. In the case of religious rituals such as Hajj
and Umrah, simulating such a large crowd adds to computational demand of the system. Since
each agent in the simulation possesses complex behaviours, this provides a real-life crowd
which depicts the unique crowd phenomenon in these rituals.

Hajj and Umrah are performed by thousands of pilgrims all over the world. In 2015, a
stampede killed more than 2000 pilgrims (Salamati & Rahimi-Movaghar, 2016). Such disasters
can be prevented if there was a simulation earlier. Earlier studies were not able to simulate
a large crowd to possible outcomes (Kim et al., 2015; A. N. Shuaibu, Faye, Malik, & Talal,
2014; Sakellariou et al., 2014; Sarmady, Haron, & Talib, 2011).

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1021Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Therefore, there is a dire need for an agent-based simulation that can replicate dense crowd
scenarios and depict the natural movement of pilgrims. This research reports the behaviours
on the GPU for concurrent execution. This was implemented by Reynolds (2006) which is an
open source steering library called OpenSteer. The current work extends previous research
Rahman, Hamid, Rahiman, & Zafar, (2015).

LITERATURE REVIEW

In the field of crowd simulation and modelling, some researchers have focused on Hajj and
Umrah. AlGadhi et al. was among the first to predict the throughput of pilgrims from the
``Jamarat” site (AlGadhi & Mahmassani, 1990). His work provided the basis of pilgrim
movement and their flow for future research. Abdelghany et al. proposed a micro-simulation
based on the model provided by AlGhadi (Abdelghany, Abdelghany, Mahmassani, & Al-gadhi,
2006). They assessed the structure of Masjid Al-Haram by using three different levels of
congestions. Zainuddin et al. simulated up to 1,000 pilgrims, implemented using proprietary
software called ``SimWalk” (Zainuddin, Thinakaran, & Abu-Sulyman, 2009). Similarly,
Mulyana et al. developed a 2-dimensional software that was able to represent 500 agents for
Tawaf and Sa’yee rituals performed during Hajj (Mulyana & Gunawan, 2010). Rahim et al.
(2011) developed one of the first t 3-dimensional simulations for Tawaf with visualisation
capability of 500 agents. Using Cellular Automata model, Sarmady et al. (2011) were able to
mimic the circular movements of 15,000 pilgrims performing Tawaf. Finite State Machine
(FSM) was used to simulate 35,000 agents in 2D (Curtis, Guy, Zafar, & Manocha, 2013). In
a more recent research, the spiral model was used by Shuaibu et al. (2013) to simulate 1000
agents . Using X-machine model with NetLogo, Sakellariou et al. (2014) were able to represent
results for 1500 primitive agents performing Sa’yee in Masjid Al-Haram. These studies faced
certain limitations regarding numbers of virtual pilgrims because of limited computational
power. In other words, the CPU was incapable of providing the required computational power
to display the complex behaviour of pilgrims at interactive frame rates.

Therefore, there is a research gap between crowd simulation in Hajj and Umrah rituals,
and the performance optimisation techniques used. Although many studies have examined
Tawaf simulation, none of them addressed the performance of these simulations. The need to
compute complex behaviours of a large virtual crowd is in line with the increasing number of
pilgrims attending the religious event of Hajj each year (see Figure 1). Hence, to provide the
required performance and computation for simulating large crowd in Hajj, the study proposes
a Parallel Agent-based crowd simulation. It also shows some of the common behaviours
observed among pilgrims during Hajj and Umrah rituals. This research will take advantage of
the underlying capabilities of a GPU.

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1022 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

AGENT MODEL

In this research, it is necessary to design an agent model to comprehend the working of the
proposed parallel agent-based simulation software. Each agent in the simulation acts as a
building block for an agent-based system. Hence the understanding of their model is important
before we proceed to the analysis of OpenSteer library.

The agent model is based on the reactive architecture in which is the response of the agent
is based on fixed stimuli. The stimuli in this research include neighbouring agents, obstacles
and the desired goal. The agent model for the proposed parallel implementation is shown in
Figure 2.

Figure 1. Number of Pilgrims from 2007 – 2016 (Gen. Auth. for Stat. Saudi

Arabia, 2016)

AGENT MODEL

In this research, it is necessary to designan agent model to comprehend the

working of the proposed parallel agent-based simulation software. Each agent

in the simulation acts as a building block for an agent-based system. Hence the

understanding of their model is important before we proceed to the analysis of

OpenSteer library.

The agent model is based on the reactive architecture in which is the

response of the agent is based on fixed stimuli. The stimuli in this research

include neighbouring agents, obstacles and the desired goal. The agent model

for the proposed parallel implementation is shown in Figure 2.

Figure 1. Number of pilgrims from 2007 – 2016 (Gen. Auth. for Stat. Saudi Arabia, 2016)

Figure 2. Agent model

	

In designing the agent model, the three main components of the agent

includes behaviour selection, steering, and locomotion. The agent is intended to

receive information about the environment. The behaviour selection component

receives this information and decides on the behaviour available to use. This is

also influenced by the obstacles and other agents in the vicinity. The selection

of obstacle and agents to avoid will be performed on distance threshold value.

This value provides the agent with ample time for determining an appropriate

behaviour.

When the necessary behaviors are selected by the initial component, the

steering part determines the underlying details. One of the most important

details that is selected is the steering force with the agent to proceed towards its

goals. The information on the final goals is also provided which influences the

force and truncate it accordingly.

Figure 2. Agent model

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1023Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

In designing the agent model, the three main components of the agent includes behaviour
selection, steering, and locomotion. The agent is intended to receive information about the
environment. The behaviour selection component receives this information and decides on
the behaviour available to use. This is also influenced by the obstacles and other agents in the
vicinity. The selection of obstacle and agents to avoid will be performed on distance threshold
value. This value provides the agent with ample time for determining an appropriate behaviour.

When the initial component selects the necessary behaviors, the steering part determines
the underlying details. One of the most important detail that is selected is the steering force
with the agent to proceed towards its goals. The information on the final goals is also provided
which influences the force and truncate it accordingly.

The final module is referred to as locomotion. In this constituent, the steering force for the
preceding component is utilised to calculate further properties of the agent. These properties
include the velocity, orientation, and location. These properties will be used to redraw the agent
in the next frame for representing the virtual environment. The following discussion provides
a detailed analysis of OpenSteer library.

METHODOLOGY

The architecture of OpenSteer provides developers the ability to create complex behaviours by
combining simpler behaviours within a scenario. These scenarios are referred as plugins. Before
a plugin can starts simulating, each agent in the environment is first initialised. In this step,
the objects for each agent is created, and other components are initialised (open ()). Then the
created plugin is called. This call is placed in a loop, where each loop represents one simulation
cycle. The first part of this step is known as the update () function. In this stage, calculations
for each agent takes place and the second part is the redraw () function. The second function
redraws each agent in at its new position. Ideally, this cycle should run 8 to 15 times in one
second for the agents to move smoothly across the environment. At the end of the simulation,
the next step (close ()) is activated which cleans up all the memory as shown in Figure 2.

The final module is referred to as locomotion. In this constituent, the

steering force for the preceding component is utilised to calculate further

properties of the agent. These properties include the velocity, orientation, and

location. These properties will be used to redraw the agent in the next frame for

representing the virtual environment. The following discussion provides a

detailed analysis of OpenSteer library.

	

METHODOLOGY

The architecture of OpenSteer provides developers the ability to create complex

behaviours by combining simpler behaviours within a scenario. These scenarios

are referred as plugins. Before a plugin can starts simulating, each agent in the

environment is first initialised. In this step, the objects for each agent is created,

and other components are initialised (open ()). Then the created plugin is called.

This call is placed in a loop, where each loop represents one simulation cycle.

The first part of this step is known as the update () function. In this stage,

calculations for each agent takes place and the second part is the redraw ()

function. The second function redraws each agent in at its new position. Ideally,

this cycle should run 8 to 15 times in one second for the agents to move

smoothly across the environment. At the end of the simulation, the next step

(close ()) is activated which cleans up all the memory as shown in Figure 3.

Figure 3. Simulation Cycle (Rahman et al., 2015)
Figure 3. Simulation cycle (Rahman et al., 2015)

In OpenSteer library, the update function comprises two main parts, the Simulation phase, and
the Modification phase. In the Simulation phase of the function, a Steering Force is calculated
for each agent. If the agent abruptly moves towards the target, this will not produce realistic
movement. To produce natural movement patterns, the steering force directs the agent towards
its goal. In the Modification phase, the steering force from the previous phase is used to
calculate the remaining properties (acceleration, velocity and future position) of the agents.
The sequential implementation of library executes the update function for each agent one by

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1024 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

one. So, if the simulation contains a large number of agents, then the function will require
a longer time to complete. After calculating properties for each agent, the results are then
transferred to the redraw function. This creates a bottleneck, since the execution time for each
simulation cycle increases.

The calculations in the Simulation phase do not depend on the Modification phase, so this
type of data-independent tasks favours parallelisation onto GPU. The navigational behaviours
of each agent determine the steering force in the first phase. For all the agents present in the
environment the parallel implementation will launch n threads for n number of agents. Each
thread will initially calculate the steering force and will synchronise before the launch of the
section phase. This representation can be seen in Figure 3.

Figure 4. Traversing through simulation and modification phase in parallel

Two key navigational behaviours which are prominently seen in

pilgrims performing rituals of Hajj and Umrah are selected. These behaviours

include path following behavior and obstacle avoidance behavior. They allow

agents to move freely in the virtual environment. The behaviours are very

refined and are used to produce much of the natural motion of agents. The path

following behaviour is an essential for agents in the scenario of Hajj and

Umrah. The complete path is considered as the goal of the character. Routes

such as roads, streets, and footpaths are fixed. The character's movement on the

track is not fixed; rather a character moves freely along the path like a human.

This movement is done near to the pathway keeping it as a goal. By utilising

the obstacle avoidance behaviour, the agents can avoid accidents initially with

other agents and secondly, with obstacles within the environment. The next

section discusses parallel algorithms for the selected behaviours.

Figure 4. Traversing through simulation and modification phase in parallel

Two key navigational behaviours which are prominently seen in pilgrims performing rituals
of Hajj and Umrah are selected. These behaviours include path following behavior and
obstacle avoidance behavior. They allow agents to move freely in the virtual environment. The
behaviours are very refined and are used to produce much of the natural motion of agents. The
path following behaviour is essential for agents in the scenario of Hajj and Umrah. The complete
path is considered as the goal of the character. Routes such as roads, streets, and footpaths
are fixed. The character’s movement on the track is not fixed; rather a character moves freely
along the path like a human. This movement is done near to the pathway keeping it as a goal.
By utilising the obstacle avoidance behaviour, the agents can avoid accidents initially with
other agents and secondly, with obstacles within the environment. The next section discusses
parallel algorithms for the selected behaviours.

PARALLEL NAVIGATIONAL BEHAVIOR ALGORITHMS

In the sequential implementation of OpenSteer library, each agent has a set of preliminary
behaviours that is selected based on the required action and situation. The behaviour calculates
the steering force that drives an agent. Each of these behaviours independently calculates and
updates the value of steering force for each agent. In this section, the parallel algorithms of
the selected navigational behaviours are discussed.

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1025Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Since the computation for each agent is independent, therefore, the behaviours can be easily
converted into GPU-executable kernels. In order to convert this behavior into a kernel, memory
management routines must be performed before invoking them. The specific parameters related
to the vehicle are initially copied to the global memory. A predefined variable such as threadIdx,
blockIdx, blockDim, and gridDim are used to access the memory space from within the kernels.
When the required data is retrieved, only then the process for computing steering force begins.
Path following is one of the selected behavior that an agent poses to follow a predefined path.
This type of behaviour is commonly observed in pilgrims performing different rituals during
Hajj and Umrah (Zafar, 2011). Algorithm 1 provides the implementation for this behaviour.

Figure 5. Parallel Path Following Algorithm

	

In previous algorithm, it was observed that the steering force was

calculated using the function for seeking behaviour. The function was

Figure 5. Parallel Path following Algorithm

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1026 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

In the previous algorithm, it was observed that the steering force was calculated using the
function for seeking behaviour. The function was transformed into a GPU-executable kernel,
calling a function residing on the host is not possible. So, the seek behaviour function was
changed into a callable device kernel using a unique function type qualifier provided by CUDA.
The new function can be executed on a device, and it is only callable by the device. It stores
the newly computed steering behavior back to the global memory of the GPU.

Obstacle and Collision avoidance behaviour is utilised to avoid oncoming obstacles
and other agents. It is a natural behaviour for virtual agents when navigating through the
environment. Algorithm 2 provided the working of the obstacle avoidance behavior.

Figure 6. Parallel Collision Avoidance Algorithm

The behaviour starts by measuring the minimum distance to the

collision. In the sequential implementation, the minimum time to the collision is

provided as a function parameter. However, in the parallel implementation, that

value is fixed. This value helps make the process simpler rather having a

different value each time. After the calculation for the avoidance is completed,

the thread synchronisation is called to ensure that all the thread has computed

Figure 6. Parallel Collision avoidance Algorithm

The behaviour starts by measuring the minimum distance to the collision. In the sequential
implementation, the minimum time to the collision is provided as a function parameter.
However, in the parallel implementation, that value is fixed. This value helps make the process
simpler rather having a different value each time. After the calculation for the avoidance is
completed, the thread synchronisation is called to ensure that all the thread has computed the
avoidance vector for all agents. When all threads have finished their calculation, the measured
vector is copied back to the steering force, again using the id to place the data back uniquely

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1027Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

into the allocated memory space. This data is then utilised by the redraw function to represent
the agents in the virtual world.

Some necessary details that must be dealt with to ensure proper parallelisation. The first
one was the change in phase traversal that is discussed earlier. The parallelised behaviours
were blended together, each affecting the resultant steering force. This provides a more realistic
movement for each agent. Each of these behaviours were invoked as CUDA kernels.

The second important thing to be considered is the change in data type that stores data for
each agent. In the sequential implementation, the Vec3 datatype was commonly used to store
the three-dimensional coordinates of the agent. Since CUDA does not support this data type,
the new datatype of float3 is used. The float3 data type is compatible with the CUDA runtime.
It is of type struct and has three members x, y, and z. A built-in function make_float3 converts
the three components of the Vec3 datatype to float3 member variables.

Another hurdle in the parallel conversion of the library is to carefully orchestrate the
memory allocation and transfer sequences to execute the parallel algorithms properly. Attributes
for all the agents needed to be copied to the GPU memory to execute the behaviour kernels
developed in CUDA. Proper thread synchronisation and memory management techniques are
used to ensure that the data is used for each agent.

With this, a parallel behavioral library is provided to developers, in which simpler
behaviours can be combined to create complex behaviours.

KERNEL TYPES AND MANAGEMENT

During the transition from sequential to parallel implementation, two main kernels are
introduced, namely, Steering Kernel and Modification Kernel. Steering kernel calculates the
steering force for all agents, whereas the modification kernel applies the calculated steering
force to the properties of every agent. In the parallel implementation, these kernels are used
to determine the steering force of each pilgrim. In the update phase, the first steering kernel is
responsible for describing how the pilgrim will navigate by providing an appropriate steering
force, whereas, the second modification kernel uses the steering force value and measures the
rest of the properties for the pilgrim. These include the velocity, direction, speed and other
properties. For this purpose, an array of data type float3 for the variable steering Vectors is
allocated in the global memory of the GPU that stores the steering force for the total number
pilgrims in each scenario. By transferring this data onto the GPU, each thread executing the
kernel can read and update the data of pilgrims. So, each element of the array represents the
steering force of one pilgrim. Figure 6 provides a visual representation of each steering kernel
modifying the steering vector value. When the entire kernel has executed the final value, it is
then acquired by the modification kernel to measure rest of the vehicle properties.

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1028 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

The modified data of the array containing the steering force needs to be cleared after every
update cycle so the new steering forces can be stored in the next cycle. The navigational
behaviours can be combined with each other to obtain more complex behaviours that can
reflect more natural movement. There are two ways of combining these behaviours, namely,
Switching and Blending (Pan, Han, Dauber, & Law, 2007).

Switching

Switching between different behaviours is one way of producing complex navigational
behaviours. With this type of selection, a pilgrim can change its behavior from one to another
depending upon the perception of the environment. For example, if a pilgrim is moving towards
its goal, but suddenly it faces an obstacle, it will switch its behavior from goal seeking to
obstacle avoidance.

Hence, in the parallelised version of the library, switching can be done manually, or it can
be automated. Adding or removing the behaviours at the host, is the manual way and is to be
determined at each simulation phase. The decision of this addition or removal is made by the
first layer that is, the Action Selection layer. In order to automate this process, all the relevant
behaviours will run and if there is no need for the kernel to apply steering force, null value
will be saved in the steering Vectors array.

vector value. When the entire kernel has executed the final value, it is then

acquired by the modification kernel to measure rest of the vehicle properties.

Figure 7. Steering vector accessed by different kernels

	

The modified data of the array containing the steering force needs to be

cleared after every update cycle so the new steering forces can be stored in the

next cycle. The navigational behaviours can be combined with each other to

obtain more complex behaviours that can reflect more natural movement. There

are two ways of combining these behaviours, namely, Switching and Blending

(Pan, Han, Dauber, & Law, 2007).

Figure 7. Steering vector accessed by different kernels

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1029Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Blending

Blending is another method to achieve complex behaviours. In this type of selection, the
resultant behavior is a blend of two or more behaviours. Each of the behaviours that are
combined carries a weight. This weight reflects the movement of pilgrims while navigating in
the virtual environment. Hence, to take the scenario from the previous example, the pilgrim
will avoid the obstacle while moving towards its goal.

For utilising the blending technique in our parallel implementation, each kernel must be
assigned a weight value that is used to determine its effect on the steering of the pilgrim. These
forces are then added that gives a resultant force. Before this force is applied to the pilgrim, it
is limited by the maximum force value max_force.

The next section discusses the conversion of path following and obstacle avoidance
behaviours in Steering kernels.

CONVERSION OF NAVIGATIONAL BEHAVIOURS TO STEERING KERNELS

A GPU can achieve parallelism for a portion of code that can execute independently. There are
task parallelism and data parallelism. In the case of agent-based crowd simulation, the task
assigned to each agent is identical. However, data and properties of each agent are different.
Thus, data parallelism is more suited for this type of application. This execution model is also
referred to as Single Instruction, Multiple Threads (SIMT) where the set of instructions is same
but several different threads execute it.

OpenSteer is an open-source software, and it is developed in an object-oriented manner.
The source code can be acquired from its online repository that is distributed into different
folders. The “include” folder contains the entire header file. The “plugins” folder contains
the sample scenarios to provide initial developers with a head start. The “src” folder contains
the source code which provides functionality for the functions used in the library. The package
also provides solution folder for three operating systems, Windows, Mac OS x and Linux. For
this research, we have used the Windows operating system

The initial implementation of OpenSteer provides scenarios in the form of plugins.
Similarly, the parallel implementation also provided plugins, but these plugins contain
parallelised behaviours that measured different properties of a pilgrim. Furthermore, each thread
in the CUDA based kernels is assigned to a pilgrim. All participants in a particular situation
are assigned a set of behaviours in the form of kernels.

Moreover, the study proposed a parallel implementation for the path following and
collision avoidance behaviours. The behaviours are converted into kernels that can be
executed by multiple threads concurrently. The kernels are named as followPathKernel and
avoidObstaclesKernel. These kernels are called inside the normal code by providing the grid
and block configuration. A sample kernel invocation is shown in Figure 7. Calling a kernel
starts with its name followed by specific characters (<<< ... >>>) to inform the compiler that
this is a kernel call. These characters are followed by the list of required parameters. The kernel
also requires the number of required blocks and thread.

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1030 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Before executing the kernel, all essential data are allocated and transferred to the global memory
of the GPU using cudaMalloc and cudaMemcpy functions. When the kernel is executed, the
thread Id is calculated using the predefined device variable threadIdx. This thread id is unique
and will be used to identify the agent in each scenario. This thread id is also used to indicate the
properties related to the agent. This process is common for invoking both kernels from the CPU.

The kernel definition also includes some particular declaration specifier. This qualifier
specifies whether the kernel is executed on the device or the host. For the kernels mentioned
above, the study uses __global__ specifier (See Figure 9). It indicates the kernel is callable
from the host and the device executes it.

The initial implementation of OpenSteer provides scenarios in the form

of plugins. Similarly, the parallel implementation also provided plugins, but

these plugins contain parallelised behaviours that measured different properties

of a pilgrim. Furthermore, each thread in the CUDA based kernels is assigned

to a pilgrim. All participants in a particular situation are assigned a set of

behaviours in the form of kernels.

Moreover, the study proposed a parallel implementation for the path

following and collision avoidance behaviours. The behaviours are converted

into kernels that can be executed by multiple threads concurrently. The kernels

are named as followPathKernel and avoidObstaclesKernel. These kernels are

called inside the normal code by providing the grid and block configuration. A

sample kernel invocation is shown in Figure 8. Calling a kernel starts with its

name followed by specific characters (<<< ... >>>) to inform the compiler that

this is a kernel call. These characters are followed by the list of required

parameters. The kernel also requires the number of required blocks and thread.

Figure 8. Kernel Invocation

	

Figure 8. Kernel invocation

Before executing the kernel, all essential data is allocated and

transferred to the global memory of the GPU using cudaMalloc and

cudaMemcpy functions. When the kernel is executed, the thread Id is calculated

using the predefined device variable threadIdx. This thread id is unique and will

be used to identify the agent in each scenario. This thread id is also used to

indicate the properties related to the agent. This process is common for

invoking both kernels from the CPU.

The kernel definition also includes some particular declaration specifier.

This qualifier specifies whether the kernel is executed on the device or the host.

For the kernels mentioned above, the study uses __global__ specifier (See

Figure 9). It indicates the kernel is callable from the host and it is executed by

the device.

Figure 9. Kernel Definition

	

The next section an abstraction discovered in this study to facilitate

future development of the parallel library.

Figure 9. Kernel definition

The next section an abstraction discovered in this study to facilitate future development of
the parallel library.

CUDA ABSTRACT LAYER

In existing steering library, developers who want to create plugins for simulating behaviours
were able to utilize their well-structured object-oriented interface. After porting the sequential
steering library using CUDA and, as a result, achieving a parallel library that can make use of

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1031Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

GPUs. For programmers to use this accelerated library for further development, they have to
look out for the following details:

• All the parallelised behaviour kernels needed to be initialised in some ways to use them
in a customised plugin. To initialise it, a programmer needs to handle all the details by
hand.

• Researchers will need to have CUDA development experience to deal with the API specific
details that include configurations for execution and multiple function call that are all
exposed to them.

In this research, to facilitate with convenient development, a C++ abstract layer was created
that encloses CUDA code. The main reason for this layer was to adopt and uphold similar
features that the traditional OpenSteer provided. This layer enclosed kernel initialisation details
that can be used by a programmer to produce new plugins. It comprised classes that are further
described in the next sections.

PlugInCUDA Class

In the serial implementation, a new plugin inherits the PlugIn class that handles the initialisation.
In the parallel implementation, since there are additional details that need to be taken care of
which includes memory allocation, transfer, and deallocation, a new abstract layer is provided.
The new plugins that will use the parallel behaviours will now inherit the PlugInCUDA class.
This new class also inherits the existing PlugIn class and in addition, to that, it also handles
the extra details related to the new vehicle properties and data transfers from CPU to GPU
and vice versa.

and deallocation, a new abstract layer is provided. The new plugins that will use

the parallel behaviours will now inherit the PlugInCUDA class. This new class

also inherits the existing PlugIn class and in addition, to that, it also handles the

extra details related to the new vehicle properties and data transfers from CPU

to GPU and vice versa.

Figure 10. Class diagram for PlugInCUDA class

The next section discusses the performance results of the optimized

library.

	

Figure 10. Class diagram for PlugInCUDA class

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1032 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

The next section discusses the performance results of the optimized library.

PERFORMANCE ANALYSIS AND RESULTS

Performance Metric

Frames Per Second (FPS). Frames per second or fps calibrates the performance of a visual
application that contains a rendering of 2D or 3D environments. The OpenSteer library
provides a 3D rendering of visual scenarios generated using OpenGL library. The new parallel
implementation also uses the same library to render the 3D environment. This performance
metrics provides the number of frames generated in one second in a simulation cycle. The
range can vary greatly depending on the type of application. However, interactive frame rates
are considered to be between 8-15 fps.

Execution Time of Simulation. Execution time is a key performance metric for evaluating
the efficiency of an application. The execution time is inversely proportional to frames per
second and expressed as:

The equation shows that greater execution will result in fewer frames generated in one second
at any given time. A high percentage of GPU utilisation will indicate a small execution time.

Speed-Up. Speedup refers to the speed of parallel application compared with the corresponding
sequential application. More specifically, it shows improvement in terms of time required for
execution of two different application frameworks. The term speedup was introduced in the
context of Amdals’s law. It can be expressed as follows:

Where Sp is the speedup for the parallel application, T1 is the execution time of the sequential
application, whereas Tp is the time consumed by the parallel application for completing the
simulation cycle. It is necessary that while measuring the speedup, the workload must be equal.
These performance metrics are necessary for measuring the efficiency of OpenSteer library.
The following discussion presents the results achieved in parallelisation using the metrics
mentioned previously.

An experiment on three high-performance (HPC) configuration was conducted. These HPC
systems contained three different GPUs to compare their performance. The first two GPUs
are from the NVIDIA® Tesla® category, C2050, and K40. The third one is from the GeForce®
series, GTX 970. The results were collected by running a profiling tool provided by NVIDIA®
called Visual Profiler (see Table 1). The primary performance metrics used for reporting the
results of this research are the frames per second (fps) and execution time.

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1033Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

The results in Table 1 shows the frames generated by the sequential and parallel implementation
in a second (fps). The more the number of frames, the better the quality of the output
visualisation. For a continuous video, without any noticeable delay in the frames, it should
remain within the range of real-time frame rates. Eight frames per second are the minimum
range of real-time frames rate. This study indicates that the fps generated by the sequential
implementation cannot maintain the real-time fps for more than two thousand pilgrims. The
parallel implementation shows a significant increase in performance. The high-performance
configuration with NVIDIA® GTX 970 has more frames rates compared with the other two
configurations for the respective number of pilgrims. The reason is that the GeForce® series
is capable of handling computation as well as the visual aspect of such scientific applications.
Table 2 compares different studies that have looked at the simulation of pilgrims.

Table 1
Frames per second (FPS) for sequential and parallel implementation

No of Agents Serial Implementation (CPU)
frames per second (fps)

Parallel Implementation (GPU)
frames per second (fps)

C2050 K40 GTX 970
500 27 83 91 101
1000 8 77 80 95
1920 6 63 70 80
2912 1 56 60 66
5920 0 36 37 45
7904 N/A 32 34 41
9920 N/A 28 29 36
19904 N/A 16 17 21
29920 N/A 12 13 18
59904 N/A 6 7 14
99904 N/A 3 5 10
199904 N/A 2 3 8
399904 N/A 1 2 3
499904 N/A 0 1 1
599904 N/A 0 1 1

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1034 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Table 2
Comparison of previous studies with current implementation

Studies Techniques Focus Dimensions No of Agents Frames Per
Second (fps)

Narain et al. (2009) (Narain,
Golas, Curtis, & Lin, 2009)

CFD Tawaf 2-D 25,000 11 FPS

Zainuddin et al. (2009, 2010) ABS Tawaf 2-D 1000 N/A
Mulyana and Gunawan
(2010)

ABS Tawaf 2-D 150 10 FPS

Curtis et al. (2011) ABS Tawaf 2-D 35,000 11.5 FPS
Rahim et al. (2011) N/A Tawaf 3-D 500 4.3 FPS
Khan and McLeod (2012) ABS,

Cellular
Automata

Tawaf 2-D 25,000 N/A

Shuaibu et al. (2013) Mixed Mode Tawaf 2-D 1000 N/A
Haghighati and Hassan
(2013)

ABS Tawaf 2-D 2000 N/A

Sakellariou et al. (2014) ABS Sa'yee 2-D 1500 N/A
Kim et al. (2015) ABS Tawaf 2-D 35,000 5.7 FPS
Abdur Rahman et al. (2017) ABS Hajj and

Umrah
3-D 100,000 10 FPS

The results showed better implementation compared with previous sequential library. Crowd
simulation for Tawaf and other rituals was better using this model. The parallel crowd simulation
library presented in this research provided an add-on based framework through which the
authorities can create multiple scenarios and event plans for different rituals of Hajj and Umrah.

CONCLUSION

This study presented a parallel implementation of navigational behaviours for agent-based
crowd simulation in rituals of Hajj and Umrah which demonstrates to be a better performance.
This study adds to the list of existing scientific applications that harness the high-performance
capabilities of Graphics Processing Units. With a pluggable architecture of the applications,
now equipped with the enhancement of high-performance computation, there is an improved
program for specific event planning and management of Hajj and Umrah rituals. Experiments
were conducted based on three different HPC system. The results showed robust improvements
in performance for realistic crowd simulations. Encapsulation for the parallel code for further
development was also provided. The research provided an abstract layer to the steering library
that encapsulated the CUDA implementation. The abstraction will help developers to use
improved steering behaviors.

This study was aimed at providing an optimized parallel system for large-scale agent-based
crowd simulation during Tawaf ritual. There was a need for a system due to lack of computational
requirements in existing sequential system to produce sufficient fps. A detailed overview of
background knowledge and previous studies was followed by the design requirements of the

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1035Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

proposed system using existing OpenSteer library. This helped in providing a new parallel
model of the optimised system. The implementation of the new model had challenges. Some
of the main challenges were phase traversal and appropriate data type changes. However, these
problems were overcome using GPUs and CUDA toolkit for parallel implementation. The
result was an optimized high-performance application which generated large-scale crowd with
realistic movement performing the Tawaf ritual. The new system was able to simulate 100,000
agents in a virtual environment at 10 fps. The results discussed earlier indicates that the new
system provides a better solution as compared to the previous implementation. Therefore, the
main objectives of this research have been fulfilled by implementing an optimised agent-based
system to simulate crowd efficiently.

ACKNOWLEDGEMENTS

This research is fully funded by the Universiti Putra Malaysia under the Fundamental Research
Grant Scheme (FRGS), FRGS No: 08-02-14-1580FR.

REFERENCES
Abdelghany, A., Abdelghany, K., Mahmassani, H. S., & Al-gadhi, S. A. (2006). Microsimulation

assignment model for multidirectional pedestrian movement in congested facilities. Transportation
Research Record: Journal of the Transportation Research Board, (1939), 123–132.

AlGadhi, S., & Mahmassani, H. (1990). Modelling crowd behavior and movement: Application to
Makkah pilgrimage. In Proceedings of the 11th International Symposium on Transportation and Traffic
Theory (pp. 59–78). Yokohama. Retrieved from http://www.academia.edu/2655470/Modelling_crowd_
behavior_and_movement_application_to_Makkah_pilgrimage

Cherif, F., & Chighoub, R. (2010). Crowd simulation influenced by agent’s socio-psychological state.
Journal of Computing, 2(4), 48–54. Retrieved from http://arxiv.org/abs/1004.4454

Curtis, S., Guy, S. J., Zafar, B., & Manocha, D. (2011). Virtual Tawaf: A case study in simulating the
behavior of dense, heterogeneous crowds. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops) (pp. 128–135). IEEE. http://doi.org/10.1109/ICCVW.2011.6130234

Curtis, S., Guy, S. J., Zafar, B., & Manocha, D. (2013). Virtual Tawaf: A velocity-space-based solution
for simulating heterogeneous behavior in dense crowds. In Modeling, Simulation and Visual Analysis
of Crowds (Vol. 11, pp. 181–209). Springer New York. http://doi.org/10.1007/978-1-4614-8483-7_8

Gen. Auth. for Stat. Saudi Arabia. (2016). Hajj Statistics 1437H (2016). Riyadh, Saudi Arabia.

Haghighati, R., & Hassan, A. (2013). Modelling the flow of crowd during Tawaf at Masjid Al-Haram.
Jurnal Mekanikal, 36(1), 2–18.

Helbing, D., & Farkas, I. (2002). Simulation of pedestrian crowds in normal and evacuation situations.
Pedestrian and Evacuation Dynamics, 21(2), 21–58. Retrieved from http://www.researchgate.net/
publication/224010870_Simulation_of_pedestrian_crowds_in_normal_and_evacuation_situations/
file/d912f50eb0d9bb6224.pdf

Abdur Rahman Muhammad Abdul Majid, Nor Asilah Wati Abdul Hamid, Amir Rizaan Rahiman and Basim Zafar

1036 Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Hoogendoorn, S. P., & Bovy, P. H. L. (2001). Generic gas-kinetic traffic: Systems modeling with
applications to vehicular traffic flow. Transportation Research Part B: Methodological, 35(4),
317–336. http://doi.org/10.1016/S0191-2615(99)00053-3

Jennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence, 117(2), 277–296.
http://doi.org/10.1016/S0004-3702(99)00107-1

Khan, I., & McLeod, R. (2012). Managing hajj crowd complexity: Superior throughput, satisfaction,
health, and safety. Kuwait Chapter of Arabian Journal of Business and Management Review, 2(4),
45–59. Retrieved from http://www.arabianjbmr.com/pdfs/KD_VOL_2_4/4.pdf

Kim, S., Guy, S. J., Hillesland, K., Zafar, B., Gutub, A. A. A., & Manocha, D. (2015). Velocity-based
modeling of physical interactions in dense crowds. The Visual Computer, 31(5), 541–555. http://doi.
org/10.1007/s00371-014-0946-1

Klüpfel, H. (2007). The simulation of crowds at very large events. In Traffic and Granular Flow’05
(pp. 341–346). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-
47641-2_30

Mulyana, W. W., & Gunawan, T. S. (2010). Hajj crowd simulation based on intelligent agent. In 2010
International Conference onComputer and Communication Engineering (ICCCE) (pp. 1-4). IEEE.
http://doi.org/10.1109/ICCCE.2010.5556818

Narain, R., Golas, A., Curtis, S., & Lin, M. C. (2009). Aggregate dynamics for dense crowd simulation.
ACM Transactions on Graphics, 28(5), 122. http://doi.org/10.1145/1618452.1618468

Pan, X., Han, C. S., Dauber, K., & Law, K. H. (2007). A multi-agent based framework for the simulation
of human and social behaviors during emergency evacuations. Ai and Society, 22(2), 113–132. http://
doi.org/10.1007/s00146-007-0126-1

Rahim, M. S. M., Fata, A. Z. A., Basori, A. H., Rosman, A. S., Nizar, T. J., & Yusof, F. W. M. (2011).
Development of 3D Tawaf simulation for hajj training application using virtual environment. In
Visual Informatics: Sustaining Research and Innovations: Second International Visual Informatics
Conference, IVIC 2011, Selangor, Malaysia, November 9-11, 2011, Proceedings, Part I (pp. 67–76).
Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-25191-7_8

Rahman, A., Hamid, N. A. W. A., Rahiman, A. R., & Zafar, B. (2015). Towards accelerated agent-based
crowd simulation for Hajj and Umrah. In 2015 International Symposium on Agents, Multi-Agent
Systems and Robotics (ISAMSR) (pp. 65–70). IEEE. http://doi.org/10.1109/ISAMSR.2015.7379132

Reynolds, C. (2006). Big fast crowds on PS3. In Proceedings of the 2006 ACM SIGGRAPH symposium
on Videogames - Sandbox ’06 (pp. 113–121). New York, New York, USA: ACM Press. http://doi.
org/10.1145/1183316.1183333

Sakellariou, I., Kurdi, O., Gheorghe, M., Romano, D., Kefalas, P., Ipate, F., & Niculescu, I. (2014). Crowd
formal modelling and simulation: The Sa’yee ritual. In 2014 14th UK Workshop on Computational
Intelligence (UKCI) (pp. 1–8). IEEE. http://doi.org/10.1109/UKCI.2014.6930176

Salamati, P., & Rahimi-Movaghar, V. (2016). Hajj stampede in Mina, 2015: Need for intervention.
Archives of Trauma Research, 5(5), 1. http://doi.org/10.5812/atr.36308

Sarmady, S., Haron, F., & Talib, A. Z. (2011). A cellular automata model for circular movements of
pedestrians during Tawaf. Simulation Modelling Practice and Theory, 19(3), 969–985. http://doi.
org/10.1016/j.simpat.2010.12.004

GPU-based Optimization of Pilgrim Simulation for Hajj and Umrah Rituals

1037Pertanika J. Sci. & Technol. 26 (3): 1019 - 1038 (2018)

Shuaibu, A. N., Faye, I., Malik, A. S., & Talal, M. (2014). Collision avoidance path for pedestrian
agent performing Tawaf. In T. Herawan, M. M. Deris, & J. Abawajy (Eds.), Proceedings of the First
International Conference on Advanced Data and Information Engineering (DaEng-2013) (Vol. 285,
pp. 361–368). Singapore: Springer Singapore. http://doi.org/10.1007/978-981-4585-18-7

Shuaibu, N. A., Faye, I., Simsim, M. T., & Malik, A. S. (2013). Spiral path simulation of pedestrian flow
during Tawaf. IEEE ICSIPA 2013 - IEEE International Conference on Signal and Image Processing
Applications (pp. 241–245). IEEE. http://doi.org/10.1109/ICSIPA.2013.6708011

Zafar, B. (2011). Analysis of the Mataf - Ramadan 1432 AH. Technical report. Makkah, Saudi Arabia.

Zainuddin, Z., Thinakaran, K., & Abu-Sulyman, I. M. (2009). Simulating the circumambulation of the
Ka’aba using SimWalk. European Journal of Scientific Research, 38(3), 454–464.

Zainuddin, Z., Thinakaran, K., & Shuaib, M. (2010). Simulation of the pedestrian flow in the Tawaf area
using the social force model. World Academy of Science, Engineering and Technology, 48, 908–913.

